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Abstract:

This study explores the feasibility of an entirely satellite remote sensing (RS)-based hydrologic budget model for a ground
data-constrained basin, the Rufiji basin in Tanzania, from the balance of runoff (Q), precipitation (P), storage change (ΔS), and
evapotranspiration (ET).Pwas determined from the Tropical Rainfall MeasuringMission,ΔS from the Gravity Recovery and Climate
Experiment, and ET from the Moderate Resolution Imaging Spectroradiometer, the surface radiation budget, and the Atmosphere
Infrared Radiation Sounder. Q was estimated as a residual of the water balance and tested against measured Q for a sub-basin of the
Rufiji (the Usangu basin) where ground measurements were available (R2 = 0.58, slope =1.9, root mean square error = 29 mm/month,
bias = 14%). We also tested a geographical information system (GIS)-driven (ArcCN-runoff) runoff model (R2 = 0.64, slope =0.43,
root mean square error = 39mm/month).We conducted an error propagation analysis from each of themodel’s hydrologic components
(P, ET, and ΔS). We find that the RS-based model amplitude is most sensitive to ET and slightly less so to P, whereas the model’s
seasonal trends are most sensitive to ΔS. Although RS–GIS-driven models are becoming increasingly used, our results indicate that
long-term water resource assessment policy and management may be more appropriate than ‘instantaneous’ or short-term water
resource assessment. However, our analyses help develop a series of tools and techniques to progress our understanding of
RS–GIS in water resource management of data-constrained basins at the level of a water resource manager. Copyright © 2012
John Wiley & Sons, Ltd.
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INTRODUCTION

Remote sensing (RS) and geographical information systems
(GIS) have emerged as a potentially useful water resource
management tool. As RS capabilities have increased, GIS
has improved as a decision support tool with the necessary
resolution and repeatability to manage and map water
resources (Rao and Kumar, 2004). A combined RS–GIS
approach facilitates data integration, allowing for improved
cross-basin management strategies (Georgakakos, 2004;
McDonnell, 2008), and these approaches have already
proven beneficial in a variety of contexts (Bevis et al., 1992;
Kustas and Norman, 1996; Alsdorf et al., 2000).
However, RS–GIS tools are limited in capacity by

quality and data availability. Satellite sensors often have
limited spatial, temporal, and spectral resolutions, and
atmospheric conditions can further degrade their accuracy
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(Moran et al., 1997; Benz et al., 2004; Campbell, 2006).
These limitations have largely restricted RS–GIS in
hydrological studies to regional or large-basin scales and
only to portions of the hydrological budget (Schultz, 1994;
Quattrochi and Goodchild, 1997; Schmugge et al., 2002).
In recent years, the reliability of satellite products has

greatly improved, mitigating some of these data limita-
tions. Changes in total water storage are measurable
through satellite mass-based approximations of total water
thickness to a precision of centimetre per month (Syed
et al., 2008). Precipitation is measurable through multiple
post-processing phases of currently available satellite data
(i.e. Tropical Rainfall Measuring Mission, TRMM) to a
resolution of millimetre per day (Huffman et al., 2007).
New RS-based evapotranspiration products are also being
released and evaluated (Jiménez et al., 2011; Vinukollu
et al., 2011).
With these recent satellite products now online, it is

theoretically possible to measure the entire water budget
of a large basin only using RS–GIS. This is so recent of a
possibility that few studies have demonstrated this possibility
empirically (Sheffield et al., 2009; Wagner et al., 2009;



Figure 1. Map of the Rufiji basin and the Usangu wetlands sub-basin
(darker grey sub-basin) (adapted from the 2001 Sustainable Management

of the Usangu Wetlands and Its Catchment report)

854 D. E. ARMANIOS AND J. B. FISHER
Gao et al., 2010; Sahoo et al., 2011). However, these
studies investigate basins that have ample ground data,
whereas they would potentially be even more useful in
heavily used basins with sparse ground data such as in the
developing world. Moreover, one of the concerns is that
RS–GIS tools are only possible for basins at a scale much
larger than those of interest for a typical water resources
manager, making RS–GIS difficult to apply in water
management and policymaking (Rayner et al., 2005).
Given these empirical gaps, we ask what is the feasibility
of entirely RS–GIS-based water budget models in data-
constrained basins at a scale closer to that of interest for
a water resource manager?
Africa presents a particularly challenging and applicable

problem in this regard. Africa has critical monitoring needs
yet lacks consistent and high-quality in situ data (Hastings
and Clark, 1991). The reason for such a lack of data is often
the difficulty in paying skilled technicians competitive
wages to continue collecting such data (Scholes, 2009).
Although there have been studies that have analysed
portions of the hydrologic budget in African settings
(Stankiewicz and de Wit, 2005; de Wit and Stankiewicz,
2006), only two entirely RS–GIS-driven budgets have been
conducted inAfrica (Stisen et al., 2008; Stisen and Sandholt,
2010). Given this dearth of entirely RS–GIS-driven
hydrologic studies in data-scarce basins with critical water
resource management needs, we sought to conduct an
exploratory study to assess the feasibility of a budget model
applied towards such conditions.
For this study, we chose the Rufiji basin in Tanzania. We

chose this basin for two reasons. First, RS–GIS has also
already been used to address water resources for the Usangu
basin, a sub-basin of the Rufiji basin, because there is still
some consistent and reliable ground data for this sub-basin,
so we sought to build on previous work by extending to the
larger parent basin (Kashaigili et al., 2003; Cour et al., 2004;
Kashaigili et al., 2005; Mwakalila, 2005; Kashaigili et al.,
2006; Mwakalila, 2008).
Second, the Rufiji basin’s water resource management is

critical to Tanzania, yet insufficient basin-wide ground
data exist to manage these water resources effectively.
Tanzania is Africa’s leading producer in a variety of key
agricultural goods such as beans and bananas (FAO, 2009).
More importantly, Tanzania’s agriculture is responsible
for 85% of the country’s exports and 80% of the industry
and consumes 89% of the country’s freshwater resources
(CIA, 2009). The Rufiji basin is the country’s largest
basin, covering 20% of Tanzania, and provides much of
the country’s resources for agriculture, livestock, fisheries,
mining, and sediment transport (Bernacsek, 1980;
Mwalyosi, 1990). Because of the basin’s key economic
and livelihood positions, water resource monitoring for
the basin has been conducted since the 1950s (Bureau of
Resource Assessment and Land Use Planning, 1970).
However, beginning in the 1980s and especially after
the mid-1990s, water resource monitoring dwindled, and
data are now largely unavailable for the basin because of
infrequent and inconsistent monitoring (Hubert and
Raphael, 2008).
Copyright © 2012 John Wiley & Sons, Ltd.
In particular, our study has four objectives: (1) an attempt
to close and assess the accuracy of an entirely RS-basedwater
balance for the data-rich Usangu sub-basin against the
available ground data, (2) assessment of the feasibility of
monitoring the entire data-poor Rufiji basin budget entirely
with RS, (3) conducting an analytical uncertainty analysis in
thewater balancemodel, and (4) a discussion of the feasibility
of RS–GIS models on long-range water resources manage-
ment. This study is exploratory to build a framework and
context for future developments in RS-based water resources
management for regions with hydrologic data constraints.
METHODS

Study area

TheRufiji basin (Figure 1) is approximately 177 420 km2,
20% of Tanzania’s land area (Rufiji Basin Water Board,
2007). The Rufiji river basin consists of three major sub-
basins: the Great Ruaha, Kilombero, and Luwegu (Temple
and Sundborg, 1972; Mwalyosi, 1990). The geology of the
basin is largely characterized by limestone, shale, and
metamorphic rock (gneiss and schists) (Hankel, 1987;
Mwalyosi, 1990). Overlaying this geology are largely
cambisols, present mainly in the elevations of about
500–1000m of the basin; significant deposits of fluvisols,
predominantly in the basin’s deltaic and river floodplains;
and ferralsols and nitisols, iron-rich soils often associated
with the basin’s limestones and shales (FAO/IIASA/ISRIC/
ISSCAS/JRC, 2009). The vegetation is predominantly
grasslands, savannas, and shrubland with marginal forestry
and irrigated land (World Resources Institute, 2003). With
regards to agricultural development, the basin’s production
is largely agriculturally under-developed as only 15% of the
total arable land in all of Tanzania is actually used for crop
production. Yet the country still remains strongly reliant on
Hydrol. Process. 28, 853–867 (2014)
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agriculture for their economic development as 46% of the
country’s gross domestic product comes from agriculture
(Rowhani et al., 2011).
To validate the water balance model and compare it with

other models, we used sub-basin ground data and basin-wide
land cover and soil data. Ground data came from the
Sustainable Management of the Usangu Wetlands and Its
Catchment (SMUWC, 2001) project and the International
Water Management Institute (SMUWC, 2001). The Usangu
basin (darker grey sub-basin in Figure 1) is part of the Great
Ruaha sub-basin and covers approximately 20 810km2 or
about 12% of the entire Rufiji basin (Kadigi et al., 2004). As
was described earlier, the Rufiji basin is limited in ground
data to drive a water balance model as well as validate an
RS-based water balance model. Moreover, gathering more
basin-wide data was cost prohibitive. Although the Usangu
and Rufiji are not directly comparable because of their
differing sizes, micro-topography, and offset locations, the
Usangu sub-basin provides the best available data with which
to extrapolate Rufiji basin estimates.

Water balance

The basin’s water resources were determined using RS
through the water balance equation

Q ¼ P� ΔS� ET (1)

where Q is the runoff (mm/month), P is the precipitation
(mm/month), ΔS is the change in total water storage
(groundwater + soil moisture + canopy water storage +
standing water, mm/month), and ET is the actual evapo-
transpiration (mm/month). Two common problems have
been reported in these types of analyses: data spikes and
bias. The impact of data spikes is typically reduced through
quality control filtering or temporal averaging (McNeil
and Cox, 2007; Awange et al., 2011). Here, we calculate
the 3-month moving average for retrospective analysis, and
we present both the bias-corrected and uncorrected results.
The RS data were processed and analysed in MATLAB

software. A Rufiji basin shapefile was provided by the
Global Data Runoff Centre (2008), which we used to
generate a mask file. Each set of RS data was visualized in
ImageJ, Panoply, and/or ArcGIS 9.3 to ensure that the mask
file was properly geo-referenced to the data. Then, our
datasets were clipped using the mask file. We spatially
average all pixels across the basin to treat the basin as a
single, lumped model unit.
We use two additional runoff models for model

intercomparison purposes: (1) a curve number (CN)-based
approach and (2) a runoff model from the Global Land Data
Assimilation System (GLDAS) (Rodell et al., 2004). The
first is partially RS driven, and the second is based on a
modelling algorithm using ground data. For the CN-based
approach model, soil and land cover data came from the
HarmonizedWorld Soil Database (HWSD), v. 1.1,1 and the
GLOBCOVER global land cover map for 2005–2006.2
1http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/
HTML/

2http://www.gofc-gold.uni-jena.de/sites/globcover.php

Copyright © 2012 John Wiley & Sons, Ltd.
HWSD classifies over 16 000 different soil mapping
units into a 3000 (~1 km2) global raster database through
the use of various national, regional, and internationally
classified soil maps (FAO/IIASA/ISRIC/ISSCAS/JRC,
2009). GLOBCOVER is a global land cover database
that classifies 22 global land cover classes to a resolution
of 300m and absolute and relative geo-location error of 77
and 51m, respectively (Defourny et al., 2006; Bicheron
et al., 2008). Given the size of our basin of investigation,
HWSD and GLOBCOVER both serve as adequate inputs
for soil and land cover-driven runoff models that served as a
comparison source for the RS-based water balance model.
The only period that the various satellite products

overlapped not only with each other but also with the
available ground data was in 2003–2004, so we conduct the
exploratory analysis for this timeframe although we also
show data outside this period to assess potential extrapola-
tion implications.

Precipitation (P)

We used two different precipitation datasets from the
TRMM: one is from the real-time Multi-satellite Precipita-
tion Analysis system (TMPA-RT, 3B43 V6) and the other
is TRMM 3b42 (Huffman et al., 2007). TRMM is a joint
USA–Japan initiative designed to specifically measure
tropical and sub-tropical rainfall, which includes Tanzania.
TRMM uses an active precipitation radar, passive TRMM
microwave imager, and Special Sensor Microwave/Imager
radiometer system to retrieve rainfall data (Kummerow
et al., 1998). Specifically, rainfall data are retrieved from
reading natural microwaves emitted from the Earth’s surface
(passive microwave) and the backscattered signals from the
illuminated satellite radar signals (active microwave/radar)
(Engman and Gurney, 1991; Smith and Mullins, 2001).
The horizontal resolution of TRMMP is 4.3 km (Kummerow
et al., 1998).
In the initial stages of TRMM, device error was

sometimes up to 24% between the TRMM radar and
radiometer, making ground calibration important for
interpretation (Kummerow et al., 2000). TRMM later
combined both rainfall and total precipitable water measure-
ments, which substantially reduced data error (up to 85%
reduction in error bias and up to 38% reduction in error
standard deviation) (Hou et al., 2000). TMPA-RT has
further reduced error in some cases to about 7% overall error
bias and a root mean square difference as low as 1.17mm/
day through two processing phases, one 9 h after real time
and then post-real time after 10–15 days (Huffman et al.,
2007). TMPA-RT has already been used successfully in
many tropical region applications and can now even be
downscaled to account for vegetation (Collischonn et al.,
2008; Su et al., 2008; Immerzeel et al., 2009).
However, TRMM 3b43 or TRMM TMPA-RT data

are not purely from RS as the algorithms used calibrate
TRMM to global rain gauge data provided from the Global
Precipitation Climatological Center (Rudolf, 1993). We
compared both TRMM 3b42 and TRMM 3b43 to rainfall
ground data, incorporating a 1month lag with the TRMM
3b42 data, as prescribed in past studies (Chokngamwong
Hydrol. Process. 28, 853–867 (2014)
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and Chiu, 2008; Kikuchi and Wang, 2008; Li et al., 2008;
Fotopoulos et al., 2011). We used TRMM 3b43 for the
RS-based model but also conducted lag correlational
analyses to demonstrate the differences if TRMM 3b42
was used to run the RS-based model as opposed to using
TRMM 3b43.
Ground data for P were used to validate the RS-based

P estimates. Ground data for P were available from 1998
to 2000 and were obtained from between 6 and 20 upstream
rain gauges in the Usangu Wetlands sub-catchment
(SMUWC, 2001). These data were available daily, so we
accumulated the rain gauge data to the monthly level and
then spatially averaged (arithmetic) the data across rain
gauges. All the rain gauges fit within one 1� � 1� grid box of
the RS-basedwater balancemodel. To properly compare the
sub-basin Usangu ground data we had with the RS-based
model, we took the values obtained for the model and
area-weighted it to the dimensions we knew for the Usangu
sub-basin (20 817 km2).

Total water storage (ΔS)

ΔS is one of themost difficult components tomeasure both
in situ and remotely (Engman and Gurney, 1991; Smith and
Mullins, 2001). In situ methods are locally restrictive and
cannot reach large depths, and they are often destructive. Soil
moisture from RS is limited in areas with dense canopies.
We obtained ΔS from the Gravity Recovery and Climate

Experiment (GRACE) (Tapley et al., 2004), which is readily
used in neighbouring regions to this study such as southern
Africa (Krogh et al., 2010). GRACE maps the Earth’s
gravitational field, providing data on a monthly basis.3 To
use these data, particularly for land hydrology, we processed
level 2, release 4 GRACE data, which remove oceanic
and atmospheric contributions to the Earth’s gravity field,
leaving continental water ΔS contributions (Chen et al.,
2005; Bettadpur, 2007).
We elected to use GRACE for a variety of reasons.

First, GRACE is the only currently available RS mission
for measuring sub-surface water change. Second, the Rufiji
basin (~177 420 km2) is close to the threshold of
200 000 km2 where GRACE data have reasonable suitability
(Rodell and Famiglietti, 2001). Moreover, GRACE was
successfully used at basin scales less than 200 000 km2

[r=0.83, r=0.63 (for changes below 2m), root mean square
error (RMSE) = 25.2 mm/month] (Yeh et al., 2006),
indicating that basin scales of 150 000 km2 may be
allowable for the threshold for GRACE usage. Third,
such an approach is similar to that carried out for the
nearby Zambezi basin (Chen et al., 2005) (average RMSE
between 2.21 and 3.01 cm equivalent water height).
Following numerous refinements made to GRACE data
(Wahr et al., 1998; Cheng and Tapley, 2004; Swenson
and Wahr, 2006; Swenson et al., 2008; Landerer and
Swenson, 2012),4 we used GRACE data with a 300 km
Gaussian radius filter and with scaling factors that restore
3For mission details, see http://www.csr.utexas.edu/grace/
4For more detailed information, visit the following website: http://grace.
jpl.nasa.gov/data/gracemonthlymassgridsland/

Copyright © 2012 John Wiley & Sons, Ltd.
much of the energy that such filtering artificially removes
from the GRACE land data grids. For missing dates, e.g.
June 2003 and January 2004, the data were gap-filled using
linear interpolation.
GRACE data were compared with the GLDAS

(Rodell et al., 2004). The GLDAS dataset used here was
that generated from Noah land surface models. This model
is a collaboration amongst various US government and
academic agencies, which incorporatesmultiple ground data
and RS data sources from the Global Energy and Water
Cycle Experiment, the Office of Hydrological Development
of the National Weather Service, the National Environmen-
tal Satellite Data and Information Service, and the US Air
Force, amongst many others (Ek et al., 2003; Rodell et al.,
2005). We used GLDAS here because past studies used
GLDAS to calibrate GRACE data with good accuracy
(RMSE between 0.7 and 4.5 cm equivalent water height)
(Chen et al., 2005, 2006; Syed et al., 2008). As with past
work (Syed et al., 2008), we derive total water storage from
GLDAS using the four layers of soil moisture and the
canopy moisture the GLDAS/Noah dataset provides. To
compareGRACEwithGLDAS,we convert GRACE from a
measurement of water storage anomalies (over the long-
term mean of the data), which is what the available raw data
provide, into change in water storage. To perform this, we
subtract the long-term mean (2003–2007) of the data from
both GRACE and GLDAS to allow for the comparison.
Because of the missing observational dates in GRACE

data, we modified a correction factor for such analysis
provided by Rodell et al. (2004) to calculate runoff for
monthly data (Rodell, 2011, personal communication). The
result was that our simplified water balance model in
Equation 1 became the following equation:

Q2 þ Q1

2
¼ P2 þ P1

2
� ET2 þ ET1

2
� ΔS2 � ΔS1ð Þ (2)

Subscripts 2 and 1 represent the current month of analysis
and the past month of analysis, respectively.

Evapotranspiration (ET)

We used the RS-driven actual evapotranspiration (ET)
algorithm (PT-JPL) from Fisher et al. (2008), which
was validated at 36 FLUXNET sites, including 21 sites in
the tropics (Fisher et al., 2008, 2009). To drive the ET
algorithm, we needed air temperature, relative humidity,
normalized difference vegetation index (NDVI) and soil-
adjusted vegetation index (SAVI), and net radiation.
Near-surface air temperature and relative humidity were
measured and derived from using the Atmosphere
Infrared Radiation Sounder (AIRS) aboard the Aqua
satellite. Net radiation was retrieved using the surface
radiation budget (SRB) dataset. NDVI and SAVI were
measured using the Moderate Resolution Imaging
Spectroradiometer (MODIS) aboard the Terra satellite.
The AIRS uses infrared radiation (3.7–15.4mm) from

2378 spectral channels to gather medium-range weather
forecasting data (Aumann et al., 2003). Coupled with
measurements from the Advanced Microwave Sounding
Hydrol. Process. 28, 853–867 (2014)
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Unit A, surface temperature is measurable within an
absolute accuracy of 1K and a relative accuracy of 0.5K
(Aumann et al., 2003; Fetzer et al., 2003). Inmountainous or
desert regions, AIRS air temperature error increases to 11K
(Gao et al., 2008). For water vapour pressure, AIRS is
measurable to within an absolute accuracy of 20% and a
relative accuracy of 10% (Aumann et al., 2003; Fetzer et al.,
2003). AIRS relative humidity, temperature, and surface
pressure monthly ascending (daytime) data were first
obtained. The publicly available AIRS dataset we used
(AIRX3STM) calculates monthly mean levels as the
arithmetic means of the daily product and weights the value
for each grid box by the number of input counts for
each day.5 These data come in 12 vertical layers between
1000 and 100 Mb. Using the surface pressure data, we
linearly interpolated between the two pressure layers that lie
immediately above and below the surface pressure to obtain
the appropriate surface relative humidity and temperature
data for each 1� � 1� pixel (Ferguson and Wood, 2010, for
an example of this approach). We evaluate the near-surface
derived data against measurements from ground meteoro-
logical stations.
The MODIS is a multispectral medium-to-long-wave

infrared sensor (36 bands, 0.405–14.385 mm) (Justice
et al., 1998, 2002). MODIS NDVI is relatively accurate
when compared with localized in situNDVImeasurements
made in African contexts such as Senegal (Dahra, Senegal:
R2 = 0.96, slope = 0.97, RMSE= 0.028) (Fensholt et al.,
2006). For our analysis, we used monthly level 3 MODIS
NDVI data, which is a 1� � 1� spatial globally gridded
dataset made from a 0.05� Climate Modeling Grid global
coverage product.6

The SRB is a satellite-driven dataset designed to support
the Global Energy and Water Cycle Experiment (Pinker
et al., 2003; Randall et al., 2003; Zhang et al., 2006). The
satellite sources come from the International Satellite Cloud
and Climatology Project, the GEOS-4 reanalysis product,
the Total Ozone Mapping Spectrometer, the Television and
Infrared Operational Satellite Operational Vertical Sounder,
and the Stratospheric Monitoring Group’s Ozone Blended
Analysis.7 When compared with various ground radiation
sources, SRB is relatively accurate (R2 typically greater
than 0.90 for v2.6, root mean square difference typically less
than 24W/m2) (Zhang et al., 2006). Similar to past studies
(Troy and Wood, 2009), we subtracted the quality-checked
SRB product’s upward shortwave and longwave radiation
from its downward shortwave and longwave radiation to
get the net radiation.
We produced two sets of ET data by generating the

algorithm with all RS in one instance and substituting
Climate Research Unit (CRU) interpolated and gridded
ground station air temperature and water vapour pressure
data for AIRS in the other instance. We compared AIRS
5For more detailed information, see http://mirador.gsfc.nasa.gov/collec-
tions/AIRX3STM__005.shtml

6For more detailed information, see http://mirador.gsfc.nasa.gov/collec-
tions/MODVI__005.shtml

7For more information on these specific products, consult http://eosweb.
larc.nasa.gov/PRODOCS/srb/table_srb.html

Copyright © 2012 John Wiley & Sons, Ltd.
temperature and CRU globally gridded ground data
available for up to 2006 (CRU v3.0) (University of East
Anglia CRU, 2008). We also compared the ET data used
here against the full land surface model derived ET from
Noah/GLDAS (Chen et al., 1996; Rodell et al., 2004;
Jiménez et al., 2011).
Table I summarizes the RS products driving the RS-based

water balance model, the ground data products used
for validation, the ArcGIS CN-driven model used for
comparison, and the temporal and spatial resolutions of all
products used.

Runoff (Q)

Ground data for sub-basin model validation came from
seven flow gauges in the Usangu sub-basin that the
International Water Management Institute provided
(McCartney, 2009, personal communication).
We directly compare the CN-based approach with

Usangu ground data and with the RS model for both the
sub-basin and the entire Rufiji basin. The CN-based
approach uses the ArcGIS-driven ArcCN-runoff model to
calculate runoff using land cover and soil data (Zhan and
Huang, 2004). This model uses Soil Conservation Service
(SCS, 1985, SCS, 1986) runoff CNs to empirically derive
runoff. Thismethodwas derived and run inArcCN-runoff in
the following manner (Ponce and Hawkins, 1996; Zhan and
Huang, 2004):

Q ¼ P� 0:2SRð Þ2
Pþ 0:8SR

(3)

SR is the maximum soil retention and is approximated as

SR ¼ 1000
CNlandsoil

� 10 (4)

P was obtained from TRMM data, and CNlandsoil is the SCS
(1986) CN.
To determine CNlandsoil, we superimposed the HWSD

data onto the geo-referenced Rufiji basin mask profile on
ArcGIS 9.3. Because HWSD soil data are classified as
FAO (2006) drainage groups that cannot be directly used to
determine CN, we re-classified these data at the sub-basin
level into US Department of Agriculture hydrological soil
groups (HSG) (SCS, 2007). We then superimposed the
GLOBCOVER data and used both the land cover data
and the previously classified HSG groups to determine the
appropriate CN using SCS (1985, 1986) tables. To ensure
that we were consistent in this process, we used past
literature that have coded and compared FAO drainage and
US Department of Agriculture HSG groups to guide our
classification (Mutua and Klik, 2006; Descheemaeker et al.,
2008; Hong and Adler, 2008).
We compared CN-based runoff estimates with those of

the RS-based model and those of the GLDAS runoff models
at both the Usangu sub-basin and Rufiji basin (Rodell et al.,
2004). Previous work has used such data to run river basin
routing models to determine water storage dynamics more
accurately (Han et al., 2009).
Hydrol. Process. 28, 853–867 (2014)
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Table I. Satellite datasets and ArcGIS-driven models for the Rufiji basin water balance

Variable RS drivers Validation/Comparison Resolutiona Sources

Q Water balance model
(mm/month)

Ground data (only available from
1999 to 2000)

Monthly 1� � 1� This study
IWMI

ArcCN-runoff (using GLOBCOVER,
HWSD, and TRMM)

FAO (2006)
Defourny et al. (2006)

GLDAS: net runoff data Hawkins (1978)
Kannan et al. (2008)
Zhan and Huang (2004)

P TRMM/TMPA-RT
3b43b (mm/day)

Ground data (only available f
rom 2003 to 2004)

Monthly 1� � 1� Huffman et al. (2007)

TRMM 3b42 (rainfall data
without algorithms to calibrate to
rain gauge as a robustness check)

SMUWC (2001)

ΔS GRACEc : equivalent water
thickness (cm/month)

GLDAS: four-layer soil
moisture + canopy
storage (cm/month)d

Monthly 1� � 1� Wahr et al. (1998),
Chambers (2006),
Chen et al. (1996)

ET MODIS: NDVI/SAVI CRU, v3.0e : air temperature (�C) Monthly Stackhouse et al. (2000)
AIRSf : air temperature (K) Vapour pressure (hPa) MODIS: 1� � 1�g Justice et al. (2002)
Vapour pressure (Pa) GLDAS: evaporation CRU: 1� � 1� Aumann et al. (2003)
SRBh : net radiation (W/m2) AIRS: 1� � 1� CRU v3.0

GLDAS: 1� � 1�
SRB: 1� � 1�

a For TRMM, original data were 0.25� � 0.25�. For CRU and GLDAS datasets, original data were 0.5� � 0.5�. These grids were all spatially averaged
into 1� � 1� grids to match the rest of water balance as noted in Section 2.2.
b http://daac.gsfc.nasa.gov/data/datapool/TRMM/
c http://grace.jpl.nasa.gov/data/mass/
d http://disc.gsfc.nasa.gov/hydrology/data-holdings
e http://badc.nerc.ac.uk/data/cru/, units converted to match those of AIRS.
f http://mirador.gsfc.nasa.gov/ (for both MODIS/Terra and AIRS)
g This 1� � 1� grid is derived from a 0.05� � 0.05� modelling grid coverage.
h http://eosweb.larc.nasa.gov/PRODOCS/srb/table_srb.html
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Error and sensitivity analysis

To determine the RS-based model’s accuracy and bias
vis-à-vis ground or model data, we used the conventional
statistical indicators ofR2, slope, and RMSE, obtained using
a zero y-intercept. To understand which component most
influences thewater balance, we also performed a sensitivity
analysis. A form of the perturbation method was performed
where each component was ‘forced’” with a range that is
�50% of the component’s actual value, and the percentage
change in Q was recorded (McCuen, 1973).
We also determined analytically how the error of each

component propagates in the RS-based model. We use
the method of moments (MOM) to quantify this error
propagation (Hansen, 1982; Warnick and Chew, 2004).
This model was derived from a first-order approximation of
the Taylor series expansion (Morgan et al., 1990). If the
components are independent of each other (no covariance
between any two components), this MOM expansion
reduces to Gaussian error propagation. Such an approach
is used reliably in numerous hydrological studies (e.g.
Madsen et al., 1997; Fisher et al., 2008).
The MOM first-order Taylor series approximation of

the error propagation is

var Qð Þ ¼
Xn
i¼1

Xn
j¼1

cov xi; xj
� � @Q

@xi

@Q

@xj
(6)

where xi and xj are the water balance components (ET, P,
or ΔS) used to derive Q, given that
Copyright © 2012 John Wiley & Sons, Ltd.
cov xi; xi½ � ¼ var xð Þ ¼ si2

cov xi; xj
� � ¼ cov xj; xi

� � ¼ ri;jsisj
(7)

where r is the Pearson correlation between the ith and jth
model component and s is the sample standard deviation.
Using these properties, we simplified Equation 6 to the
following:

sQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

sxi
@Q

@xi

� �2

þ
Xn
i¼1

Xn
j¼iþ1

ri;jsisj
@Q

@xi

@Q

@xj

vuut (8)

If the variables are independent of each other or
cov[xi, xj] = cov[xj, xi] = 0, then Equation 8 becomes a
simple Gaussian error propagation function where

sQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

sxi
@Q

@xi

� �2
vuut (9)

Using the water balance model from Equation 1, we
determine the following partial derivatives:

@Q

@P
¼ 1

@Q

@ΔS
¼ �1

@Q

@ET
¼ �1

(10)
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When we use these partial derivatives from Equation 10,
Equations 8 and 9 become the following for the RS-based
water balance model:
sQ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sP2 þ sET 2 þ sΔS2 � rP;ETsPsET � rP;ΔSsPsΔS þ rET ;ΔSsETsΔS

p
sQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sP2 þ sET 2 þ sΔS2

p (11)
Equation 11 can also be presented as a standard error of
the mean

seQ ¼ sQffiffiffi
n

p (12)

where se is the standard error and n is the number of
samples obtained for Q.
We also ran two additional correlation analyses. First,

we ran pairwise Pearson correlations to determine which
water component (ET, P, or ΔS) most correlates with Q.
Second, following other studies (Wang et al., 2006;
Kikuchi and Wang, 2008), we ran a lagged correlation
analysis to see whether the optimum correlation occurred
at near real time or lagged behind ground data
measurements.
RESULTS

Precipitation (P)

Ground data for P from the Usangu sub-basin were
first compared with TRMM 3b43 data, which exhibited a
reasonably good agreement (R2 = 0.77, slope = 0.73,
RMSE= 28.1 mm/month) (Figure 2). From Figure 2,
we see that the results improved after 1999 (R2 = 0.89,
slope = 0.82, RMSE= 18.9mm/month for 1999–2000).
This is not entirely unexpected as a calibration problem
was found just after TRMM’s launch in 1998 and early
studies found up to 40% difference between the TRMM’s
radar and radiometer data (Kummerow et al., 2000).
TRMM 3b42 data were also compared with the

Usangu sub-basin ground data. Upon initial glance, it
would seem that TRMM 3b42 considerably diverges from
TRMM 3b43 data, with exception of slope (R2 = 0.37,
slope = 0.90, RMSE = 96.9 mm/month). However,
previous studies suggest that a time lag may be necessary
Figure 2. Graph of Tropical Rainfall Measuring Mission (TRMM) and
ground data for precipitation for the Usangu sub-basin and the Rufiji basin

Copyright © 2012 John Wiley & Sons, Ltd.
when using TRMM 3b42 in hydrological analyses such as
flood forecasting (Li et al., 2008; Fotopoulos et al., 2011)
or in analyses comparing rainfall with ground data
(Chokngamwong and Chiu, 2008; Kikuchi and
Wang, 2008). When we apply a 1month lag to the same
1999–2000 data, the TRMM 3b42 data improve consider-
ably, comparable with TRMM 3b43 (R2 = 0.60, slope= 0.81,
RMSE=6.6mm/month). This result reinforces what past
studies suggest, that using a lag may be necessary when
using TRMM 3b42 data in hydrological research. However,
overall, TRMM 3b43, as expected, has better comparability
with ground data than TRMM 3b42.

Storage (ΔS)

GLDAS-modelledΔSwas comparedwithGRACEΔS for
theRufiji basin (Figure 3).Although the agreementwas not as
good as that with P (Usangu: R2 = 0.34, slope= 1.03,
RMSE= 57mm/month; Rufiji: R2 = 0.47, slope = 1.11,
RMSE=51 mm/month), these results were comparable with
those results obtained from past studies R2=0.40�0.69 and
(RMSE ranging from 7 to 45mm/month) (Syed et al., 2008;
Yeh et al., 2006).

Evapotranspiration (ET)

The SRB/MODIS/AIRS-driven ET (Figure 4) compared
similarly with SRB/MODIS/CRU-driven ET (Usangu:
R2 = 0.97, slope = 1.02, RMSE= 5.2mm/month; Rufiji:
R2=0.98, slope=1.04,RMSE=3.5mm/month). Such a result
indicates that the SRB radiation data and the MODIS NDVI/
Figure 3. Gravity Recovery and Climate Experiment (GRACE) data and
Global Land Data Assimilation System (GLDAS) data for the Usangu

sub-basin (a) and the Rufiji basin (b)
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Figure 4. Evapotranspiration (ET) for both the Usangu sub-basin (a) and
Rufiji basin (b). SRB, surface radiation budget; MODIS, Moderate
Resolution Imaging Spectroradiometer; AIRS, Atmosphere Infrared
Radiation Sounder; CRU, Climate Research Unit; GLDAS, Global Land

Data Assimilation System

Figure 5. Model validation with ground data and comparison with other
models for the Usangu sub-basin (a), comparison with other models for the
Rufiji basin (b), and yearly runoff from the Usangu ground data and model
data for both the Usangu sub-basin and Rufiji basin (c). RS, remote sensing;

CN, curve number; GLDAS, Global Land Data Assimilation System
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SAVI data drive much of the difference in ET measurements
as opposed to temperature andwater vapour pressure data, just
as other studies reported (Fisher et al., 2008).
In comparing the RS-based ETmodel (ET-SRB/MODIS/

AIRS) with ET from GLDAS, we obtain moderately
reasonable correlation, although with a noticeable offset
(Usangu: R2 = 0.46, slope = 1.3, RMSE=22.7mm/month;
Rufiji: R2 = 0.51, slope = 1.29, RMSE=18.2mm/month).
This is expected as other studies have shown that the ET
model used here tends to have a systematic upward bias and
GLDAS-based ET models have a systematic downward bias
when compared with other ET products (Jiménez et al.,
2011).Whenwe correct for ETbias as other RS-based studies
have done (Sheffield et al., 2009), the ET (ET-SRB/MODIS/
AIRS) comparison with GLDAS improves (Usangu: mean-
AIRS = 37.9 mm/month, meanGLDAS = 48.3 mm/month,
R2 = 0.87, slope = 0.77, RMSE= 9.7mm/month; Rufiji:
meanGLDAS=54.2mm/month, meanAIRS= 41.3mm/month,
R2 = 0.78, slope= 0.78, RMSE=12.4mm/month).

Runoff (Q)

Putting all of the components of the water balance model
together (P, ET, and ΔS), we compared model-predicted Q
with ground data in the Usangu basin (Figure 5a).
In this figure, we show the original balance model, the

balance model with bias correction, the GRACE correction
model derived from applying the work of Rodell et al.
(2004) to monthly data (Equation 2), and the balance model
with 3month smoothing applied. For the Usangu basin, the
Copyright © 2012 John Wiley & Sons, Ltd.
original balance model (not shown) was poorly correlated
and was time-lagged to available ground data (R2 = 0.21,
slope =�1.8, RMSE=47mm/month). With bias correction
(not shown), the countercyclical behaviour of themodel was
corrected, but the correlation and error were still poor
(R2 = 0.02, slope = 0.82, RMSE=93mm/month). With the
incorporation of the 3month moving averaging smoothing
technique in tandem with bias correction, the correlation
and error markedly improve (R2 = 0.39, slope = 1.9,
RMSE=29mm/month). The comparison of the RS-based
model with the Usangu sub-basin ground data shows
that our 3month smoothed model seems to have better
comparability than the bias-corrected GLDAS model
(R2 = 0.02, slope = 0.56, RMSE = 8.7 mm/month) and
slightly better comparability with the bias-corrected CN
Hydrol. Process. 28, 853–867 (2014)
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model (R2 = 0.36, slope = 3.5, RMSE= 47mm/month).
Although highly error prone, the RS-based model and, to
a slightly lesser degree, the CN-based model may represent
an improvement from what is already available for basins of
a lower scale and with restricted ground data availability.
However, the large errors obtained demonstrate both the
exploratory nature of this work and the general limitations
that all RS–GIS tools have in monitoring data-constrained
basins at such low scales.
To analyse the RS-based model for the entire Rufiji

basin, we compare our model with the GLDAS-based
and CN-based models for the entire Rufiji basin (Figure 5b).
We find that as with the Usangu sub-basin, the CN-based
and RS-based models continue to have similar comparabil-
ity (R2 = 0.37, slope = 0.43, RMSE=39mm/month), where-
as the GLDAS model compares poorly with and is even
countercyclical to both the CN-based approach and the
entirely RS-based model (with CN: R2 = 0.08, slope =�9.2,
RMSE=65.9 mm/model; with RS-based model: R2 = 0.42,
slope =�14.7, RMSE=37mm/month).
These results should be interpreted cautiously for two

reasons. First, the CN-based approach is drivenwith TRMM
data, which is also an input to the RS-based model because
we do not have ground data for the whole basin. Therefore,
the correlations between these models may be in part due
the common P driver in both models. However, given
that the correlation is less than 0.7 (r= 0.61), multi-
collinearity is not a strong concern between these models,
indicating that these two models do sufficiently measure
runoff differently. Therefore, although interpreted with
caveats, our exploratory evidence indicates that the entirely
RS-based model (Equation 2) as well as the CN-based
approach seems to have better comparability than the
currently available GLDAS models for understanding
runoff both at the Usangu sub-basin and Rufiji basin levels.
Second, comparing with the CN-based model does

not necessarily indicate our model’s scalability potential.
Granted, CN models provide more ground-based soil
characteristics, which in turn, are used to calculate the water
budget. However, given that the Usangu sub-basin differs
greatly in its soil and land characteristics as compared
with the rest of the basin (Temple and Sundborg, 1972;
Mwalyosi, 1990), we cannot adequately ascertain whether
our results indicate our model’s generalizability across
the entire basin. All we can note here is that the correlation
between the models does indicate the potential for our
model to scale to the entire basin but cannot definitively
confirm that notion.
Neglecting subsurface runoff,8 we compared our model’s

yearly discharge with that determined from ground data
of the entire Usangu sub-basin. We find that our purely
RS-based model (with bias and Rodell corrections +
smoothing) compares reasonably with the ground-based
discharge (ground data: 3.3 km3/year; RS-based model:
8To perform this, we set subsurface or negative runoff to 0. To ensure we
did not change the correlation from our model, we ran an error analysis
and found that our results were nearly the same as those that included
subsurface runoff and even improved in some aspects (R2 = 0.36,
slope = 1.2, RMSE=25mm/month).

Copyright © 2012 John Wiley & Sons, Ltd.
3.8 km3/year, bias = 14%), further indicating that our model,
although error prone, does seem to improve our ability to at
least engage in annual water basin management. When
comparing our estimate of the entire Rufiji basin’s annual
discharge (52 km3/year) with the best available estimates
from past studies of the Rufiji basin from the 1950s to 1970s,
discharge for the entire Rufiji basin was approximated as
900m3/s or 28 km3/year. Yet also, during the same time, the
discharge varied greatly from 70 to 11000m3/s (Mwalyosi,
1990), which indicates a potential range of 2.2–347km3/year.
As discussed before, the high variability in soil, land, and

hydrological characteristics leads us to hesitate in assessing
the reliability and generalizability of the RS-based and
CN-based models on the entire Rufiji basin. Moreover,
comparison against best available estimates from past
literature is a highly uncertain comparison, qualitative at
best, as the Rufiji has likely undergone much hydrological
change since the 1970s. From what we can only surmise,
such rough estimates of the annual discharge of the Rufiji
basin, from past literature, indicate that our model is indeed
coarse, as expected. However, given the high variability in
annual discharge Rufiji measurements, our results arewithin
the range of annual discharge previously approximately
known for the basin.

Sensitivity analysis, error propagation, and
statistical analysis

From the perturbation sensitivity analysis, on average, Q
is most sensitive to changes in ET (216–432% change in
runoff for 25–50% variable perturbation), slightly less so to
P (190–379% change in runoff for 25–50% variable
perturbation), and least sensitive to changes in ΔS (1–3%
change in runoff for 25–50% variable perturbation)
(Figure 6).
If we assume that the error propagation is Gaussian,

the error propagation for the Rufiji basin was an additional
Figure 6. Water balance sensitivity analysis to perturbations ranging
from �50% to +50% of the component’s monthly averaged value. ET,

evapotranspiration
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Table II. Pairwise Pearson correlation matrices for both the
Usangu sub-basin and Rufiji basin

TRMM ET ΔS Q

Rufiji
TRMM 1.00
ET 0.85*** 1.00
ΔS 0.61** 0.49* 1.00
Q 0.03 �0.06 �0.76*** 1.00

Usangu
TRMM 1.00
ET 0.74*** 1.00
ΔS 0.77*** 0.54** 1.00
Q �0.36 �0.48* �0.82*** 1.00

*p< 0.05,
**p< 0.01,
***p< 0.001.
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14.9mm/month in Q. However, if we assume a more
generalized MOM approximation, the error propagation
was 12.8mm/month. MOM had lower error propagation
than the Gaussian approximation because of the attenuation
effects of the negative partial derivatives from Equation 11
that result from the RS-based water balance model. We see
similar trends for the Usangu sub-basin. Assuming a
Gaussian distribution, error propagation is 13.2mm/month.
The more generalized MOM yields an error propagation
of 10.8mm/month.
When we run a pairwise Pearson correlation between

all variables, we find a different set of results (Table II).
Although our model seems most sensitive to ET
(and slightly less so to P), ΔS is more significantly
correlated with the RS-based model’s estimated runoff
(p< 0.001 for both Usangu and Rufiji). We surmise
that these results may indicate that ΔS most influences the
RS-basedmodel’s temporal trends, whereasET and, slightly
less so, P most influence the RS-based model’s amplitude.
BecauseΔSmost influences the RS-basedmodel’s temporal
trends, this may help explain the model’s low R2 because
compared with the other hydrological components
(P and ET), ΔS has the lowest R2 when compared with
othermodels orwith ground data. Past studies of theUsangu
sub-basin indicate that this is plausible because the annual
rainfall in the sub-basin (in this study: ~500–700mm;
2003–2004: 567–748mm) is almost all lost because of ET,
given the sub-basin’s semi-arid climate (Malley et al., 2009,
Figure 7. Lagged correlation for Tropical Rainfall Measuring Mission (TRMM
as a function of either average daily runoff (a), minimum daily runoff (b), m

minimum daily runoff

Copyright © 2012 John Wiley & Sons, Ltd.
for example). Given that, one would surmise that the driver
of discharge is ΔS as little rainfall is able to eventually
become discharged given such evaporation rates.

Additional analyses

Given that TRMM 3b43 data, used to drive our runoff
analysis, are calibrated with rain gauges and performed so
post-real time, we sought to conduct some additional
analyses using 3b42 TRMM data to drive our RS-based
) 3b43 and TRMM 3b42-driven runoff where monthly runoff is calculated
aximum daily runoff (c), or maximum daily runoff in the wet season and
in the dry season (d)

Hydrol. Process. 28, 853–867 (2014)
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runoff model. Using TRMM 3b42, we find that our
correlation is comparable, but as expected, our error
increases. However, the balance also becomes counter-
cyclical (Usangu, bias corrected: R2 = 0.33, RMSE=
82mm/month, slope =�5).
To better understand this countercyclical behaviour, we

conducted a lagged correlation analysis following Wang
et al. (2006) to quantify how much lag there is between
the maximum correlation between our model and the
ground data using both TRMM 3b42 and TRMM 3b43
data. We ran four lagged correlation analyses (Figure 7).
The first assumes that the RS-based model is sensitive
to the average daily ground data runoff when following
monthly runoff trends. The second assumes that the
RS-based model is sensitive to the maximum daily
ground data runoff when following monthly runoff
trends. The third assumes that our RS-based model is
sensitive to the minimum daily ground data runoff when
following monthly runoff trends. Finally, we assume that
our RS-based model is sensitive to maximum daily
ground data runoff during the basin’s wet season and the
minimum daily ground data in the dry season.
The TRMM 3b43-driven models are consistent through-

out all four analyses, and the optimum correlation is usually
at no or 1month lag. Although the optimal correlation is
similar throughout all four analysis (maximum R2 range:
0.49–0.58), the maximum positive correlation happens
when monthly runoff is derived from average daily runoff at
a 1month lag (R2 = 0.58).
However, the TRMM 3b42-driven models are most

optimally correlated at lags of 4–5months. Although the
optimal correlation is similar throughout all four analysis
and even stronger than those from the TRMM3b43-derived
runoff model (maximum R2 range: 0.55–0.69), the
maximum positive correlation happens when monthly
runoff is derived from maximum rainfall but with a lag of
5months (R2 = 0.69). Such findings corroborate and indicate
the extent of the countercyclical nature of the results
observed using TRMM 3b42 precipitation data.
DISCUSSION

To put our study into context, the model errors in this study
are compared with those from other sources using similar
RS products (Table III).
Our runoff predictions are less accurate in the Rufiji

basin than those found in the literature from other basins
(Stisen et al., 2008). However, interestingly, our study,
although exploratory in nature, has comparable accuracy for
each water balance component when compared with those
reported from past studies using similar satellite products
(Sorooshian et al., 2000; Sorooshian et al., 2002; Ebert
et al., 2007; Fisher et al., 2008; Stisen et al., 2008; Syed
et al., 2008; Sheffield et al., 2009). Such findings indicate
that RS–GIS tools are improving for analysing water
balance. At least in terms of each hydrologic component
in thewater balance (P,ET, andΔS), this study indicates that
RS–GIS is even increasingly becoming useful in measuring
Copyright © 2012 John Wiley & Sons, Ltd.
the water balance in data-constrained basins. However, we
do also find that significant improvements are necessary
before these tools can generate a reliable water balance
model for such basins. Given the large errors and smoothing
required, we find that in the application of RS–GIS in data-
constrained basins at scales of managerial interest, such
tools likely only allow managers to engage in annual water
resource management. Such time frames are potentially
useful for creating long-termwater policies, but not so useful
for real-time water management.
However, the intention of our work is not to provide a

definitive model for data-constrained basins. Even though
few recent studies have begun to engage in purely or heavily
RS-based runoff analyses (Stisen et al., 2008;Wagner et al.,
2009; Gao et al., 2010; Stisen and Sandholt, 2010; Sahoo
et al., 2011), these studies usually are only shown to
reliably monitor heavily gauged basins and analyse basins
far larger than the scale of a typical water resource manager.
Our intention is to determine the current boundaries of
the state of the art in RS–GIS for a data-sparse basin. We
do this through utilizing the most up-to-date RS–GIS
tools available to analyse not just a data-constrained basin
but a basin at a scale closer to that of interest to a water
resource manager.
Towards these aims, we first bring the most up-to-date

RS–GIS tools available for water resource management
(TRMM, AIRS, SRB, GRACE, and MODIS). Second, we
expand the component and model error analysis used in past
studies to engage in more detailed correlational (R2, lagged
correlation, and pairwise Pearson correlation analysis), error
propagation (both Gaussian and MOM), and sensitivity
(perturbation) analyses. In this manner, we aim to provide a
better accuracy assessment of RS–GISmodels in greater detail
than previous studies and to know what those errors are for a
basin scale of interest to a water resource manager.
Because we use only a single basin for our exploratory

study, an obvious avenue for future research is to apply, test,
and validate the RS-based and CN-based models and data
drivers we propose here to other locations of similar basin
size and level of data constraint. Our intent for this study is to
begin this process of understanding and analyse in greater
detail the current state of the art with regard to usingRS–GIS
for measuring a basin’s entire water budget. To do so,
we sought to examine the possibility of a basin with
the following characteristics: (1) limited ground data and
(2) a scale closer to that of interest to a water resource
manager. In choosing to engage in a single exploratory study
of the Rufiji basin in Tanzania, we have the advantage of
being able to engage in much more detailed error,
uncertainty, and correlational analyses and utilize localized
insights that allow us to understand the utility of RS-based
approach at a level more suited to water resource
management. As far as we are aware, no study has engaged
with purely RS-based water budget models to this level of
analytical detail and to such a localized level. Therefore,
although we acknowledge the trade-offs and errors of
engaging in a single data-constrained basin study, we were
able show how RS–GIS tools may be used to address the
problem of data sparsity in water resource management.
Hydrol. Process. 28, 853–867 (2014)
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CONCLUSION

In this paper, we present a purely RS-driven model for a
data-limited river basin in Africa, which is of a scale closer
to that of interest to a water resource manager: the Rufiji
basin in Tanzania. In this paper, we seek to assess the state of
the art with regard to using RS–GIS tools and approaches to
analyse such basins. We did this through using data
available from a single yet significant sub-basin (theUsangu
sub-basin, 20 810 km2) and trying to determine the potential
for using such a model to analyse the entire basin (Rufiji
basin, 177 420 km2). Through this exploratory study, we use
the most up-to-date RS data available (TRMM, GRACE,
AIRS, SRB, and MODIS) to assess how feasible RS–GIS
approaches are for analysing the water balance for a data-
constrained basin. We further add detailed error, sensitivity,
and correlational analyses to specify the exact nature of
the error in our model and the contributions of each
hydrological component (P, ET, and ΔS) to our model.
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