DATA

 

Global Actual Evapotranspiration

- 0.5 deg gridded global, monthly evapotranspiration ascii files 1986-1995

- 1.0 deg gridded global, monthly evapotranspiration ascii files 1984-2006

- Cite: Fisher, J.B., Tu, K., Baldocchi, D.D., 2008.  Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sitesRemote Sensing of Environment 112: 901-919.

 

Global Potential Evapotranspiration

- 0.5 deg gridded global, monthly potential evapotranspiration ascii files 1986-1995 – Priestley Taylor

- 0.5 deg gridded global, monthly potential evapotranspiration ascii files 1986-1995 – Penman-Monteith

- 0.5 deg gridded global, monthly potential evapotranspiration ascii files 1986-1995 – Thornthwaite

- Cite: Fisher, J.B., Whittaker, R., Malhi, Y., 2011. ET Come Home: Potential evapotranspiration in geographical ecology. Global Ecology and Biogeography 20: 1-18.

 

Global Terrestrial Vegetation Fluorescence

- 2 deg gridded global, monthly chlorophyll fluorescence from GOSAT June 2009

- Cite: Frankenberg, C., Fisher, J.B., Worden, J., Badgley, G., Saatchi, S.S., Lee, J.-E., Toon, G.C., Butz, A., Kuze, A., Yokota, T., 2011. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophysical Research Letters 38: L17706, doi:10.1029/2011GL048738.

 

Global Terrestrial Vegetation Nutrient Limitation

- 0.5 deg gridded global nutrient limitation in terrestrial vegetation contemporary

- Cite: Fisher, J.B., Badgley, G., Blyth, E., 2012. Global nutrient limitation in terrestrial vegetation. Global Biogeochemical Cycles 26, GB3007, doi:10.1029/2011GB004252.

 

Global Canopy Height

 - 1 km2 gridded global vegetation canopy height for trees > 5 m from ICESat/GLAS (also see: http://lidarradar.jpl.nasa.gov/)

 - Cite: Simard, M., Pinto, N., Fisher, J.B., Baccini, A., 2011. Mapping forest canopy height globally with spaceborne LiDARJournal of Geophysical Research–Biogeosciences 116: G04021, doi:10.1029/2011JG001708.

 

Sap Flow

- Quercus douglasii (Blue Oak trees) – Tonzi Ranch, 30-minutes, 2005 (6.3MB, Excel)

- Pinus ponderosa (Ponderosa Pine trees) – Blodgett Forest, 30-minutes, 2005 (7.7MB, Excel)

- Arctostaphylos manzanita and Ceanothus cordulatus (Manzanita and Ceanothus shrubs) – Blodgett forest, 30-minutes, 2005 (7.7MB, Excel)

- Note: data provided are raw thermocouple temperatures that can be cleaned, gap-filled, and converted to sap velocity/flow according to the user.

- Cite: Fisher, J.B., Baldocchi, D.D., Misson, L., Dawson, T., Goldstein, A.H., 2007.  What the towers donŐt see at night: Nocturnal sap flow in trees and shrubs at two AmeriFlux sites in CaliforniaTree Physiology 27(4): 597-610.

 

 

MODELS

 

Evapotranspiration (PT-JPL)

- PT-JPL: MATLAB for spatial arrays (e.g., remote sensing)

- PT-JPL: Excel for point values (e.g., flux tower)

- Cite: Fisher, J.B., Tu, K., Baldocchi, D.D., 2008.  Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sitesRemote Sensing of Environment 112: 901-919.

 

Plant Nitrogen Uptake (FUN: Fixation & Uptake of Nitrogen)

- FUN: Matlab

- FUN: Fortran

- FUN: Excel

- Cite: Fisher, J.B., Sitch, S., Malhi, Y., Fisher, R.A., Huntingford, C., Tan, S.-Y., 2010. Carbon cost of plant nitrogen acquisition: A mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation. Global Biogeochemical Cycles 24: GB1014, doi:10.1029/2009GB003621.