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Abstract

The Regional Hydrologic Extremes Assessment System (RHEAS) is a prototype software

framework for hydrologic modeling and data assimilation that automates the deployment of

water resources nowcasting and forecasting applications. A spatially-enabled database is a

key component of the software that can ingest a suite of satellite and model datasets while

facilitating the interfacing with Geographic Information System (GIS) applications. The data-

sets ingested are obtained from numerous space-borne sensors and represent multiple

components of the water cycle. The object-oriented design of the software allows for modu-

larity and extensibility, showcased here with the coupling of the core hydrologic model with a

crop growth model. RHEAS can exploit multi-threading to scale with increasing number of

processors, while the database allows delivery of data products and associated uncertainty

through a variety of GIS platforms. A set of three example implementations of RHEAS in the

United States and Kenya are described to demonstrate the different features of the system

in real-world applications.

Introduction

Water resources management is a major challenge globally, involving tradeoffs between multi-

ple objectives (e.g., water supply, agriculture, hydropower, ecology) and coordination with a

heterogeneous set of stakeholders. Consequently, decision-making in the context of water

resources management requires that agencies and practitioners have accurate information on

water and energy conditions with as much lead time as possible. Such information is often

derived from datasets being offered to end users by data producers, i.e. a producer-driven pro-

cess [1], rather than users running their own product-generating systems. Despite increased

efforts for improved interaction between science organizations (i.e. data producers) and end-

users [2], adoption of information for management decisions will be accelerated by direct
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interaction with and customization of the information-producing system [3]. The aforemen-

tioned customization would be rather expensive (in terms of resources) if the developers them-

selves made modifications, which are likely specific to each end-user. In many cases though,

the end-users do not have the technical expertise nor the time or resources to easily implement

these beneficial customizations or interact with the information system extensively, thus mak-

ing the need for a system that can be interacted with in a relatively simple and straightforward

fashion more important.

Most likely, a water resources information system would require a model that can simulate

the hydrologic response at different spatial and temporal scales. Implementation of such a

modeling system is hindered by the dearth of observations that can help calibrate and validate

its predictions [4]. In data-poor regions these necessary observation datasets can primarily be

obtained from satellite observations, which albeit adds to the difficulty of managing ever-

increasing data volumes it also offers the opportunity to better constrain hydrologic models

through data assimilation [5].

Here, we present a prototype software framework (the Regional Hydrologic Extremes

Assessment System, RHEAS) that automates the ingestion of diverse datasets (both observa-

tional and model-based), and the deployment of a hydrologic model incorporating data assim-

ilation and facilitating the coupling with other earth science models. This integrated system is

primarily geared for easy implementation and customization requiring relatively little input

from end users. Numerous modeling systems that integrate different models and observations

have been developed in the past and were used as a stepping stone during the design of

RHEAS. The difficulty of discovering, downloading and extracting datasets (either observa-

tional or model-based) has been previously recognized [6]. As a result, existing hydrologic

software have included capabilities of downloading a predetermined set of datasets (e.g. [7]),

while other software have leveraged standardized web services for downloading (e.g. [8]) as

well as additionally implementing data discovery options (e.g. [9]).

An important aspect of a hydrologic modeling system is the internal representation of the

data (input and output), with a variety of standardized file formats existing (e.g. Network

Common Data Form, NetCDF or Hierarchical Data Format, HDF). In addition to files, data

can be stored within databases (e.g. PostgreSQL) that can represent spatial and geographic

objects resulting in model-independent data management. There is an advantage in using a

model-agnostic storage option for the data, since that would facilitate their transferability

across models [10] and external visualization and analysis software (e.g. [11]). Although some

hydrologic modeling software incorporate GIS components internally (e.g. [12]), RHEAS

enables the interfacing with GIS software creating a system that can capture, store, analyze and

visualize geospatial data.

Data assimilation methods have been used in hydrologic research and applications to

merge heterogeneous observations and models in order to improve model predictions [13].

Such algorithms have been incorporated within hydrologic modeling software, either for spe-

cific models (e.g. [14–16]) or as generic frameworks (e.g. [17–20]). RHEAS employs a number

of assimilation algorithms by using an object-oriented and modular design, similar to software

such as the Land Information System (LIS, [21]). By designing software as modular compo-

nents and abstracting their functionality, code reuse is maximized and the flexibility on the

modeling tools used is facilitated.

A detailed description of the RHEAS software is given in the following section, including its

architecture, different components and operating modes. A set of three example applications

of the developed software framework are presented in the Application examples section, while

the software status and some potential future directions are discussed in the final section of the

paper.
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Software description

RHEAS is a modular software framework that has been developed at the NASA Jet Propulsion

Laboratory (JPL) aiming at facilitating the deployment of water resources simulations and the

assimilation of remote sensing observations. At the core of the system lies a hydrologic model,

the Variable Infiltration Capacity model, that can be run both in nowcasting (i.e. estimation of

the current time period) and forecasting (i.e. estimation for future time periods) modes. The

nowcast simulation periods can be arbitrarily long, while forecast simulations depend on the

length of the meteorological forecasts. In particular, seasonal forecasts will range between 1

and 6 months while long-term forecasts (e.g. climate projections) can range from 5 to 100

years. A suite of datasets from multiple sources are utilized by the system to either force or

assimilate observations into the hydrologic model. Data assimilation can constrain hydrologic

simulations leading to improved model states and/or parameterizations, and is explicitly

incorporated within RHEAS.

System architecture

Fig 1 shows a schematic of the RHEAS software architecture and its major components. The

datasets that are used to perform the model simulations as well as the model outputs are stored

within a GIS-enabled relational database (PostGIS), facilitating a model-agnostic dataset for-

mat. The latter design choice had several advantages compared to other hydrologic modeling

systems: (i) system modularity since the hydrologic model (or any other model that can be

added to RHEAS) needs to only interface against the database and not any other model’s inter-

nal data formats; (ii) GIS functionality that allows spatial operations, complex queries and

Fig 1. Software architecture. Simplified schematic of the RHEAS software architecture.

https://doi.org/10.1371/journal.pone.0176506.g001
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analytics on the stored datasets; (iii) ability to serve data through well established technologies

(either web, desktop or mobile). The hydrologic model (Variable Infiltration Capacity, VIC) is

the primary modeling component within RHEAS, while other models can be coupled (in this

case a crop model, DSSAT) extending the system’s applicability. All models contained in

RHEAS retrieve their input and store their output in the PostGIS database, which can serve

these data to users via different interfaces. The datasets that are not produced by the RHEAS

models, including satellite observations and model data that are used to generate inputs or

constraints for the models, are automatically fetched from various sources and ingested into

the PostGIS database.

We designed the RHEAS software following a hybrid approach that combined modular

and object-oriented programming. The functionality of the software was broken down into a

set of components: (i) configuration, (ii) database operations (I/O and processing), (iii) model

simulations, and (iv) data assimilation. Functions associated with each component were

encapsulated either within a module or a class if both attributes and methods were needed to

describe a component. For example, observations required both attributes (e.g. spatial resolu-

tion) and functionality (e.g. retrieve observed variable) and therefore were represented as

objects. A simplified UML component diagram is shown in Fig 2 with the main module

rheas importing the database (dbio), simulation (nowcast and forecast), and data-
setsmodules. Users can define and perform simulations in RHEAS through a text-based

configuration file with parsing functions described in the configmodule. Most modules

need access to the database functionality, hence they import the dbiomodule. In addition,

Fig 2. UML component diagram. Unified Modeling Language (UML) diagram describing the components

(i.e. modules) within RHEAS.

https://doi.org/10.1371/journal.pone.0176506.g002
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the simulation modules require the classes defined in the vic package to run the hydrologic

model, the ensemblemodule to perform stochastic simulations, and the assimilation
module to assimilate satellite observations.

Dataset ingestion and storage

A number of earth science datasets are available to be used in RHEAS representing many

hydro-meteorological variables (e.g. precipitation), with each of being defined as a class within

the datasets package (Fig 2). The PostGIS database, where the RHEAS datasets are stored,

is a spatial extension to the widely-used PostgreSQL object-relational database system [22].

The datasets that are organized in tables (i.e. relations) have both a spatial and temporal

dimension, with each time snapshot of the data being stored as a row with columns represent-

ing the date, a unique identifier key, the actual data and its geographical information. Table 1

shows the structure of each dataset table along with the type of its column. The raster type

is represented as a binary blob within PostGIS, and can have multiple bands of georeferenced

pixel values.

PostgreSQL allows for querying the data by applying various operators (e.g. union, intersec-

tion) with arbitrary constraints. PostGIS expands these capabilities to allow processing and

analytic functions (e.g. classification, statistics), map algebra, map reprojections, and spatial

resampling to coarser or finer resolutions. If the data are represented as rasters, they are split

into tiles (by the PostGIS software) with each row containing a specific raster tile for each date

to improve performance. Additional optimizations were implemented and tested in the data-

base to improve query performance. Each dataset ingested in the database has different spatial

resolutions, and therefore needs to be resampled to the model resolution when generating its

inputs. Since the model has a set of pre-defined spatial resolutions, caching can be employed

to significantly reduce query times. Resampled data can be cached as new tables, as the result

of a query precomputed from operating on the original raster table. Furthermore, each data-

base table can be clustered, i.e. its rows reordered, based on the spatial proximity of each tile

allowing for quicker access to time series of the same or nearby regions.

Although PostgreSQL does not support multi-threaded queries explicitly, RHEAS utilizes

database connection pools (i.e. a group of independent database connections) to execute que-

ries in parallel. Fig 3 shows the performance of three queries with increasing number of pro-

cessors used. Each query corresponds to a different period length retrieved from the database

(10, 20, and 30 years) with the spatial domain being a basin of 3,013 pixels. The database per-

formance actually scales very well as the number of processors increase from 1 to 16, with the

scaling being almost linear. The single-core performance is actually 2 times slower than the

dual-core query time due to the overhead introduced by the multi-threaded execution.

The dataset tables are grouped into schemas, with each schema representing a variable. For

example, all precipitation-related datasets are contained within the precip schema. A list of

the available datasets is shown in Table 2 along with the temporal and spatial resolution of

each. Some of these data products have near-global coverage, while others have a regional

focus (e.g. RFE2 over Africa or PRISM over the continental United States). RHEAS can

Table 1. Structure of PostGIS tables representing each RHEAS dataset.

rid: integer/� uniqueidentifier for each date and rastertile �/

fdate:date /� date representation �/

rast: raster/� georeferenced data �/

https://doi.org/10.1371/journal.pone.0176506.t001
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automatically fetch each of these datasets and ingest them in the PostGIS database. A separate

module was developed for each dataset, although function names for each module are identical

(e.g. download) allowing for a common interface for the dataset functionality. Data provid-

ers use different standards to provide the datasets, both in terms of web services (e.g. Open-

DAP, FTP) and file formats (e.g. NetCDF, HDF). Python decorators, a metaprogramming

technique, can be used to transform the dataset module’s functions during runtime and facili-

tate code reuse. This allows defining a dataset module using only a Uniform Resource Locator

(URL) address and specifications of the URL and file types. As an example, the CHIRPS rain-

fall dataset that is provided as a set of Geotiff files at a web repository is fetched by simply

defining the function in Table 3 with 5 lines of Python code. The http decorator dynamically

adds the functionality of retrieving the files defined with the url variable, while the geotiff
decorator specifies how data can be extracted from the retrieved file.

The user can define which datasets should be ingested by creating a RHEAS configuration

file that only optionally requires a bounding box, start and end dates along with the names of

the datasets. If the optional arguments are not provided, RHEAS will query the database for

the latest date that had been downloaded and update the dataset to today’s date. Table 4 shows

an example configuration that can be used to download CHIRPS and NCEP data into the

RHEAS database. The configuration file follows the INI format and is composed of sections

and pairs of key/values. The domain section defines the geographical area, while each dataset

has its own section and consequently its own parameters (e.g. period to download). Using this

mechanism, RHEAS significantly simplifies retrieving of satellite and model datasets

Fig 3. Database performance. Example database performance with multiple processors querying different number of years (10, 20, and

30).

https://doi.org/10.1371/journal.pone.0176506.g003
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Table 2. List of data products available in the RHEAS database.

Variable Product Spatial Resolution Temporal Resolution Period available Reference

Precipitation TRMM 0.25˚ Daily 1998-Present [23]

GPM 0.1˚ Daily 2014-Present [24]

PRISM 4 km Daily 1981-Present [25]

CMORPH 8 km Daily 1998-Present [26]

CHIRPS 5 km Daily 1981-Present [27]

Princeton 0.25˚ Daily 1948-Present [28]

RFE2 25 km Daily 2000-Present [29]

Temperature NCEP 1.875˚ Daily 1948-Present [30]

PRISM 4 km Daily 1981-Present [25]

Princeton 0.25˚ Daily 1948-Present [28]

Wind speed NCEP 1.875˚ Daily 1948-Present [30]

Princeton 0.25˚ Daily 1948-Present [28]

Soil moisture AMSR-E 25 km Daily 2002-2011 [31]

SMOS 40 km Daily 2009-Present [32]

SMAP 36 km Daily 2015-Present [33]

Evapotranspiration MOD16 1 km 8 days 2000-2013 [34]

Snow cover fraction MODSCAG 500 m Daily 2000-Present [35]

MOD10 500 m Daily 2000-Present [36]

Water storage GRACE 300 km Monthly 2002-Present [37]

Leaf Area Index MCD15 1 km 8 days 2002-Present [38]

Meteorological forecasts IRI 2.5˚ Monthly 2000-Present [39]

NMME 0.5˚ Daily 2000-Present [40]

https://doi.org/10.1371/journal.pone.0176506.t002

Table 3. Code snippet (URL shortened) defining the fetch function for the CHIRPS dataset module.

@geotiff

@http

def fetch(args):

url = “http://ftp.chg.ucsb.edu/. . ./chirps-v2.0.0:04d.1:02d.2:02d.tif.gz”

return url, args

https://doi.org/10.1371/journal.pone.0176506.t003

Table 4. Example configuration for downloading multiple datasets using RHEAS.

[domain]

minlat:-10

maxlat:5

minlon:-20

maxlon:-12

[ncep]

[chirps]

startdate: 2000-1-1

enddate: 2000-2-1

https://doi.org/10.1371/journal.pone.0176506.t004
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(including batch downloading) and automatically ingesting them in the PostGIS database for

further processing by the user.

Hydrologic modeling

The hydrology model deployed in RHEAS is the Variable Infiltration Capacity (VIC) model

[41]. VIC solves the energy and water balance over a gridded domain including a soil-vegeta-

tion-atmosphere scheme that models how moisture and energy fluxes between land and atmo-

sphere are controlled by vegetation and soil. Numerous studies have utilized VIC to simulate

the hydrology of large river basins continentally and globally (e.g. [42]), making it a good

choice for the RHEAS software. The input requirements for VIC include meteorological data

that force the model, and information on soil properties, elevation, and land cover. Although

multiple sources exist for providing the information on land cover, soils etc., RHEAS has a set

of datasets that are utilized to run VIC simulations at varying spatial resolutions (1˚, 1/2˚, 1/4˚

globally, and additionally 1/8˚ and 1/16˚ over the continental U.S.). Topography information

used to partition each model grid cell into elevation zones is derived from the GTOPO30

global digital elevation model, which has a spatial resolution of 30 arc-seconds (*1 km). Land

cover information can be readily obtained from satellite datasets, such as the Moderate resolu-

tion Imaging Spectroradiometer (MODIS) global product that is generated at a 500-m spatial

resolution [43]. Finally, VIC requires information on soil properties which are adapted from

global and regional implementations of the VIC model [44, 45].

The VIC model is implemented as a class that contains the functionality of preparing the

necessary input files (meteorological forcings, soil and land cover information), running the

model executable, and ingesting the model output into the PostGIS database. The model class

is encapsulated in the vic package, which also contains modules for saving/loading model

state files (used during data assimilation) and parsing the user-provided configuration into

model options.

Data assimilation

Data assimilation allows for the optimal merging of model predictions and observations by sta-

tistically taking into account the errors in both. Earth Science observations can be ingested

into RHEAS using a variety of data assimilation algorithms, with the default being the Ensem-

ble Kalman Filter (EnKF). Additional assimilation algorithms included in RHEAS are the

square root EnKF (SREnKF), and the Local Ensemble Transform Kalman Filter (LETKF). The

EnKF [46] is a variant of the standard Kalman Filter optimal estimation algorithm and has

been widely used in hydrology [13]. The SREnKF is similar to the EnKF, but avoids sampling

errors introduced in the standard algorithm resulting in improved state estimates [47]. The

LETKF is similar to the other ensemble filters, but performs the analysis (i.e. state update)

independently for each model grid point, uses only observations that may affect specific grid

point (i.e. localization), and offers algorithmic improvements that enhance the efficiency of the

assimilation [48]. The assimilation algorithms within RHEAS have been implemented as

abstract classes, i.e. can theoretically work with any model (assuming that they have the ability

to restart simulations from a previously saved state), and utilize existing linear algebra

libraries [49].

All data assimilation algorithms require an estimate of the model uncertainty, and in the

case of the aforementioned techniques that uncertainty is captured by representing the hydro-

logic variable to be estimated stochastically with an ensemble. Ensembles of model simulations

can be generated either by perturbing model forcings and/or parameters (e.g. [19]), or sam-

pling appropriately from climatology. The generation of the ensemble can be controlled by the
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user (via the configuration file), with all the aforementioned options implemented within

RHEAS. When an observation becomes available, the model state is updated leading to an

optimal estimate (in terms of least squares). When RHEAS is in nowcast mode the simulation

proceeds until the next observations become available, whereas in forecast mode observations

are assimilated up to the forecast initialization date after which the model(s) run “free”.

In order to streamline the assimilation of multi-sensor observations, RHEAS is using an

object-oriented software design maximimizing code reuse [50]. Fig 4 shows a UML diagram of

the software classes that represent the observational datasets and their inter-relationships. An

abstract class type (Observation) contains the functionality to download the different data

products and query the database for the latest data available, retrieve the observation vector for

a specific date, generate the observation errors, and perform the data assimilation. The Obser-

vation abstract data type is implemented as a set of parent classes for each observation variable

Fig 4. UML observation-class diagram. UML diagram of classes representing observational datasets that are

assimilated (the SMAP class is omitted for visualization purposes).

https://doi.org/10.1371/journal.pone.0176506.g004
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and encapsulates parameters and functions specific to that variable. For example, the soil mois-

ture class (SoilMoist in Fig 4) defines the state (total-column soil moisture) and the observed

variable (top-layer soil moisture), and functions for estimating the predicted measurements

and deriving the state ensemble. Additionally, if observation-specific methods for data assimi-

lation exist, such as bias correction for soil moisture [51], they are added to the level of this

abstract class and are transparently available to each observation sub-class. The latter sub-clas-

ses encapsulate parameters specific to a data product (table name in the database, a standard

deviation for its error) and inherit their functionality from the parent abstract classes although

these can be overriden. For example, a different function that generates the observation error

can be defined for the MODSCAG class (Fig 4). Alternatively, uncertainty in the observations

can be defined by the user in the RHEAS configuration file (stored locally on the user’s com-

puter) by providing the name of a propability distribution (PDF) and a set of parameters. Most

current approaches to specifying uncertain parameters in statistical software use markup lan-

guage representations, either through structured formats such as XML (EXtensible Markup

Language) and JSON (JavaScript Object Notation) or an actual Application Programming

Interface (API), with a prominent example being UncertML [52]. A slightly different approach

was taken in RHEAS, where dynamic module loading from the Scipy library [53] was used to

provide the function that samples the PDF to generate the observation errors. Scipy provides a

large number of probability distributions, with RHEAS having fallback functions in cases

where the user either defines an unavailable distribution or does not provide enough parame-

ters for it. Furthermore, additional assimilation algorithms such as the Particle Filter [54] can

be implemented within RHEAS, by utilizing the Observation classes and the EnKF class as a

template.

Model coupling

The modular architecture of RHEAS and the ability to access data in a model-agnostic manner

(via the PostGIS database) allow the one-way (i.e. offline) coupling with other environmental

models by simply developing an interface against the database itself rather than the hydrologic

model. As an example, an agricultural model has been coupled within the RHEAS framework

enhancing the software’s applicability. The crop model included in RHEAS is based on the

Decision Support System for Agro-technology Transfer (DSSAT) modeling system [55].

DSSAT is a process-based model that simulates the growth, development and yield of a crop

under given management practices and soil properties (e.g. fertility, water holding capacity).

Additional input to DSSAT includes time series of weather variables (rainfall, air temperature,

and net solar radiation) that are used to drive the soil hydrology physical model component

within DSSAT. The latter interacts with the crop model component of DSSAT simulating the

plant’s phenology, morphology, and yield.

The DSSAT model implementation used within RHEAS is a modified version of the base-

line model that can stop and restart at arbitrary times, whereas crop models generally run con-

tinuously from sowing until maturity, failure or harvest by design [56]. This modification was

necessary (not just for DSSAT but any model that is coupled within RHEAS) in order to facili-

tate data assimilation of soil moisture and LAI observations during different phases of crop

growth. Moreover, it has been adapted to be deployable over a gridded domain in contrast to

the original DSSAT version that is point-based.

Simulation modes and configuration

Each RHEAS simulation begins with the parsing of a user-provided configuration file that is

populated with various simulation parameters. The configuration file follows the INI format,
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with each section corresponding to the type of simulation (nowcast or forecast) and the model

used (VIC and/or DSSAT). At a minimum the simulation configuration requires the type of

model to be used, the period of simulation, a vector GIS file that defines the model domain,

the spatial resolution, and a name for the simulation. Similarly, the VIC model configuration

requires the source of meteorological data, and a set of output variables that are written to the

RHEAS database. Additional options can be set by the user through the configuration file,

although defaults have been preset in order to simplify the deployment of model simulations

for non-expert users.

Nowcast simulations (Fig 5) can either be performed deterministically (i.e. single model

realization) or stochastically (i.e. ensemble of models). Depending on user input the models

can be initialized from a saved state to ensure proper spin-up, which can itself consist of multi-

year simulations. If observations are available during the simulation period, they can be assimi-

lated into the model sequentially. The update frequency can be set by the user, since RHEAS

supports keywords such as “weekly” and “monthly”. Moreover, data assimilation can only be

performed with a stochastic simulation since the assimilation algorithms implemented within

RHEAS require an ensemble to describe the model uncertainty.

Similar to the nowcasting mode, forecast simulations (Fig 6) commence with parsing the

user-provided configuration file. The hydrologic model requires meteorological forecast data

that need to be disaggregated spatially and/or temporally to match the model’s spatial and tem-

poral resolution. The forecast methods implemented in RHEAS are probabilistic, with an

ensemble of models spun up to the forecast initialization date. If observations are available on

that date, they can be assimilated into the model and the forecast simulation is then launched.

The simulation period depends on the duration of the meteorological forecast (e.g. 3 months

Fig 5. Nowcast diagram. Sequence diagram for the nowcasting mode of RHEAS.

https://doi.org/10.1371/journal.pone.0176506.g005
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for seasonal forecasts), with the entire model ensemble being saved into the database at the

end. The meteorological forecasts can be generated either by resampling from climatology or

from an atmospheric model.

Whenever a stochastic simulation is performed, an ensemble of model output is saved in

the RHEAS database. Ensemble simulations are performed with multi-threaded processing,

i.e. each ensemble member is run by a different CPU core, hence accelerating the simulation

time. A byproduct of ensemble simulations is the derivation of an uncertainty estimate for

each output variable, which can be expressed as the ensemble’s standard deviation. Although

more sophisticated techniques of estimating uncertainty exist such as Bayesian (excluding Kal-

man Filters) methods [57], their implementation were beyond the scope of the initial release of

RHEAS but could be added potentially to enhance the prediction system. Based on basic deci-

sion theory, uncertainty can be considered as a representation of a set of possible states or out-

comes with a known probability of occurrence [58]. A decision-maker can choose from a set

of possible alternative actions that correspond to each outcome, making even the simple

uncertainty estimate from RHEAS potentially useful.

Table 5 shows an example configuration file for a nowcast simulation that assimilates

SMOS soil moisture and GRACE water storage observations. The output variables, soil mois-

ture and evaporation, will be written in the database under the schema testing as raster

tables soil_moist and evap respectively with each row corresponding to each model time

step (daily in this case). Since an ensemble simulation is performed using this configuration, a

column specifying the ensemble member number will be added to the aforementioned output

tables while additional tables containing rasters of the standard deviation for each variable will

be added.

Fig 6. Forecast diagram. Sequence diagram for the forecasting mode of RHEAS.

https://doi.org/10.1371/journal.pone.0176506.g006
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Application examples

Here, the RHEAS framework was implemented in three case study areas in order to demon-

strate and evaluate its capabilities before potentially being deployed operationally, with exam-

ple results described below. Table 6 shows the execution times for each of the case-study

simulations.

Drought nowcasting in California

The Sacramento and San Joaquin river basins are located in California and cover most of the

Central Valley, which is one of the most productive agricultural areas in the United States.

Water resources in the region have been adversely affected by a severe drought that began in

the winter of 2011 [59]. Consequently, accurate information on drought characteristics such as

the ones produced by RHEAS become very important for water resources managers and prac-

titioners. Fig 7 shows two example maps of drought indicators over the basin on July 2014.

The left map shows the 3-month Standardized Precipitation Index (SPI), which is based on the

probability of seasonal precipitation and reflects short-term moisture conditions [60]. Agricul-

tural drought severity (Fig 7, right) is derived from the root zone soil moisture expressed as a

percentile of the 1981-2010 climatology using the methodology of [61].

The simulations performed to produce these maps used the PRISM dataset to derive precip-

itation and air temperature forcings for the VIC model, while NLDAS was used to derive wind

speed. In addition to the drought data products generated from RHEAS, uncertainty estimates

for all simulated hydrologic variables were available. Fig 8 shows a map of uncertainty

Table 5. Example RHEAS configuration file for a nowcast simulation.

[nowcast]

name: testing

startdate: 2012-3-1

enddate: 2012-9-30

basin:domain.shp

resolution: 12km

ensemble size: 10

[vic]

precip:prism

temperature: prism

wind: ncep

save: soil_moist, evap

observations: smos, grace

https://doi.org/10.1371/journal.pone.0176506.t005

Table 6. Execution times and domain size for each of the case-study simulations (using a 3-GHz

8-core Intel Xeon E5 processor).

Case study Domain size (pixels) Execution time (hrs)

California drought nowcasting 753 0.84

Colorado flow forecasting 3,402 3.37

Kenya crop yield nowcasting 761 1.37

https://doi.org/10.1371/journal.pone.0176506.t006

Regional Hydrologic Extremes Assessment System

PLOS ONE | https://doi.org/10.1371/journal.pone.0176506 May 18, 2017 13 / 22

https://doi.org/10.1371/journal.pone.0176506.t005
https://doi.org/10.1371/journal.pone.0176506.t006
https://doi.org/10.1371/journal.pone.0176506


(expressed as the percentage standard deviation of a 5-member ensemble) in soil moisture

over the basin at the end of August 2014.

Flow forecasting in the Upper Colorado River

The Upper Colorado River plays a very important role for the water resources of the western

United States [62], having a rather diverse intra-basin physiography (e.g. elevations range

between about 1,000 to more than 4,000 m). Snow controls the timing and magnitude of peak

runoff in the basin [63], and therefore has significant implications for water supply manage-

ment. Observations of snow cover can potentially improve the estimation of streamflow and

its forecast skill. In order to test that hypothesis, seasonal forecasts of streamflow were gener-

ated using RHEAS at the Colorado River Basin Forecast Center’s forecast points. MODIS

snow cover observations were assimilated during forecast initialization (1 April 2009), and

ESP was used to simulate hindcasts of streamflow. Streamflow was generated by using the off-

line VIC river routing model [64] with inputs from the RHEAS simulations. Fig 9 shows time

series of streamflow forecasts along with the actually observed streamflow at Taylor River near

Altmont, Colorado (ALTC2 station). In contrast to open-loop forecasts, assimilated forecasts

ingest MODSCAG observations during the initialization date. The forecast ensemble means

show that the assimilation of the snow cover observations improved the streamflow forecast

skill after mid-May. The improved snow water equivalent (SWE) estimation during forecast

Fig 7. Drought data products. Maps of the 3-month Standardized Precipitation Index (left) and agricultural drought severity (right) on 1 July 2014 over

the Sacramento/San Joaquin basin.

https://doi.org/10.1371/journal.pone.0176506.g007
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initialization manifests as improvements in streamflow when snowmelt begins to have a signif-

icant contribution to the basin’s outflow. Additionally, the ensemble spread from both simula-

tions is shown in Fig 9, in the form of the 25th and 75 percentile bounds, with the assimilated

forecast range being smaller than the open-loop one suggesting a reduction in uncertainty.

Crop growth nowcasting in Kenya

RHEAS has been implemented over several countries in the East Africa region, with the goal

of producing hydro-agricultural nowcasts and forecasts that can eventually be used to inform

decision-making by farmers. Fig 10 shows an example map of simulated maize yield after the

earlier planting season in 2011 over Kenya. The yield estimates have been spatially aggregated

at the county level, although the finest scale of the simulated output can be defined by a user-

provided GIS vector file. The DSSAT model was driven by soil moisture, net solar radiation

that were derived from the coupled VIC simulation, as well as LAI, rainfall and air temperature

Fig 8. Uncertainty map. Map of uncertainty (derived from ensemble 1σ) in soil moisture over Sacramento/

San Joaquin river basin on 31 August 2014.

https://doi.org/10.1371/journal.pone.0176506.g008
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derived from MODIS observations and the CHIRPS and NCEP datasets respectively. A first-

order estimate of planting dates were obtained from a global, 1/2˚ resolution crop calendar

dataset [65]. These estimates have been ingested in the RHEAS database and were used for this

simulation, while maize cultivar information (3 varieties) were taken from the Agricultural

Model Intercomparison Project [66]. No irrigation and low fertilization were assumed for this

simulation, since most of Kenya’s agriculture is rain-fed [67] while getting specific information

on fertilizer application can be difficult. A drought occurred in East Africa during 2011 affect-

ing agricultural productivity, with counties in Kenya having low yield (Fig 10). Although

county-specific yield data were not available, a crude comparison with the national scale with

FAOSTAT reported a yield of 1,584 kg/ha for maize while RHEAS simulated a yield of 1,364

kg/ha.

Detailed validation data are difficult to obtain, but yield observations for maize were avail-

able over the Nzoia River basin during 2000-2006. The basin has an area of 17,392 km2, and a

RHEAS simulation at a 25km resolution produced yield estimates during the earlier growing

season of the same period as the observations. Fig 11 shows the comparison of the simulated

and the observed yields, and with the exception of 2003 when RHEAS significantly overesti-

mated yield (4.51 tons/ha versus 2.42 tons/ha), the model shows reasonably good agreement.

Fig 9. Streamflow forecast plot. Time series of forecasted (open-loop and assimilated) and observed streamflow at Taylor River with forecasts initialized

on 1 April 2009. Forecasts are bounded by the 25th and 75th percentile of the ensemble.

https://doi.org/10.1371/journal.pone.0176506.g009
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Summary and future directions

A software framework, RHEAS, that facilitates the deployment of water resources simulations

through the ingestion and assimilation of a variety of datasets (including satellite observations)

was presented along with three case studies. RHEAS has a spatially-enabled PostgreSQL/Post-

GIS database at the core with various datasets, both satellite and model-based, being ingested

automatically. Apart from the study area, simulation period, and names of input and assimi-

lated datasets, the user does not need to specify any additional parameters, although a pro-

gramming API (in Python) allows the further customization of the system. Nowcast and

forecast simulations can be performed with or without assimilating satellite observations, with

the latter representing most of the water cycle components. The RHEAS database allows for

the different modeling components to interface against it, simplifying the coupling of an crop

growth model. Moreover, the GIS features of the database facilitate the dissemination of the

RHEAS data products to diverse platforms (desktop, web and mobile). The output data prod-

ucts include an exhaustive set of hydrologic variables, with each having an uncertainty esti-

mated associated with it.

Compared to similar modeling systems that either require extensive configuration or script-

ing a solution custom to a specific end-user, RHEAS allows the implementation of a nowcast

and/or forecasting system with minimal inputs from user automating and abstracting many of

the details away. Although the case studies presented did not include extensive validation, they

showcased the ability of RHEAS to generate a suite of data products in relatively diverse

Fig 10. Crop yield map. Map of maize yield over Kenya in 2011 (first planting season) dissagregated to

county level.

https://doi.org/10.1371/journal.pone.0176506.g010

Regional Hydrologic Extremes Assessment System

PLOS ONE | https://doi.org/10.1371/journal.pone.0176506 May 18, 2017 17 / 22

https://doi.org/10.1371/journal.pone.0176506.g010
https://doi.org/10.1371/journal.pone.0176506


contexts. The spatial scales that RHEAS is applicable are governed by the hydrology model at

its core, VIC, which has been implemented at resolutions ranging from 1/16˚ to 1˚. Therefore

the minimum spatial scales for the current version of RHEAS should be on the order of 5 km.

Nonetheless, specific regional applications may require further calibration (currently achiev-

able with external software tools) of the VIC model parameters and validation against either

in-situ or satellite measurements.

The modular architecture and design of RHEAS could allow for potential modifications in

the future that could enhance its applicability. In the context of decision-making, examples

could include the use of a soil moisture change product to provide outlook on the crop growth

potential, or the drought onset/duration product to plan for food storage. Apart from coupling

other types of models (currently the crop growth model DSSAT is available), such as a hydro-

dynamic model making the system suitable for flood forecasting applications at even sub-

hourly time steps. In addition, other hydrologic models can be added within RHEAS to

Fig 11. Crop yield validation. Comparison of simulated and observed maize yields over the Nzoia River basin

during the earlier growing season of 2000-2006.

https://doi.org/10.1371/journal.pone.0176506.g011
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supplement VIC creating a multi-model ensemble, which could improve predictability. Exten-

sion of the RHEAS software framework with new models will require the development of

modules that implement I/O between the model and the PostGIS database, and execution of

the model physics (including the preparation of its custom input files). Currently there are

plans to couple additional agricultural models into the framework representing different crops

(e.g rice, cacao) but we anticipate that code contributions from the open source community

will further enhance the framework’s applicability.
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