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A B S T R A C T   

Land-surface temperature retrieved from thermal infrared (TIR) remote sensing has proven to be a valuable 
constraint in surface energy balance models for estimating evapotranspiration (ET). For optimal utility in agri-
cultural water management applications, frequent thermal imaging (<4-day revisit) at sub-field (100 m or less) 
spatial resolution is desired. While, the current suite of Landsat satellites (7 and 8) provides the required spatial 
resolution, the 8-day combined revisit can be inadequate to capture rapid changes in surface moisture status or 
crop phenology, particularly in areas of persistent cloud cover. The new ECOsystem Spaceborne Thermal 
Radiometer Experiment on Space Station (ECOSTRESS) mission, with an average 4-day revisit interval and 
nominal 70-m resolution, provides a valuable research platform for augmenting Landsat TIR sampling and for 
investigating TIR-based ET mapping mission requirements more broadly. This study investigates the interoper-
ability of Landsat and ECOSTRESS imaging for developing ET image timeseries with high spatial (30-m) and 
temporal (daily) resolution. A data fusion algorithm is used to fuse Landsat and ECOSTRESS ET retrievals at 30 m 
with daily 500-m retrievals using TIR data from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
over target agricultural sites spanning the United States.The added value of the combined multi-source dataset is 
quantified in comparison with daily flux tower observations collected within these target domains. In addition, 
we investigate ET model performance as a function of ECOSTRESS view angle, overpass time, and time sepa-
ration between TIR and Landsat visible to shortwave infrared (VSWIR) data acquisitions used to generate land- 
surface temperature, leaf area index, and albedo inputs to the surface energy balance model. The results 
demonstrate the value of the higher temporal sampling provided by ECOSTRESS, especially in areas that are 
frequently impacted by cloud cover. Limiting usage to ECOSTRESS scenes collected between 9:00 a.m. to 5:00 p. 
m. and nadir viewing angles <20◦ yielded daily (24-h) ET retrievals of comparable quality to the well-tested 
Landsat baseline. We also discuss challenges in using land-surface temperature from a thermal free-flyer sys-
tem for ET retrieval, which may have ramifications for future TIR water-use mapping missions.   

1. Introduction 

Thermal infrared (TIR)-based surface energy balance (SEB) modeling 
has proven to be an effective tool for mapping consumptive water use in 

agricultural systems over a range in spatial scales – from sub-field to 
global coverage. Land-surface temperature (LST) maps retrieved from 
TIR remote sensing provide a valuable proxy measure of the surface 
moisture status, effectively constraining latent heat (energy flux) and 
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evapotranspiration (ET; mass flux) estimates from SEB models at the 
image pixel scale (Kalma et al., 2008; Kustas and Anderson, 2009). In 
particular, Landsat thermal imaging has been broadly demonstrated as 
having operational utility for on-farm and regional water management 
and decision making (Anderson et al., 2012a). In combination with the 
visible to shortwave infrared (VSWIR) reflectance bands collected on the 
same platform, Landsat thermal data enable global sub-field scale ET 
mapping back to the launch of Landsat 4 in 1982. Landsat-scale daily ET 
information has been used to support a range in management activities, 
from irrigation scheduling (Knipper et al., 2019a) to water rights 
compliance monitoring (Allen et al., 2007) to water allocation and ac-
counting (Cuenca et al., 2013; Karimi et al., 2013; Senay et al., 2016; 
Medellín-Azuara et al., 2018). 

The effectiveness of SEB-based ET mapping tools is currently limited 
by the temporal revisit of medium resolution (defined here as ~100 m) 
TIR sensors like Landsat. The 8 to 16-day Landsat revisit frequency 
provided by 2 or 1 concurrent platforms, respectively, can miss changes 
in vegetation water use and stress that will impact monitoring and 
management goals, especially in areas impacted by frequent cloud cover 
(Anderson et al., 2012a; Senay et al., 2016; Alfieri et al., 2017a; Guil-
levic et al., 2019). The need for higher temporal sampling at medium 
resolution in contemporaneous VSWIR and TIR measurements is a prime 
factor in determining requirements for future sustainable land imaging 
missions (e.g., Landsat 10 and beyond) (Fisher et al., 2017; Wu et al., 
2019). New Earth-observing platform architectures are being explored 
to address temporal sampling while reducing mission costs, including 
disaggregation of TIR and VSWIR instrumentation onto separate plat-
forms. Given the value of Landsat-like TIR imaging to water resource 
management, it is important to understand the ramifications of thermal 
free-flyer (i.e., collecting TIR imagery only) strategies on ET retrieval 
accuracy and to quantify the value added by more frequent temporal 
revisit. 

Another important consideration for future water-use mapping 
missions is optimal TIR sensor overpass time. At the 100-m scale, at 
present we are limited in broad-scale testing to typical Landsat overpass 
times, constrained to an equatorial crossing time of 10:00 a.m. ±15 m 
over much of the archive. However, simulations and field studies suggest 
that an early afternoon overpass would better capture stress conditions 
resulting in midday stomatal closure and reduced afternoon transpira-
tion fluxes (Tuzet et al., 2003; Leuning et al., 2004). The Moderate 
Resolution Imaging Spectroradiometer (MODIS) on-board the Aqua 
platform collects routine 1-km nadir resolution TIR imagery at 1:30 p. 
m., but not at the field to sub-field scales where crop-specific stress 
variability is most suitably captured. The 375-m I5 thermal band from 
the Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the 
Joint Polar Satellite System (JPSS) missions (1:30 p.m. overpass) gets 
closer to the goal; however, there are no current standard LST products 
produced from the VIIRS I5 band. 

The ECOsystem Spaceborne Thermal Radiometer Experiment on 
Space Station (ECOSTRESS) mission provides a valuable research plat-
form for investigating TIR-based ET mapping mission requirements 
more broadly (Fisher et al., 2017; Fisher et al., 2020). Launched to the 
International Space Station (ISS) in June of 2018, the TIR-only ECO-
STRESS mission gives us the opportunity to study the value of enhanced 
temporal sampling in medium-resolution thermal imaging, the impacts 
of TIR/VSWIR separation, and alternate overpass times in the context of 
different ET modeling systems. The ISS orbit provides coverage between 
±52◦ latitude with overpass at varying times of day, and sometimes 
multiple revisits per day depending on latitude and time of year. Over 
the continental USA (CONUS) this translates into an average revisit time 
of every four days, at different times of day. The original mission sup-
ported two ET mapping approaches for generation of Level 3 (L3) ET and 
Level 4 (L4) Evaporative Stress products: the PT-JPL method (Fisher 
et al., 2008), which uses TIR to constrain net radiation within a 
Priestley-Taylor (PT) based estimate of actual ET; and the Atmosphere- 
Land Exchange Inverse (ALEXI) disaggregation method (DisALEXI), 

which uses LST in a full energy balance model to downscale regional 
ALEXI ET flux fields (Norman et al., 2003; Anderson et al., 2004). Initial 
performance evaluation of PT-JPL ECOSTRESS products has been re-
ported by Fisher et al. (2020). 

Here we compare ECOSTRESS TIR-based ET retrievals from the 
DisALEXI SEB model with Landsat-based estimates over a set of agri-
cultural sites spanning CONUS for 2018, the first calendar year of 
ECOSTRESS operation. DisALEXI applications with Landsat have been 
well-documented (e.g., Anderson et al., 2012b; Cammalleri et al., 2014a; 
Sun et al., 2017; Anderson et al., 2018; Yang et al., 2018; Yang et al., 
2020), so the Landsat retrievals serve as a baseline for evaluating 
ECOSTRESS performance and the potential for interoperability of these 
two sources of medium-resolution thermal imaging toward improved 
daily ET estimation at sub-field scales. Landsat and ECOSTRESS re-
trievals are compared for consistency in spatial and temporal patterns, 
and to identify dependencies on sensor view angle, overpass time, and 
TIR-VSWIR separation interval. Landsat-only and Landsat + ECO-
STRESS timeseries are further fused with daily 500-m estimates from 
MODIS to generate multi-source ET datacubes at 30-m spatial and daily 
temporal resolution. The value of the additional temporal sampling 
afforded by ECOSTRESS is quantified in comparison with daily and 
weekly ET observations from a suite of flux towers within the modeling 
domains. We also discuss challenges in using LST from a thermal free- 
flyer system for ET retrieval, which may have ramifications for future 
TIR water-use mapping missions. 

2. Study domain 

ET datacubes based on Landsat and Landsat+ECOSTRESS medium- 
resolution LST retrievals were constructed for 2018 over nine study 
sites across the United States (Fig. 1). These sites cover a range in climate 
and cloud cover conditions, with a focus on croplands – both rainfed and 
irrigated. Of these, the California domains provide a best-case scenario 
in terms of cloud cover where Landsat 7 and 8 alone are typically suf-
ficient to reasonably capture seasonal ET dynamics, although this is not 
always the case in landcovers where conditions vary rapidly (e.g., al-
falfa). Sites in the Midwest Corn Belt and in Maryland represent agri-
cultural regions with higher cloud cover frequency where extra TIR 
temporal sampling can be very beneficial. 

Each site contains one or more flux towers for model evaluation, 
most of which had processed datasets for 2018 available at the time of 
writing (Table 1). Many are part of the USDA Agricultural Research 
Service Long-Term Agroecosystem Research (LTAR) network, focused 
on providing high quality long-term datasets supporting research in 
agricultural sustainability (Kleinman et al., 2018). Each datacube was 
approximately 90 × 90 km in dimension, with 30 m pixels and daily 
timesteps covering the full year. 

Three ET data fusion domains are maintained over a north-south 
gradient in California in support of the Grape Remote sensing Atmo-
spheric Profile and Evapotranspiration eXperiment (GRAPEX) project 
(Kustas et al., 2018). These domains are focused on irrigated vineyards 
selected to represent a climatic gradient in wine production regions in 
California – from the southern Central Valley in Madera County (Rip-
perdan grape production area), to a centrally located site in Sacramento 
County (Sierra Loma), to a northern site in Sonoma County (Barrelli). 
The Sierra Loma domain also includes AmeriFlux towers with tower data 
availability in the California Delta region (Bouldin Island), situated in 
fields cultivated with irrigated corn and alfalfa in 2018. The overall 
region is characterized by a Mediterranean climate, with predominantly 
clear skies outside of the winter rainy season, but with a gradient in 
increasing aridity and temperature from north to south (Knipper et al., 
2020). In combination, these sites provide a valuable high temporal 
density baseline of clear-sky Landsat ET retrievals for comparison with 
ECOSTRESS retrievals (Semmens et al., 2015; Knipper et al., 2019a, 
2019b, 2020; Anderson et al., 2018, 2019). 

Three sites across the Midwest represent a gradient in rainfall, cloud 
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cover and irrigation practices within the U.S. Corn Belt. The Mead, NE 
and Ames, IA domains cover watersheds in the Platte River – High Plains 
(PRHP) and Upper Mississippi River Basin (UMRB) LTAR sites, while 
Bondville, IL lies within the Central Mississippi River Basin (CMRB) 
region. These sites are characterized predominantly by corn-soybean 
rotation cropping systems with a decrease in irrigation prevalence 
from west to east. DisALEXI performance for mapping ET and ET-based 
stress indicators in the Corn Belt has been assessed using Landsat 
(Cammalleri et al., 2014a; Yang et al., 2018). 

Two additional domains in Maryland provide coverage over the ARS 
Lower Chesapeake Bay (LCB) LTAR site on the U.S. East Coast. The 
Optimizing Production Inputs for Economic and Environmental 
Enhancement (OPE3) long-term measurement site is located in the 
Beltsville Agricultural Research Center (BARC) domain (Gish et al., 
2003; Alfieri et al., 2017b). This domain also includes the Washington D. 
C. and Baltimore metro areas, facilitating investigation of water use in 
urban landcovers. The Choptank domain covers the Choptank River 
watershed on Maryland’s Eastern Shore, where ARS research focuses on 
impacts of agriculture on water quality in the Chesapeake Bay (McCarty 
et al., 2008). Both sites have been used for SEB and DisALEXI-Landsat 
evaluation (Houborg et al., 2011; Sun et al., 2017). 

3. Materials and methods 

3.1. ALEXI/DisALEXI energy balance model 

The USDA-ARS ALEXI/DisALEXI algorithm is described in detail in 
the ECOSTRESS Level 3 Evapotranspiration (ALEXI-ET) Algorithm 
Theoretical Basis Document (ATBD) (Anderson, 2018) and references 

therein, and is summarized here. 
ALEXI/DisALEXI is a multi-scale SEB modeling system designed to 

generate self-consistent flux assessments from field to regional/conti-
nental scales (Anderson et al., 2003). Both ALEXI and DisALEXI use the 
Two-Source Energy Balance (TSEB) land-surface representation to 
partition surface temperature fluxes between the canopy and the soil 
components of the model pixel (Norman et al., 1995; Kustas and Nor-
man, 1999, 2000). LST is the primary remote sensing input to the TSEB, 
directly constraining estimates of sensible heat and net radiation, and 
indirectly latent heat by residual. The TSEB also uses satellite-derived 
estimates of leaf area index (LAI) to govern the soil/canopy partition-
ing and albedo to compute net radiation. 

The regional Atmosphere-Land Exchange Inverse (ALEXI) model 
applies the TSEB to two morning measurements of LST, typically ac-
quired at resolutions of several kilometers from geostationary satellites, 
and iteratively balances the time-integrated sensible heat flux within the 
surface-atmospheric boundary layer system (Anderson et al., 1997; 
Mecikalski et al., 1999; Anderson et al., 2007). In this study, estimates of 
morning latent heat flux have been upscaled to daily values as a scaled 
ratio of daily insolation (Cammalleri et al., 2014b), then converted to 
daily total ET (ETd; mm d− 1) using the latent heat of vaporization and 
the density of water. 

ALEXI ET data are routinely produced at 4-km resolution over the U. 
S. using thermal imagery from the Geostationary Operational Environ-
mental Satellites (GOES) (see background image in Fig. 1). For appli-
cations requiring finer scale (sub-km) ET information, these regional 
ALEXI ET maps can be spatially disaggregated using higher resolution 
LST information from polar orbiting systems (e.g., Landsat or MODIS), 
platforms such as the ISS (e.g., ECOSTRESS), or from aircraft using the 
DisALEXI algorithm (Norman et al., 2003; Anderson et al., 2004). In 
DisALEXI, the TSEB is implemented at the time of satellite overpass, 
daily ET is computed, and the upper boundary condition in air tem-
perature is iteratively adjusted until the reaggregated fluxes match the 
ALEXI baseline ETd at the ALEXI pixel scale (Sun et al., 2017). In this 
way, evaporative flux matching across scales is enforced at the daily 
timescale, and LST data from thermal sensor overpasses at arbitrary time 
of day can in theory be accommodated. The ECOSTRESS orbit on the ISS 
facilitates testing of practical limits to useful thermal image acquisition 
time-of-day for ALEXI disaggregation. 

3.2. ET datcube construction 

To generate sub-field scale ET maps at daily timesteps, as required 
for many applications, periodic ET retrievals from Landsat-like sensors 
must be interpolated between overpass dates. This is often accomplished 

Fig. 1. Study domains included in the model intercomparisons. Background map shows ETd from ALEXI (4 km), while inset maps are 30-m resolution maps from 
DisALEXI over flux tower sites. 

Table 1 
Flux towers used in the analysis, listing surrounding landcover in 2018.  

Site State Tower Cover Latitude Longitude 

Ripperdan CA RIP760 vineyard 36.8391 − 120.2101 
Sierra Loma CA SLM001 vineyard 38.2894 − 121.1178 
Sierra Loma CA SLM002 vineyard 38.2805 − 121.1176 
Bouldin Island CA US-Bi1 alfalfa 38.0991 − 121.4993 
Bouldin Island CA US-Bi2 corn 38.1090 − 121.5350 
Barrelli CA BAR012 vineyard 38.7514 − 122.9747 
Mead NE US-Ne1 corn 41.1650 − 96.4766 
Mead NE US-Ne2 soybean 41.1651 − 96.4701 
Mead NE US-Ne3 soybean 41.1798 − 96.4399 
Bondville IL US-Bo1 soybean 40.0519 − 88.3731 
BARC MD OPE3 soybean 39.0309 − 76.8443 
Choptank MD CHOP soybean 39.0587 − 75.8513  
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using a scaling flux that can be derived from standard meteorological 
datasets, such as solar radiation, evaporative fraction, or reference ET 
(Ryu et al., 2012; Alfieri et al., 2017a). Alternatively, ET maps from 
thermal sensors with coarser resolution but more frequent overpass in-
terval can be used as a scaling flux informing daily interpolation. 

The ET datacube processing flow used in this study is diagrammed 
schematically in Fig. 2. Here, gapfilled DisALEXI-based MODIS re-
trievals at 500-m resolution have been fused with periodic ETd images 
from Landsat and ECOSTRESS using the Spatial Temporal Adaptive 
Reflectance Fusion Model (STARFM; Gao et al., 2006) to create ET 
datacubes with both medium spatial (30-m) and high temporal (daily) 
resolution. Comparisons of datacubes constructed with Landsat only and 
with Landsat+ECOSTRESS against flux tower observations are used to 
identify value added by the additional thermal temporal sampling. The 
multi-source ET data fusion process and gap-filling processes are 
described in greater detail by Sun et al. (2017) and Yang et al. (2017). 

3.3. Data 

3.3.1. Model inputs 
Inputs to DisALEXI include remotely sensed surface data (LST, LAI 

and albedo), sub-daily meteorological forcings (insolation, air temper-
ature, vapor pressure, atmospheric pressure and windspeed) from the 
Climate Forecast System Reanalysis (CFSR; Saha et al., 2014), as well as 
daily CONUS-wide ALEXI ETd maps at 4-km resolution used as the 
baseline for disaggregation (Sun et al., 2017; Anderson, 2018) (Fig. 2). 
Construction of gap-filled moderate resolution MODIS 500-m ETd 
timeseries used as the datacube fusion backbone (right side of Fig. 2) is 
described by Yang et al. (2018). In this section we focus specifically on 
preprocessing of medium-resolution remote sensing inputs for Landsat 
and ECOSTRESS disaggregation; in particular, remotely sensed TIR 

images for LST retrieval and VSWIR data for constructing 30-m LAI and 
albedo model inputs. 

3.3.2. TIR inputs 
For Landsat disaggregation, thermal imagery from Landsat 7 (L7) 

band 6 (low gain) and Landsat 8 (L8) band 10 were used, spanning the 
full year of 2018. Collection 1 Level-1 thermal band products were 
downloaded from USGS. To facilitate multi-band usages, the USGS Land 
Product Generation System (LPGS) resamples Landsat thermal data to a 
30-m grid commensurate with the VSWIR band products using a bicubic 
convolution method. At-sensor brightness temperatures were atmo-
spherically corrected to surface brightness temperature using MOD-
TRAN (Berk et al., 1998), and then emissivity corrected as implemented 
in the prototype USGS Landsat LST processing system (Cook et al., 
2014). Atmospheric profile data used in the atmospheric correction 
were obtained from the Modern-Era Retrospective analysis for Research 
and Applications (MERRA-2) dataset (Gelaro et al., 2017). The sun- 
synchronous orbit of Landsat constrains image collection to around 
10:30–11:00 a.m. local time (LT) for the range of latitudes sampled in 
this study, while 185-km swath width confines viewing angle to near 
nadir (<7◦). 

ECOSTRESS was launched on June 29, 2018 and installed on the ISS 
on July 5, 2018. Post-checkout, usable data were acquired in 2018 be-
tween August 20 (start of mission) and September 9, and in 2019 be-
tween January 4 and March 14. Each of the two data breaks represent a 
temporary pause in science acquisitions to investigate the failure of 
primary and backup mass storage devices. The instrument firmware has 
since been reconfigured to enable direct data streaming, and ECO-
STRESS has been streaming uninterrupted data since May 15, 2019. In 
this study we use 2018 imagery acquired between DOY 200–280, 
defined hereafter as the “ECOSTRESS era”. Level 2 land-surface tem-
perature and emissivity (LST&E) and cloud mask swath products 
(ECO2LSTE and ECO2CLOUD) and Level 1 geolocation information are 
available for download from the USGS Land Processes Distributed Active 
Archive Center (LP DAAC; https://lpdaac.usgs.gov/). Level 3 USDA- 
DisALEXI ET products can also be obtained from the LP DAAC over 
targeted U.S. agricultural sites. 

The ECOSTRESS LST&E swath data were gridded to geographical 
coordinates using the Elliptical Weighted Averaging (EWA) algorithm in 
the pyresample python library, while the discrete cloud class data were 
gridded using nearest neighbor via kd_tree. All products were then 
resampled to the 30-m UTM grid commensurate with the Landsat 
products over each modeling domain using nearest neighbor. Several 
other gridding approaches were tested, including cubic convolution and 
direct resampling to the 30-m WRS grid, all giving similar results. 
ECOSTRESS LST and emissivity are derived with the Temperature 
Emissivity Separation (TES) technique (Gillespie et al., 1998) using ra-
diances collected in 5 spectral window bands between 8 and 12.5 μm, as 
described in the ECOSTRESS Level 2 LST&E ATBD (Hulley and Hook, 
2018b). In this approach, one single state surface temperature and 
spectral emissivity values for each band are separated from the multi- 
band thermal radiances, with atmospheric compensation iteratively 
achieved using the Radiative Transfer for TOVS algorithm (RTTOV; 
Saunders et al., 2018) with input atmospheric profiles from the low la-
tency Goddard Earth Observing System (GEOS) Model, Forward Pro-
cessing (FP) (https://gmao.gsfc.nasa.gov/GEOS_systems/). The ISS 
orbit affords image collections at varying times, both night and day, and 
sometimes multiple acquisitions in a single day at higher latitudes. In 
this study, our testing has been constrained to daytime overpasses be-
tween 7:00–17:00 LT (noon + − 5 h). The ECOSTRESS swath width 
(nominally 402 km) extends to view angles of ±26◦, and data at all view 
angles are evaluated. The Level 2 cloud product (Hulley and Hook, 
2018a) was used to screen cloud impacted pixels, masking all pixels 
classified as cloud over land and water pixels. Pixels in identified region- 
growing buffers around clouds (bit field 1 in the ECOSTRESS L2 Cloud 
product) were retained in this analysis since additional masking of 

Fig. 2. Schematic summarizing the processing flow used to generate daily 30-m 
ET datacubes over target modeling sites. 
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buffers led to large loss of usable pixels within the modeling domains. 
The cloud mask provides both buffered and unbuffered cloud mask 
options for users depending on the degree of uncertainty that can be 
tolerated. 

3.3.3. VSWIR inputs 
VSWIR inputs (LAI and albedo) at 30-m resolution for both Landsat 

and ECOSTRESS disaggregation were constructed from Landsat Collec-
tion 1 surface reflectance (SR) data. LAI is generated with a sample- 
based machine learning approach using samples from the 500-m 
MODIS Collection 5 MCD15A3H LAI product and Landsat SR in the 
green, red, NIR, and SWIR bands (Gao et al., 2012a). Albedo was 
computed with the narrow-to-broadband conversion equation devel-
oped for Landsat SR bands by Liang (2000). 

All L7 and L8 thermal images with cloud cover <80% were processed 
as defined in the pixel_qa band. Landsat-based ET disaggregation used 
same-day LST, LAI and albedo inputs. Because ECOSTRESS is a thermal- 
only instrument, VSWIR inputs (LAI and albedo) for ECOSTRESS 
disaggregation were taken from a contemporaneous Landsat overpass. 
To select this Landsat overpass, all available L7 and L8 scenes were 
triaged and scenes with minimal clear-sky coverage (<50%) were 
removed from consideration. The scene collected closest to the ECO-
STRESS acquisition date was used to create VSWIR inputs for that date. 
While L7 data are impacted by striped gaps resulting from the scan-line 
corrector (SLC) failure in 2013, it was decided that the benefits of 
reducing temporal separation between TIR and VSWIR inputs achieved 
by including L7 overpasses outweighed the drawbacks. Gaps in ECO-
STRESS ET retrievals represent the union of gaps (clouds and SLC) in the 
ECOSTRESS LST and paired Landsat VSWIR acquisitions. 

3.3.4. Thermal sharpening and TIR/VSWIR registration 
L7, L8 and ECOSTRESS TIR images have varying native resolution 

between ~60-100 m, significantly coarser than that of the 30-m Landsat 
VSWIR model inputs. To bring all TIR and VSWIR inputs to a common 
30-m resolution for datacube construction, we utilized the Data Mining 
Sharpener (DMS) algorithm of Gao et al. (2012b). Similar to the Landsat 
LAI method, DMS also uses regression trees - in this case constructed at 
the coarser TIR resolution using spatially aggregated SR values in mul-
tiple spectral bands and TIR samples, then applied to the SR data at 30- 
m. In a final “energy conservation” step, the sharpened and original 
maps are compared at a scale close to that of the native TIR resolution 
and residuals are computed. This residual map is then re-introduced into 
the sharpened TIR to ensure that it reaggregates to the original map at 
this energy conservation scale. The energy conservation scale used for 
sharpening L7 and L8 TIR imagery is 60 and 90 m, respectively. 

Temporally varying registration accuracy of the ECOSTRESS prod-
ucts and variations of spatial resolution with sensor view angle neces-
sitated relaxation of the scale of energy conservation for ECOSTRESS 
thermal sharpening - from the nominal native resolution of 70 m (at 
nadir) to ~180 m (Xue et al., 2020). While this results in some effective 
loss of spatial information in thermal variability, relaxation was found to 
be critical to maintaining consistency in TIR and VSWIR model inputs to 
the TSEB. Despite the relaxation, some artifacts of TIR-VSWIR misreg-
istration persist especially at large ECOSTRESS view angles, as discussed 
in Sec 4.3. 

3.3.5. Flux datasets 
This study used data from 12 flux towers across the U.S. located in 

cropped fields within the target ET modeling domains (Table 1) to 
evaluate the accuracy of modeled daily fluxes and the improvement 
achieved with additional temporal sampling of ECOSTRESS. Each tower 
was equipped with an eddy covariance (EC) system measuring turbulent 
fluxes of sensible and latent heat, along with net radiometers and mul-
tiple soil heat flux sensors. Common EC instrumentation include 3- 
dimensional sonic anemometers, sonic temperature sensors, and open- 
path infrared gas analyzers for water vapor and CO2. Daily ET is 

computed from the daily integrated latent heat flux as in Sec. 3.1. 
The three California domains support GRAPEX study objectives and 

include four towers in irrigated vineyards used in this study, each with 
similar instrumentation described by Alfieri et al. (2019). The RIP760 
tower is in a Chardonnay vineyard within the Ripperdan production 
area near Madera, CA, maintained by E&J Gallo Winery (Ripperdan 
domain). The Sierra Loma domain includes the seminal GRAPEX towers 
in adjacent Pinot noir vineyards outside Lodi, CA. These towers were 
formerly known as Lodi1 and Lodi2, but under new GRAPEX naming 
conventions are now referred to using their vineyard block name (Sierra 
Loma) as SLM001 and SLM002. The BAR012 tower is sited in a Cabernet 
Sauvignon block in the Barrelli Creek ranch outside Cloverdale, CA. 

The Sierra Loma domain also covers part of the California Delta – a 
major irrigation district at the San Joaquin and Sacramento River 
confluence. Several AmeriFlux towers are maintained by UC Berkeley in 
the Delta to study soil subsidence and greenhouse gas emissions in Delta 
croplands, as well as the biophysical evolution of restored wetlands 
(Eichelmann et al., 2018). In this study, we use data from two towers in 
irrigated fields on Bouldin Island: US-Bi1 in alfalfa and US-Bi2 in corn, 
established in late-2016 to mid-2017 (Hemes et al., 2019). 

The three Corn Belt domains contain several long-term Ameriflux 
towers in corn and soybean rotation. Mead includes long-term Ameriflux 
sites in irrigated (US-Ne1 and US-Ne2) and rainfed (US-Ne3) fields 
(Suyker et al., 2004), all in close proximity to Mead, NE. These towers 
are part of the USDA-ARS PHRP LTAR. Ameriflux sites US-Br1 and US- 
Br3 are the UMRB LTAR south of Ames, IA, sampling side-by-side 
rainfed fields. The Bondville domain includes the long-term US-Bo1 
AmeriFlux tower in a rainfed field outside Bondville, IL (Meyers and 
Hollinger, 2004). While not formally part of LTAR, this tower is located 
within the LMRB LTAR region. 

Finally, two towers in the USDA-ARS LCB LTAR site in Maryland 
were used, both in fields planted in soybean in 2018. The OPE3 flux 
tower is located in Beltsville, MD, while the Choptank tower is in 
Caroline County on the eastern shore of Maryland. 

Standard corrections, including coordinate rotation and Webb- 
Pearman corrections for buoyancy and water vapor density fluctua-
tions, were applied to EC flux timeseries collected at each site (see e.g., 
Alfieri et al., 2019). Modeled daily fluxes were compared with tower 
observations both as measured and with a correction enforcing closure 
in the surface energy balance, providing a metric of uncertainty in the 
flux measurements (Twine et al., 2000). At most sites, a residual closure 
correction was applied to latent heat flux at the daily (24 h) timescale, 
assigning the full energy balance residual at the daily timescale to the 
latent heat flux (Prueger et al., 2005). In the case of the SLM sites, a shift 
in nighttime wind patterns was noted in 2018 such that overnight the 
towers sampled conditions from a neighboring vineyard to the east that 
had significantly lower canopy cover. For these two towers, the 24 h 
closure-corrected latent heat flux was computed as the daytime residual 
augmented by the difference between 24 h and daytime observed latent 
heat. Assuming optimal conditions (best management practices followed 
in site selection and instrument deployment and maintenance), accu-
racies in EC measurements of ET at daily timesteps have been reported 
to be on the order of 10–15% (Allen et al., 2011; Kustas et al., 2015; 
Mauder et al., 2018). 

4. Results 

Daily 30-m ET datacubes were constructed at each flux site by fusing 
daily MODIS 500-m ETd with Landsat ETd data layers (Landsat only) 
and with both Landsat and ECOSTRESS ETd retrievals (Landsat+ECO-
STRESS). We use these datacubes to investigate how well the model 
results from each sensor agree with the flux tower observations on 
overpass dates, how inter-consistent the Landsat and ECOSTRESS re-
trievals are both spatially and temporally, and under what conditions 
the additional ECOSTRESS retrievals improved the accuracy of the 
modeled daily ET timeseries. In particular, we investigate model 
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performance in terms of impacts of ECOSTRESS temporal sampling, 
view angle, overpass time, and time separation between TIR and VSWIR 
data acquisitions, as detailed below. 

4.1. Comparison with flux tower observations 

Annual time-series plots of daily ET observed at the tower sites (both 
with and without closure corrections) are shown for 2018 in Fig. 3a 
along with modeled daily ET generated via data fusion using Landsat 
only and Landsat+ECOSTRESS. Direct remote sensing retrievals on us-
able/fillable Landsat and ECOSTRESS overpass dates anchoring the 
fusion are also indicated. In general, the Landsat and ECOSTRESS re-
trievals are temporally consistent with each other at most of the flux 
sites, with some exceptions. Possible sources of inconsistency are 
investigated further in following sections. 

To quantify the value added by ECOSTRESS, we compare the per-
formance of ET retrievals at daily and weekly timesteps generated via 
data fusion with and without ECOSTRESS (Fig. 4; Table 2). Over the 
2018 ECOSTRESS image acquisition period (day of year [DOY] 
200–280), root-mean-square errors (RMSE) for all sites combined 
improved slightly with ECOSTRESS - from 1.24 to 1.18 mm d− 1 at daily 
timesteps and from 1.01 to 0.94 mm d− 1 for weekly average ET (Fig. 5). 
Over the full year, the performance was similar with and without 
ECOSTRESS due to the short period of data availability in 2018, with 
RMSE of 1.0 (0.8) mm d− 1 at daily (weekly) timesteps. Despite the small 
impact on statistics from all sites combined, a few individual sites 
showed unique sensitivity to the improved temporal sampling as dis-
cussed below. 

4.2. Temporal sampling 

At the central California flux sites (Ripperdan, Sierra Loma, and 
Bouldin Island), there was typically sufficient clear-sky sampling with L7 
and L8 to capture major ET changes (Fig. 3a). One exception is US-Bi1, 
where monthly cuttings of the alfalfa crop results in multiple peaks in ET 
through the growing season. An additional sample around DOY 160 
would have facilitated better definition of the June peak; however, this 
was prior to the launch of ECOSTRESS. ECOSTRESS did not improve 
temporal reconstruction at the alfalfa site during the ECOSTRESS era, 
which may be due in part to non-simultaneous TIR-VSWIR acquisition 
under conditions of rapid vegetation change, as discussed further in in 
Sec 4.6. 

Further to the north in California, at the Barrelli site (BAR012), er-
rors in daily and weekly flux retrieval improved by 25% and 55%, 
respectively, with the additional ECOSTRESS sampling. ECOSTRESS 
ETd on DOY 223 and 239 were superior to the Landsat values and their 
inclusion improved biases during adjacent periods. In particular, the 
additional samples between DOY 233 and 243 helped to better define a 
reduction in weekly ET after irrigation ceased (see Fig. 3a). 

Outside of California (Fig. 3b), the site that benefited most from 
ECOSTRESS was OPE3 in the eastern United States, where frequent 
cloud cover can severely limit seasonal ET retrievals based on Landsat 
alone. At this site, daily and weekly RMSE values were reduced by 30% 
and 40%, respectively, by including the additional ECOSTESS samples 
(Fig. 4). These samples effectively filled a large gap in mid-year Landsat 
coverage due to persistent cloud cover on Landsat overpass dates 
(Fig. 6). No Landsat scenes with sufficient coverage to be used in the 
fusion process were acquired between DOY 197–277 (16 July – 4 
October). This constituted nearly the full growing season for the soybean 
crop at OPE3, from shortly after emergence to mid-senescence (Fig. 6). 
Four additional ECOSTRESS samples during this period significantly 
improved accuracy of daily timeseries, reducing RMSE from 1.6 to 1.1 
mm d− 1 over the ECOSTRESS imaging period and from 1.1 to 0.8 mm 
d− 1 over the full year. All three ECOSTRESS retrievals used VSWIR in-
puts from a Landsat acquisition during an off-peak time, DOY 269, when 
the crop had already started to senesce. The lower LAI from that day may 

contribute to underestimation of transpiration fluxes on the ECOSTRESS 
dates, whereas a clear VSWIR acquisition near peak greenness would 
have increased ETd estimates during that interval toward values re-
flected in the closed tower observations. 

ECOSTRESS did not significantly change STARFM results at most of 
the Choptank, Bondville, Mead or Ames flux sites, even though these 
sites had large gaps in Landsat coverage due to cloud cover (Fig. 3a,b). 
At each of these sites, a clear Landsat retrieval was available near peak 
crop biomass, serving to anchor the fused ET timeseries during the latter 
part of the growing season. RMSE over the ECOSTRESS era increased at 
the rainfed USNe3 site with the addition of ECOSTRESS, largely due to a 
single ECOSTRESS retrieval on DOY 234 which served to decrease fluxes 
at this site by 1.4 mm d− 1 on average over the surrounding two-week 
interval. The region over the three Mead flux sites was cloudy and 
gap-filled on this day, resulting in a degraded ET estimate at USNe3. 
Additional clear thermal image acquisitions during this interval would 
have helped the fusion system recover more quickly from this single 
poor retrieval; thus, noise reduction is another benefit of frequent 
thermal sampling. 

4.3. View angle 

Sensor view angle was identified as a source of additional uncer-
tainty in SEB-based ECOSTRESS ET estimation. While the Landsat swath 
is constrained to ±7◦ from nadir, the swath for ECOSTRESS has been 
expanded to ~ ±26◦ to improve temporal revisit. Visual inspection of 
the 2018 scenes processed suggests that the effective resolution of the L2 
ECOSTRESS LST product is somewhat lower than that of L8 at nadir, 
although the nominal resolution cited for ECOSTRESS (70 m) is higher 
than that for L8 (100 m). The resolution of the ECOSTRESS LST degrades 
with increasing view angle, as expected for a whisk-push imaging sys-
tem. Fig. 7 shows a comparison between LST at native resolution from 
ECOSTRESS and L8 over a range of view angles, extracted from subsites 
in the Sierra Loma domain on DOY 216. Field-scale features in the 
ECOSTRESS sub-scenes are progressively blurred at larger view angles, 
particularly at angles exceeding 20◦. 

Thermal sharpening using the DMS package helps to enhance the 
spatial consistency between ECOSTRESS and Landsat LST at all view 
angles, improving the “stackability” of the multi-source thermal imag-
ery. Due to the relaxed energy conservation scale used to accommodate 
ECOSTRESS geolocation errors (Sec. 3.3.2), DMS output for ECOSTRESS 
LST may in fact even appear slightly “sharper” than for Landsat, 
although at the expense of true thermal spatial information content 
(Fig. 7). Above 20◦, however, degradation in thermal pixel size and 
VSWIR/TIR co-registration lead to artifacts in the sharpened LST and 
resulting ET retrievals. These artifacts are manifested as a blurring or 
bleeding of LST signals over discrete feature boundaries (see e.g., 
sharpened ECOSTRESS LST tile at 20◦ in Fig. 7). Fig. 8 compares ETd 
from three direct ET retrievals over a period of 4 days (246–250), 
extracted over the Sierra Loma tower sites. ECOSTRESS ETd on DOY 246 
(11.6◦) is similar in quality to Landsat ETd on DOY 248, while ECO-
STRESS on 250 (23.2◦) shows signs of degraded VSWIR/TIR spatial 
correspondence both in the sharpened LST and in the ETd output. These 
artifacts are particularly notable at the sharp discontinuity between 
irrigated vineyards and the senesced rainfed grassland along the 
northwest edge of the agricultural zone mid-scene. Note that identifi-
cation of these artifacts required visual inspection – they may or may not 
be detectable in time series extractions. For example, the ECOSTRESS 
estimated ET at the SLM001 tower site on DOY 250 is only slightly 
elevated (0.3 mm d− 1) in comparison with the Landsat ET two days 
prior. 

4.4. Overpass time 

Another potential source of inconsistency in daily ET retrievals from 
Landsat and ECOSTRESS is the thermal sensor overpass time. While L7 
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Fig. 3a. Model – measurement time-series intercomparison at the CA flux tower sites for the fully year of 2018 (left) and the ECOSTRESS era (DOY 200–280; right). 
Dotted red lines indicate STARFM results based on Landsat only, while solid red lines show results using Landsat+ECOSTRESS. Red/green diamonds indicate direct 
ETd retrievals by Landsat/ECOSTRESS, while closed and unclosed daily ET observations are plotted as filled and unfilled blue circles, respectively. Precipitation and 
irrigation (where known) are shown as green and blue bars. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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Fig. 3b. Model – measurement time-series intercomparison at the MD, IL and NE tower sites.  
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and L8 are in sun-synchronous orbit with overpass time generally 
around 10:30 a.m., the ISS orbit provides overpass at varying time of 
day, and sometimes multiple times per day. Since the thermal image 

used in DisALEXI defines the spatial structure in the 30-m ETd map, 
time-of-day of acquisition can impact the resulting retrieval. The 2018 
Landsat and ECOSTRESS combined ETd timeseries were inspected to 
determine a recommended window for usable overpass times, and to 
identify dependency of ET structure on TIR image acquisition time. 

Using the time series extracted at the SLM001 tower in Fig. 8 as an 
example, ETd derived from LST retrieved at overpass times ranging 
between 8 a.m. and 4 p.m. are reasonably consistent over time, except 
for the collections at large view angle as noted in Sec. 4.3. This may be 
due in part to the fact that this vineyard is irrigated, resulting in a more 
symmetrical diurnal thermal curve pre- and post-noon. The DisALEXI 
energy conservation step, which enforces aggregation to the ALEXI 
baseline ETd flux at the 4-km scale, also reduces sensitivity to high- 
resolution LST acquisition time. Still, 30-m DisALEXI flux distributions 
within the disaggregated ALEXI pixel footprint (4-km) are strongly 
dependent on temporally varying high-resolution LST patterns from 
different acquisition times, even on the same day. In addition, surface 
moisture and vegetation stress conditions can vary over the course of the 
day, leading to a different perspective on daily ET at field scale 
depending on time of image acquisition. 

Visual inspection revealed that, in many cases, retrievals based on 
early morning ECOSTRESS LST were overly uniform due to reduced 
surface temperature variability expressed under low morning solar ra-
diation load. This is demonstrated in a comparison of ECOSTRESS (8:45 
a.m.) and Landsat (10:38 a.m.) ETd retrievals with DisALEXI on 6 Sept 

Table 2 
Statistical metrics of model performance (RMSE) for estimating ET (mm d− 1) at 
daily and weekly timesteps with Landsat only (L) and Landsat+ECOSTRESS (L 
+ E), over the full year and the 2018 ECOSTRESS era (DOY 200–280). N is the 
number of daily flux observations available over the prescribed interval.    

Full year ECOSTRESS era 

Timescale Tower N RMSE 
L 

RMSE L 
+ E 

N RMSE 
L 

RMSE L 
+ E 

DAILY slm001 214 0.88 0.89 69 1.18 1.22  
slm002 193 0.93 0.93 70 1.08 1.07  
USBi1 266 1.37 1.39 71 1.35 1.41  
USBi2 215 1.05 1.02 53 1.23 1.12  
rip760 170 0.85 0.86 39 1.01 1.01  
bar012 211 0.84 0.78 51 0.98 0.74  
USNe1 316 1.23 1.22 75 1.47 1.45  
USNe2 306 0.92 0.90 73 1.13 1.06  
USNe3 324 1.02 1.04 80 1.34 1.42  
USBo1 170 1.13 1.13 28 1.24 1.28  
chop 258 0.97 0.96 78 0.97 0.93  
ope3 139 1.12 0.83 56 1.60 1.07  
ALL 2782 1.05 1.03 743 1.24 1.18 

WEEKLY ALL 353 0.84 0.82 96 1.01 0.94  

Fig. 4. Comparison of RMSE in daily (top) and weekly (bottom) ET developed with and without ECOSTRESS over the full year (left) and 2018 ECOSTRESS 
era (right). 
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(DOY 249) around the RIP760 tower site in Fig. 9 (top row), showing 
subset regions of 9 × 9 km, or about 2 × 2 ALEXI pixels in scale. His-
tograms of fluxes over the two image subsets demonstrate a larger 
contrast in fluxes from the Landsat LST data acquired closer to noon, 
with fallow fields appearing drier in the Landsat retrieval and higher ET 
in irrigated fields. Despite the clear differences in spatial patterns, the ET 
extracted within the vineyard at the tower site is similar in both re-
trievals (4.1 and 3.9 mm d− 1 for Landsat and ECOSTRESS, respectively). 
This sub-scene was also acquired at high view angle (24◦), contributing 
to blurring at field edges. While early morning LST may not be optimal 
in isolation, pairing with a same-day near-noon high-resolution LST 
image from Landsat could enable time-differential applications of TSEB 
at field-scale (e.g., Kustas et al., 2001; Guzinski et al., 2013). 

The impact of early morning LST on ET retrieval is also seen in the 3- 
day sequence (24–27 August; DOY 236–239) at the Choptank site shown 
in Fig. 10. The Choptank flux tower is located in a cropped field (soy-
bean in 2018) within a crop/forest mosaic landscape. Although the time- 
series extracted at the tower site appears consistent between dates 
(Fig. 3a,b), with values of 5.8–6.0 mm d− 1, visual inspection reveals that 

the retrieval using the ECOSTRESS LST image at 7:09 a.m. LT on DOY 
236 does not capture the expected variability in ET between the forest 
and crop patches. Landsat (DOY 238) and ECOSTRESS (DOY 239) ETd 
maps based on LST acquired at 10:30–12:30 LT more realistically 
depicted the expected patterns. 

In contrast, ET fluxes retrieved from ECOSTRESS LST acquired in the 
early afternoon tended to be similar in pattern and distribution to 
Landsat-derived ETd. Fig. 9 also shows image subsets over Sierra Loma 
and Bouldin Island on 4 August (DOY 216) and Ripperdan on 5 August 
(DOY 217), when there were same-day overpasses of Landsat at 10:45 
and ECOSTRESS at 14:00–15:00. Flux histograms are similar from both 
sensors but with some shifting between modes in the distribution, 
enhancing the lower mode (aqua-to-light green tones) in the afternoon 
retrieval. Contrasts are enhanced as well. Well-irrigated fields over the 
Sierra Loma site have higher ET by ~0.5 mm d− 1 with the afternoon 
ECOSTRESS LST acquisition, while the large bare field in the northwest 
corner of the Bouldin Island scene in Fig. 9 appears drier by about the 
same amount. Note there is some bleeding of fluxes around this 
discontinuity due to TIR-SR misregistration and thermal sharpening 
artifacts. In some cases, ET changes within-day may indicate active 
water management. For example, the difference map for the subset NW 
of the Ripperdan flux site shown in the bottom row of Fig. 9 identifies a 
field with a strong change signal of ≥4 mm d− 1, which may have been 
irrigated between the Landsat and ECOSTRESS overpass times. Further 
analysis is required to define thresholds distinguishing real within-day 
change from false signals due to inter-sensor differences in resolution 
and registration. 

4.5. Cloud cover 

ECOSTRESS overpass time was also found to impact the percentage 
of usable cloud-free data within the target modeling domains. The 
optimal overpass timing in terms of clear-sky probability is geographi-
cally variable, determined by local cloud cover climatology (Whitcraft 
et al., 2015). In the scenes evaluated in this study there were some cases 
where the ISS orbit afforded multiple site overpasses in one day, facili-
tating a qualitative analysis of diurnal changes in cloud coverage. Two 
cases demonstrating different time behaviors in terms of cloud cover are 
shown in Fig. 11. 

Early morning LST acquisitions at the Barrelli site in Sonoma County, 
CA, were often impacted by early morning fog that was not flagged in 
the ECOSTRESS cloud mask, being difficult to detect with thermal-only 
data. Early fog is also frequently observed on the ground during GRAPEX 
field campaigns, tending to burn off by the time of the late-morning 
Landsat overpass. The fog layer results in an overly smooth ET distri-
bution, as demonstrated in comparisons of ETd retrievals on August 21 
(DOY 233) from LST acquisition at 8:14 and 14:43 LT. 

In contrast, at the more humid sites in the Midwest and in Maryland, 
cloud cover more often occurred in afternoon ECOSTRESS acquisitions, 
likely due to convection – an example from August 24 (DOY 236) over 
the Choptank domain is also shown in Fig. 11. The 7:09 LT LST acqui-
sition was largely cloud-free, with gaps in the associated ETd map pri-
marily due to scan-line corrector gaps and clouds occurring in the L7 SR 
dataset used as input. These gaps were readily gap-filled using the 
STARFM-based approach described by Yang et al. (2017) (see Fig. 11). 
The ETd map derived from the 15:37 ECOSTRESS overpass, however, 
shows extensive contamination from small convective clouds. The 
ECOSTRESS L2 cloud mask does not explicitly model cloud shadows, 
resulting in this case in a map that cannot be easily gap-filled. Imple-
mentation of the cloud buffer and morphological filling option in the 
mask does flag these cloud shadows, but also removes most of usable 
clear pixels in this scene. Limitations in the ECOSTRESS cloud-masking 
strategy, by necessity based on TIR bands only, are discussed further in 
Sec. 5.2. 

Fig. 5. Comparison of measured 7-day average fluxes during the 2018 ECO-
STRESS era with modeled fluxes generated via data fusion with Landsat only 
(top) and with Landsat+ECOSTRESS (bottom). Inclusion of ECOSTRESS pri-
marily benefited sites BAR012 and OPE3 over this period. 
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4.6. TIR-VSWIR temporal separation 

The time separation between acquisition of TIR and VSWIR inputs 
used in DisALEXI was 5 days on average for all 2018 ECOSTRESS images 
processed, with 2-day typical separation in CA and 12 days for the 
eastern IL and MD sites. Separation can have a significant impact on 
TSEB or other energy balance algorithms that require consistent infor-
mation regarding land-surface temperature, surface albedo, and vege-
tation cover amount. 

Impacts of TIR/VSWIR mismatch on TSEB ET retrievals are demon-
strated in Fig. 12 over a set of alfalfa fields due north of US-Bi1. Alfalfa 
fields are typically harvested in this region on a monthly basis and 
regrowth is rapid between cuttings; therefore, there is a high likelihood 
that non-simultaneous collection of TIR and VSWIR inputs will result in 
sampling of significantly different surface conditions. Based on Landsat 
surface reflectances and derived LAI, it is clear in Fig. 12 that a harvest 
occurred in this field between the L8 overpass on DOY 232 and the L7 
overpass on DOY 240. This was confirmed with temporally dense VI 
timeseries derived from Planet Labs imagery (not shown). The higher 
temperatures in this field in the ECOSTRESS LST product for DOY 239 

are consistent with post-cutting field conditions. If the ECOSTRESS LST 
image on DOY 239 (high LST) is processed using the LAI map from pre- 
cutting (DOY 232; high LAI ~3.5), the TSEB assumes the presumed fully 
vegetated canopy is severely stressed and transpiration is completely cut 
off, leading to anomalously low ET close to 0 mm d− 1. This phenomenon 
is also evidenced in several nearby fields that were harvested between 
DOY 232 and 240 (see negative/positive features in the LAI/ET differ-
ence maps in Fig. 12). If the post-cutting LAI map (LAI < 1 in-field) from 
DOY 240 is used, the ET is more reasonable (1–2 mm d− 1) compared to 
fully vegetated surrounding fields (5–6 mm d− 1). 

Considering all 2018 ECOSTRESS retrievals over all flux sites, Fig. 13 
demonstrates the dependency of model error (MAE) in ETd based on 
days of separation between TIR and VSWIR data acquisitions. In general, 
the ET accuracy is highest when both inputs are collected on the same 
day, and errors increase with increasing temporal separation – more 
than doubling when the separation was greater than 5 days. Note that 
this analysis is based on a limited temporal and spatial sample. A longer 
ECOSTRESS record and additional tower sites will be required to 
determine functional dependency of ET retrieval error on separation 
timescale. 

Fig. 6. Model – measurement intercomparison at the OPE3 tower site (MD) as in Fig. 1. Photographs are from a phenocam in OPE3 and show soybean canopy 
conditions on key dates highlighted in the upper panel. 
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Temporal separation also has the impact of reducing the effective 
scene coverage for direct ET retrievals, which is defined as the union of 
the clear areas in both the TIR and VSWIR imagery. Maximum coverage 
is obtained when both waveband datasets are acquired simultaneously, 
while separation always serves to either maintain or reduce effective 
coverage. Impact of separation on the 2018 scenes analyzed here was 
assessed by comparing cloud-free area in the ECOSTRESS LST inputs to 
the combined cloud-free area in both LST and VSWIR inputs (Fig. 14). To 
avoid counting gaps imposed by the L7 scan-line corrector failure, the 
assessment was limited to dates processed with L8 VSWIR inputs. 
Coverage was reduced on average by 22% and up to 70% over these 
scenes. California scenes were least impacted due to lower cloud cover 
(11% reduction), while coverage over Corn Belt and Maryland domains 

was reduced by 30% on average. 

5. Discussion 

The power of ECOSTRESS lies in the opportunity it affords to explore, 
within the context of a low-cost research mission, new regions in 
medium-resolution thermal imager design space previously unsampled 
by the Landsat series. Findings from ECOSTRESS should be informative 
for developing applications-based requirements for future thermal IR 
satellite missions, including Landsat Next – the follow on to Landsat 9. 
The results in Sec. 4 demonstrate that ECOSTRESS thermal imagery can 
be used effectively and inter-operably with Landsat data to generate ET 
time series retrievals using SEB. Increased thermal imaging frequency at 

Fig. 7. Comparison of Landsat and ECOSTRESS LST at native and sharpened resolutions as a function of ECOSTRESS view angle, extracted from imagery acquired 
over the Central Valley, CA on DOY 216 at 10:30 (Landsat) 14:54 LT (ECOSTRESS). Black pixels in the sharpened images arise from the Landsat cloud mask, which 
has miss-classified small water bodies as cloud. 

Fig. 8. Comparison of Landsat and ECOSTRESS ETd retrievals 
(mm d− 1) around the Sierra Loma tower sites over 4-day 
period, DOY 246–250. Times of LST acquisition (LT) are 
noted, as well as view angle of ECOSTRESS data (in paren-
theses). The red arrow in the DOY 250 ECOSTRESS ETd image 
(bottom row) indicates a discontinuity where sharpening ar-
tifacts are notable, as discussed in the text. (For interpretation 
of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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Landsat scale will improve our ability to monitor and manage 
consumptive water use, particularly in areas with frequent cloud cover. 
These results also suggest constraints on ECOSTRESS acquisition time, 
view angle and spatiotemporal consistency with VSWIR inputs that may 
optimize its performance within SEB modeling systems. 

The dual-source structure of TSEB and DisALEXI used here provides a 
stringent test on TIR/VSWIR input consistency, where physically 
incompatible LST and LAI inputs can lead to significantly anomalous ET 
retrievals. We note that other ET modeling systems may be differently 
sensitive to some of the issues identified here; for example, the Priestley- 
Taylor methods in PT-JPL show high sensitivity to VSWIR inputs but are 
less exacting in terms of requiring rigorous physical consistency between 
VSWIR and TIR inputs. While the STARFM method used here to inter-
polate between satellite overpass dates does influence model 

performance at daily timesteps (Table 2) to some extent, the constraints 
identified below are general and likely independent of interpolation 
method. 

5.1. ECOSTRESS constraints for SEB modeling 

In DisALEXI, TIR acquisitions between 9:00–17:00 local time 
generally produced reasonable ET patterns, while earlier overpasses 
often created flux distributions that were spatially too uniform. The 
utility of same-day early morning and pre-or post-noon LST image pairs 
from ECOSTRESS and Landsat could be exploited in DisALEXI using the 
dual-temperature-difference (DTD) method, whereby instantaneous 
fluxes at one time are bootstrapped to other times when thermal images 
are available (Norman et al., 2000; Kustas et al., 2001; Guzinski et al., 

Fig. 9. Landsat and ECOSTRESS same-day ETd retrieval comparisons. Difference plots show ECOSTRESS minus Landsat ETd. Times of LST acquisition are noted. The 
ECOSTRESS Ripperdan sub-image for DOY 249 and NW Ripperdan for DOY 217 were acquired at a view angle of 24◦, while the others were collected at around 16O. 
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2013). Differences in morning and afternoon evaporative fraction could 
be a useful remote early indicator of developing vegetation stress, 
capturing impacts of midday stomatal closure under soil moisture lim-
itations or high vapor pressure deficit. 

TIR data at ECOSTRESS nadir viewing angles exceeding 20◦ were 
found to be more susceptible to spatial resolution degradation and 
misregistration with SR inputs. Limiting to view angles <20◦ helped to 
screen retrievals with obvious spatial artifacts such as in Fig. 8. In 
addition, a number of ECOSTRESS scenes are impacted near the swath 
edge by solar array intrusion (the ISS moves solar panels to maximize 
sun angle). These intrusions cannot be automatically flagged, so limiting 
use to angles <20◦ is good practice. The reasonable results from ECO-
STRESS at lower view angles suggests that the Landsat swath could be 
effectively doubled (to 14O off nadir) without significant detriment to ET 
retrieval. The full ECOSTRESS swath could be potentially be used at a 
lower effective spatial resolution. 

The lack of contemporaneous and co-located VSWIR observations 
reduced the practical utility of ECOSTRESS for ET retrievals using the 
TSEB-based algorithms employed here, which rely on consistent infor-
mation about vegetation cover fraction to partition surface temperature 
between soil and canopy components of the model pixel. Separations of 
5 days or larger resulted in 2.5-fold increase in MAE over the ECO-
STRESS scenes evaluated here, particularly for cover types with rapid 
phenological changes such as alfalfa. Work is in progress to migrate from 
Landsat-only generation of VSWIR inputs (8-day revisit, longer ac-
counting for cloud cover) to use of Harmonized Landsat-Sentinel (HLS) 
reflectance (3–4 day) fused with MODIS or VIIRS SR to approximate 
daily filled VSWIR inputs. Cubesat reflectances collected at near daily 
intervals and cross-calibrated with a standard like Landsat or Sentinel-2 
(Houborg and McCabe, 2018; Aragon et al., 2018) have the potential to 
further improve fidelity in VSWIR inputs on ECOSTRESS overpass dates. 

5.2. Value of near-simultaneous TIR/VSWIR acquisition 

While multi-source SR fusion has the potential to improve VSWIR 

inputs to ET retrievals from ECOSTRESS or other TIR free-flying systems, 
this approach still provides only an approximation of local conditions at 
the 30-m pixel scale at the time of the thermal sensor overpass. In 
planning for future thermal missions, several advantages to simulta-
neous or near-simultaneous TIR/VSWIR acquisition should be 
considered. 

As argued above, simultaneous acquisition ensures that the same 
surface conditions are being observed in both TIR/VSWIR wavelength 
regions. This provides for a consistency in information content between 
TIR and VSWIR that has made Landsat the gold standard in monitoring 
of land/water-surface phenomena that have a detectable thermal signal. 
Inconsistencies in land-surface temperature, surface albedo, and vege-
tation cover inputs due to rapid changes in surface conditions between 
TIR and VSWIR acquisitions occurring over intervals of a few days (e.g., 
due to precipitation, irrigation, rapid stress onset, green-up, senescence, 
harvest, fire or insect damage, or other change agents) can significantly 
impact the ET retrievals from surface energy balance models, as 
demonstrated in the case of alfalfa cutting in Fig. 12. The resulting un-
certainties may limit or preclude certain TIR applications from a free- 
flying platform, such as precision irrigation management. Simulta-
neous acquisition of a modicum of VSWIR bands required to reasonably 
constrain albedo and LAI minimizes the chance of input inconsistencies. 

Second, simultaneous acquisition maximizes scene coverage in ap-
plications requiring both TIR and VSWIR inputs. The output coverage is 
determined by the union of cloud cover at the TIR and VSWIR acquisi-
tion times and can only decrease with separation. If part of a scene is 
missing in either TIR or VSWIR, the temporal mismatch between TIR/ 
VSWIR inputs will be compounded beyond the nominal overpass sepa-
ration. This is of significant concern for operational monitoring appli-
cations in regions of moderate to persistent cloud cover. 

Third, simultaneous acquisition facilitates more precise inter-band 
registration. Misregistration between TIR and VSWIR inputs to ET 
modeling systems, for example, can result in large retrieval errors in 
regions of strong heterogeneity in vegetation cover, sharp temperature 
gradients, or surface moisture status. Attempts to accommodate such 

Fig. 10. Three-day ETd (mm d− 1) retrieval sequence over the Choptank flux site (indicated with +), and histogram of fluxes from each retrieval.  
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errors result in sacrificing spatial resolution in the thermal inputs (Xue 
et al., 2020). Landsat’s delivery of multi-band (visible, SWIR and TIR) 
analysis-ready data with precise band-to-band registration has been 
critical for developing rapid automated processing in support of large 
area operational applications (Wulder et al., 2019). 

TIR/VSWIR separation also impacts the performance of TIR sharp-
ening, which relies on rigorous consistency between thermal and 
reflective bands. Time separation introduces inconsistency due to 
changes in surface conditions, differences in topographic shadowing and 
view angle, unflagged clouds and cloud shadows, and larger errors in co- 
registration (Xue et al., 2020). 

Additionally, TIR/VSWIR consistency is critical for accurate parti-
tioning of ET into soil evaporation (E) and plant transpiration (T). This is 
particularly crucial for agriculture where transpiration is strongly 
correlated to biomass accumulation and yield and more accurately in-
forms the grower of actual crop stress (Kool et al., 2014). Soil evapo-
ration and plant transpiration are also key boundary conditions for 
vadose zone models which are used to simulate solute transport, assess 
water use/irrigation efficiency and determine crop growth and devel-
opment (Anderson et al., 2017). Moreover, partitioning into E and T was 
recently identified a major knowledge gap in ET research (Fisher et al., 
2017). 

Finally, simultaneous TIR/VSWIR acquisition facilitates cloud 
detection due to the unique information content provided by these two 

spectral regions. For example, TIR-only cloud detection with static 
thresholds will have high commission errors for clouds over frozen 
surfaces and low-level warm clouds, while VSWIR-only cloud detection 
will have high commission errors over high reflection targets such as 
deserts and urban environments – thereby limiting research studies and 
applications in those environments. However, when combined those 
commission errors are dramatically reduced due to the complementary 
nature of optical properties in the VSWIR and TIR bands. Assuming a 
nominal cloud speed of 20 mph (can be as high as 100 mph for high 
altitude cirrus), a time separation of 30 s between VSWIR and TIR ac-
quisitions would result in approximately 270 m displacement in cloud/ 
cloud shadows (~10 Landsat pixels). Complete cloud-clearing is critical 
to many operational applications where extensive manual editing of ET 
products is prohibitive, particularly those operating at daily to weekly 
timesteps over large areas. As such, cloud-clearing may be one of the 
strongest arguments for co-collection as this cannot be addressed 
through multi-source SR fusion. 

6. Conclusion 

In this study we assessed the utility of ECOSTRESS LST products from 
2018 in mapping ET at sub-field scales with the DisALEXI surface energy 
balance algorithm, using Landsat ETd retrievals as a baseline for per-
formance. Specifically, impacts on daily ET estimation related to 

Fig. 11. Impacts of ECOSTRESS overpass time of day on cloud cover in ETd retrievals using (top) LST acquired at 8:14 and 14:43 LT on DOY 233 over Barrelli 
domain; (bottom) LST acquired at 7:09 (gap-filled ETd map also shown) and 15:37 LT. Stripe gaps are due to scan-line corrector failure on L7 imagery used for 
VSWIR inputs. 

M.C. Anderson et al.                                                                                                                                                                                                                           



Remote Sensing of Environment 252 (2021) 112189

16

ECOSTRESS temporal sampling frequency, view angle, overpass time, 
and time separation between TIR and VSWIR data acquisitions were 
examined both quantitatively and qualitatively. 

Comparisons with measurements of ETd from 12 eddy covariance 
sampling croplands in the United States (CA, NE, IL and MD) showed 
small improvements in daily ET estimation were achieved on average by 
including ECOSTRESS retrievals over a Landsat-only scenario. However, 
significant improvement was observed at individual sites where clear- 
sky Landsat images were not available during periods of rapid mois-
ture change and vegetation development. In the case of one flux site in 
MD, mean absolute errors in ET improved by 65% at the daily timestep 
when critical ECOSTRESS retrievals during the peak soybean crop 
growth stage were included. 

ECOSTRESS LST products were visually found to be at somewhat 

lower resolution than Landsat 8 TIR images at nadir view angles, and 
resolution further reduced with increasing view angles. While a SR- 
based thermal sharpening technique can be used to normalize effec-
tive resolution between medium-resolution thermal sensors, ECO-
STRESS LST acquisitions at view angles exceeding 20◦ often yielded 
poor sharpening results and anomalous ETd retrievals. Still, the 
augmentation of view angles up to 20◦ proved to be a benefit in terms of 
improved temporal sampling in comparison with the Landsat ±7◦ swath. 
The disaggregation approach used in DisALEXI accommodated use of 
ECOSTRESS LST acquired over much of the daylight hours (9:00 a.m. to 

Fig. 12. Impacts on DisALEXI ET retrievals for DOY 239 in 
using non-coincident VSWIR-TIR inputs over alfalfa fields in 
Bouldin Island domain. Top row shows sharpened LST, LAI 
and ETd using SR from DOY 232 (pre-cutting of alfalfa fields 
highlighted in red box); middle row shows same using SR from 
DOY 240 (post-cutting); bottom row shows difference maps. 
(For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this 
article.)   

Fig. 13. Average MAE between observed and measured ETd (mm d− 1) on 
ECOSTRESS overpass days for all flux sites combined, binned by offset in days 
between TIR and VSWIR acquisitions used as input to the SEB model. Error bars 
represent the standard error in the determination of MAE values within 
each bin. 

Fig. 14. Reduction in scene coverage due to temporal offset between acquisi-
tion of TIR and VSWIR data used as model inputs. 
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5:00 p.m.). While early morning ECOSTRESS LST acquisitions (before 
9:00 a.m.) often led to ET maps that were excessively uniform, if paired 
with a same-day afternoon LST acquisition time-differencing approaches 
could be implemented. Dependence of cloud cover fraction on acquisi-
tion time varied geographically, with some advantage to pre-noon ac-
quisitions at sites in the eastern United States. This conclusion should be 
revisited using a more extensive archive of ECOSTRESS imagery. 

The absence of VSWIR sensors collocated with the TIR bands on 
ECOSTRESS creates challenges in applications of physically based sur-
face energy balance models that require albedo and LAI or fraction 
vegetation information consistent with the LST inputs. In this study, 
VSWIR inputs were obtained from the closest Landsat overpass, and 
cases where inconsistencies impacted ET retrievals are noted, particu-
larly in landcovers with rapidly changing biomass or moisture limita-
tions. Ongoing work utilizing the Harmonized Landsat-Sentinel dataset 
for VSWIR inputs will reduce, but not eliminate, the occurrence of sig-
nificant discrepancy. A major challenge for future possible thermal free- 
flying sensor architectures will be the development of a rigorous cloud- 
detection algorithm based only on TIR band information. These efforts 
include developing a more robust statistical approach to TIR only cloud 
detection, as opposed to traditional thresholding approaches. Inclusion 
of one or more collocated SWIR bands (e.g. at 1.38 for cirrus and 1.6 μm 
for cloud/snow) would enhance cloud detection capabilities as well as 
geolocation accuracy with VSWIR characterizations of the land-surface. 
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