
Satellite-Based Precipitation Estimation and Its Application for Streamflow
Prediction over Mountainous Western U.S. Basins

ALI BEHRANGI, KONSTANTINOS ANDREADIS, JOSHUA B. FISHER, F. JOSEPH TURK,
STEPHANIE GRANGER, THOMAS PAINTER, AND NARENDRA DAS

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

(Manuscript received 6 March 2014, in final form 28 June 2014)

ABSTRACT

Recognizing the importance and challenges inherent to the remote sensing of precipitation in mountainous

areas, this study investigates the performance of the commonly used satellite-based high-resolution pre-

cipitation products (HRPPs) over several basins in the mountainous western United States. Five HRPPs

[Tropical Rainfall Measuring Mission 3B42 and 3B42-RT algorithms, the Climate Prediction Center

morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Imagery Using Artificial

Neural Networks (PERSIANN), and the PERSIANN Cloud Classification System (PERSIANN-CCS)] are

analyzed in the present work using ground gauge, gauge-adjusted radar, and CloudSat precipitation products.

Using ground observation of precipitation and streamflow, the skill of HRPPs and the resulting streamflow

simulations from the Variable Infiltration Capacity hydrological model are cross-compared. HRPPs often

capture major precipitation events but seldom capture the observed magnitude of precipitation over the

studied region and period (2003–09). Bias adjustment is found to be effective in enhancing the HRPPs and

resulting streamflow simulations. However, if not bias adjusted using gauges, errors are typically large as in

the lower-level precipitation inputs to HRPPs. The results using collocated Advanced Microwave Scanning

Radiometer for Earth Observing System (AMSR-E) andCloudSat precipitation data show that missing data,

often over frozen land, and limitations in retrieving precipitation from systems that lack frozen hydrometeors

contribute to the observed microwave-based precipitation errors transferred to HRPPs. Over frozen land,

precipitation retrievals from infrared sensors and microwave sounders show some skill in capturing the ob-

served precipitation climatology maps. However, infrared techniques often show poor detection skill, and

microwave sounding in dry atmosphere remains challenging. By recognizing the sources of precipitation error

and in light of the operation of the Global Precipitation Measurement mission, further opportunity for en-

hancing the current status of precipitation retrievals and the hydrology of cold and mountainous regions

becomes available.

1. Introduction

Precipitation is a critical input for hydrologic simula-

tion and prediction, and is widely used for agriculture,

water resourcesmanagement, and prediction of flood and

drought, among other activities (Wu et al. 2012; Hong

et al. 2007; Kucera et al. 2013). Precipitation is commonly

measured by ground-based instruments (e.g., radar or

rain gauge), but such instruments are sparse in time and

space or nonexistent, even in many populated regions.

With the global decline of in situ networks for hydrologic

measurements (Stokstad 1999; Shiklomanov et al. 2002)

and the growing demands for higher spatiotemporal

resolution, remote sensing of precipitation is becoming

a critical component of hydrometeorological research

and applications. Recognizing challenges in accurate es-

timation of precipitation and the need for higher spatio-

temporal resolution of precipitation products, efforts are

under way to improve remote sensing observations and

retrieval techniques. For example, the upcoming Global

Precipitation Measurement (GPM) mission (Hou et al.

2013) will serve as an advanced standard for remote

sensing of precipitation and will provide more accurate

and consistent observations using a network of existing

satellites united by the GPM core platform.

Three major types of spaceborne sensors are used for

precipitation estimation: infrared (IR), passivemicrowave
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(MW), and radar. The main advantage of IR-based

precipitation retrieval is the availability of IR data at

high spatiotemporal resolution [e.g., ;(0.048 3 0.048)
grid every 30min or less] from geostationary platforms,

such as the Geostationary Operational Environmental

Satellite. While combinations of visible and several IR

channels have been found to be more effective (e.g.,

Behrangi et al. 2009, 2010) than a single IR channel, such

observations mainly provide information about cloud

top but shed little light on hydrometeors within clouds.

MW sensors are commonly used to retrieve instan-

taneous precipitation estimates over land and ocean (e.g.,

Kummerow et al. 2011; Ferraro et al. 2005) with their

estimates usually being more accurate than IR-based

estimates, especially over ocean (Behrangi et al. 2012).

Moreover, MW sensors can capture hydrometeor signals

from the entire atmosphere using a combination of low-

and high-frequency channels. However, over land, the

radiometrically large surface emission and the variety of

complex terrain hamper the ability to distinguish rain

from the background (Ferraro et al. 1994; Ferraro et al.

2013). So far, MW retrieval techniques rely mainly on

indirect-scattering-based schemes over land (Wilheit

et al. 2003; Ferraro et al. 2005; Gopalan et al. 2010) to

mitigate the surface contamination of signals. There-

fore, MW-based precipitation estimates can miss pre-

cipitation events over land, especially warm rainfall that

lacks ice particles. Furthermore, distinguishing between

light rain and clouds fromMW channels is often difficult

(Berg et al. 2006; Lebsock and L’Ecuyer 2011), pro-

ducing additional sources of uncertainty over land and

ocean. More accurate precipitation estimates can be

obtained from radars, providing vertical reflectivity of

hydrometeors. Current space radars [e.g., precipitation

radar on the Tropical Rainfall Measuring Mission

(TRMM) and cloud profiling radar on CloudSat] have

relatively long revisit times and narrow scan swaths, lim-

iting their direct use in the generation of satellite combined

high-resolution precipitation products (HRPPs). An ad-

ditional source of useful precipitation data, particularly in

higher latitudes and winter seasons, are short-term fore-

casts from numerical weather prediction models (Kidd

et al. 2013; Zhang et al. 2013). However, to focus the

purpose of this study, we restrict the analysis to well-

established HRPPs.

Motivated by the growing demand for higher spatio-

temporal precipitation datasets, HRPPs are produced by

combining high spatiotemporal resolution but lower-

accuracy IR images with more accurate but lower spa-

tiotemporal resolution MW precipitation estimates using

various methods (Huffman et al. 2007; Joyce et al. 2004;

Behrangi et al. 2010; Kuligowski 2002; Hsu et al. 1997;

Turk and Miller 2005). The skill of such products can

vary substantially both regionally and seasonally, de-

pending on the combination technique. Therefore, sev-

eral studies have evaluated the performance of such

products and have quantified the errors (Tian et al. 2007;

Tian and Peters-Lidard 2010; Dinku et al. 2010; Kidd

et al. 2012). HRPPs have also been compared with re-

spect to their performance for hydrologic prediction

whereby HRPPs are used to force hydrologic models to

simulate streamflow, which is then compared with the

observed streamflow (e.g., Hong et al. 2007; Hossain and

Anagnostou 2004; Yilmaz et al. 2005; Behrangi et al.

2011; Gebregiorgis et al. 2012). Such analyses are im-

portant for identifying regional and seasonal strengths

and weaknesses of the products, guiding users, and pro-

viding feedback to algorithm developers. However, only

a limited number of studies have focused on assessing

the efficacy of HRPPs over cold and mountainous re-

gions and their hydrologic impacts. These regions are

especially important for freshwater supply and man-

agement in theUnited States andmany areas around the

world. Krakauer et al. (2013) evaluated several HRPPs

and station-based gridded precipitation products against

weather station precipitation observations over Nepal

and found that, if not bias adjusted using gauges, HRPPs

significantly underestimate monthly precipitation vol-

umes. Furthermore, they showed that none of theHRPPs

fully captured the elevation dependence of mean pre-

cipitation. Bitew et al. (2012) show that TRMM 3B42-

RT algorithm and Climate Prediction Center morphing

technique (CMORPH) products perform better than

the TRMM 3B42 and Precipitation Estimation from

Remotely Sensed Imagery Using Artificial Neural Net-

works (PERSIANN) products in an Ethiopian moun-

tain basin, which differs from the results found by

several other studies (e.g., Tobin and Bennett 2010;

Behrangi et al. 2011; Krakauer et al. 2013) as TRMM

3B42-RT and CMORPH are not bias adjusted by

ground instruments. They found that when compared

with rain gauge data, significant improvements in

streamflow simulations are obtained when the model is

calibrated with input-specific rainfall data. Focusing

on heavy precipitation events, Stampoulis et al. (2013)

used CMORPH and PERSIANN and high-quality

weather radar rainfall estimates as a reference to study

seven major flood-inducing events that developed over

complex terrain areas in northern Italy and southern

France. They found that while estimation errors are

larger in convective-type precipitation, a majority of

low rain rates in stratiform-type systems can be missed

by the two studies precipitation products. Overall,

studies suggest that the performance of the HRPPs

vary greatly worldwide and it is not feasible to identify

a single product performing the best everywhere.
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Of particular importance to this study, mountainous

regions often experience snowfall, frozen ground, and

orographically induced precipitation that complicate the

retrieval of precipitation from remote sensing. This

study assesses the efficacy of several HRPPs in the San

Joaquin–Sacramento basins of the Sierra Nevada range

in California, which provide water for some of the

richest farmlands in the United States and the world,

and is a critical source of drinking water. Most of the

annual precipitation in this region falls during the winter

season in the form of extreme rain or snowfall, often

brought by atmospheric rivers (Neiman et al. 2008;

Dettinger 2011; Guan et al. 2010). Atmospheric rivers

often cause the most intense precipitation storms in

California, resulting in severe floods (Baird and Robles

1997; Ralph and Dettinger 2011).

The purpose of this manuscript is to investigate 1) how

satellite precipitation products perform over a number

of representative subbasins in the study region that ex-

perience a diverse range of snowfall-to-total precipitation

ratios, 2) how the observed differences in the HRPPs

impact the simulation of streamflow, and 3) what causes

discrepancies between ground and satellite estimates of

precipitation. The analysis of the streamflow also pro-

vides a secondary check for assessing the precipitation

products through comparison with streamflow obser-

vations at the basin outlets. By extension, the outcome

of this study can shed light on the performance and the

level of maturity of HRPPs for hydrometeorological

applications in mountainous basins, where ground ob-

servations of precipitation are sparse or nonexistent.

This effort builds upon the longstanding precipitation

validation program of the International Precipita-

tion Working Group (IPWG; Ebert et al. 2007). The

IPWG has the role of leadership for the Group on

Earth Observations precipitation subtask (Kucera

and Lapeta 2013). It also sets the stage for the im-

plementation of newly designed HRPPs products that

will be available in the GPM era such as the Integrated

Multisatellite Retrievals for GPM (IMERG; Huffman

et al. 2013).

2. Study area, hydrologic model, and datasets

Geographical locations of 22 studied subbasins in the

San Joaquin–Sacramento, California, region, are shown

in Fig. 1 with the topography map in the background.

The basins were selected based on the size (.1000 km2)

and availability of uninterrupted streamflow observa-

tions at their outlets; these basins eventually drain into

the Sacramento and San Joaquin valleys. The basins

span a range of elevations (from;150 to;3000m above

sea level) and ratios of annual snowfall to total

precipitation (from 0% to more than 40%). The Vari-

able Infiltration Capacity (VIC) hydrological model

(Liang et al. 1996; Liang and Xie 2001) was used to

simulate streamflow at daily time scales. The model is

a widely used semidistributed hydrologic model that

has been successfully applied over numerous areas

(e.g., Nijssen et al. 2001; Andreadis et al. 2005). VIC

solves a water energy and mass balance over a rectan-

gular grid, and accounts for a number of hydrologic

processes (e.g., cold land processes, lakes, wetlands),

resulting in a fairly comprehensive large-scale land

surface model. Streamflow is simulated by routing the

generated surface runoff and baseflow from each

model grid cell, using a simple linear transfer function

(Lohmann et al. 1998). VIC-simulated streamflow has

been extensively validated, matching observations

quite well (Maurer et al. 2002).

VIC requires a set of meteorological forcings, as well

as information on the basin topography, land cover, and

soils. The minimum forcing requirements for VIC in-

clude daily precipitation, maximum and minimum air

temperature, and wind speed. Topography for the

Sacramento–San Joaquin basins is derived from the

1-km Digital Elevation Model of the Global 30 arc s

elevation dataset (GTOPO30), while a land cover map

is obtained from Advanced Very High Resolution

Radiometer imagery (Defries et al. 2000). Soil char-

acteristics are the same as the ones used inMaurer et al.

(2002), which were derived from a 1-km dataset (Miller

andWhite 1998). Calibration of themodel is performed

by usually varying soil parameters such as hydraulic

conductivity, with the parameters used for the simula-

tions in this study obtained from the North American

Land Data Assimilation System (NLDAS) experiment

(Lohmann et al. 2004).

Simulations are performed over the study area for the

period between 1 January 2000 and 31 December 2009

with the first 3 yr being used as a spinup period. VIC

simulates hydrologic states and fluxes daily at a spatial

resolution of 1/168 (;6 km).

a. Precipitation

1) SATELLITE PRODUCTS

The HRPPs utilized in the present study are 1) TRMM

3B42 real-time, version 7 (T3B42-RT; Huffman et al.

2007; Huffman and Bolvin 2014), 2) TRMM 3B42 re-

search product, version 7 (T3B42; Huffman et al. 2007;

Huffman and Bolvin 2014), 3) CMORPH (Joyce et al.

2004), 4) PERSIANN (Hsu et al. 1997; Sorooshian et al.

2000), and 5) the PERSIANN Cloud Classification Sys-

tem (PERSIANN-CCS, hereinafter referred to as CCS;

Hong et al. 2004).
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T3B42-RT collects available MW-derived precip-

itation estimates from variousMW sensors within a time

bracket of 3 h, maps the MW precipitation data onto

0.258 3 0.258 grids, and fills the remained gaps withMW-

calibrated infrared estimates. Prior to their use, MW

precipitation data are intercalibrated using the refer-

ence TRMM Microwave Imager to improve the overall

consistency among various MW sensors. Furthermore,

T3B42-RT benefits from a TRMM Combined Instru-

ment (TCI) gauge climatological calibration.T3B42 dif-

fers from T3B42-RT, as in T3B42 the precipitation data

are bias adjusted by scaling the 3-h estimates to sum to

amonthly estimate that incorporatesmonthly gauge data.

Furthermore, in T3B42 the TCI from the TRMM 2B31

product (Haddad et al. 1997) is used as a reference for the

intercalibration of other MW precipitation estimates.

T3B42 is produced at 0.258 3 0.258 spatial resolution

every 3h. CMORPH uses precipitation estimates from

MW retrievals exclusively, and produces temporally and

spatially complete precipitation fields by interpolating

the MW precipitation data along cloud tracks that are

obtained entirely from geostationary satellite IR data.

CMORPH data are available at 0.258 3 0.258 spatial

resolution every 3h. PERSIANN uses artificial neural

networks to establish relationships between infrared and

precipitation estimates from a collection ofMWproducts

with precipitation rates being estimated directly from IR

data. In the adjustment of the network weights, the

temporal and regional variabilities in the precipitation

data are considered. PERSIANN data are available at

0.258 3 0.258 spatial resolution every hour. CCS is similar

to PERSIANN, as it also derives the precipitation rate

from IRdata.However, unlike PERSIANN,CCS is based

on a cloud classification technique: it separates cloud im-

ages into distinctive cloud patches, extracts cloud features,

clusters cloud patches into well-organized subgroups, and

calibrates cloud-top temperature and precipitation re-

lationships for the classified cloud groups. The current

CCS dataset does not use MW precipitation data for

regular updating of the parameters. The IR–precipitation

FIG. 1. Geographical location of the 22 studied basins shown with underlying topography.
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relationship is based on original training using gauge-

corrected radar rainfall data and MW rain estimates.

CCS data are produced at 0.048 3 0.048 spatial resolu-
tion every half-hour. All of the products were converted

to daily and monthly time scales prior to the analysis.

2) GROUND-BASED PRECIPITATING PRODUCTS

Ground-based precipitation products utilized in the

study include 1) stage IV radar-based gauge-adjusted

precipitation data, available from the National Centers

for Environmental Prediction (NCEP), and 2) UW-L13

developed at the University of Washington (UW),

which is a gridded dataset of daily meteorological vari-

ables (including precipitation, maximum and minimum

air temperatures, and wind speed).

The stage IV dataset aggregates the ground radar-

derived precipitation data from the National Weather

Service River Forecast Centers over the continental

United States together with calibration and adjustment

for different biases using automated rain gauge mea-

surements and careful quality control processes (Lin and

Mitchell 2005). It is available hourly at ;4-km resolu-

tion on the Hydrologic Rainfall Analysis Project na-

tional grid system.

The UW-L13 dataset includes precipitation, air tem-

perature, and wind speed, as well as humidity and

downwelling shortwave and longwave radiation, cover-

ing the entire continental United States for the period

1915–2010 at a 3-hourly time step (Livneh et al. 2013).

UW-L13 was expanded from a previous dataset (UW-

M02; Maurer et al. 2002) that only covered the 1949–

2000 period, using the same approach but refining the

spatial resolution from 1/88 to 1/168. The UW-M02 dataset

has been used in numerous studies with research foci that

ranged from examining the variability of hydroclimatic

variables (e.g., Westerling et al. 2006) to downscaling the

output of global climate models (e.g., Cayan et al. 2008).

The UW-L13 precipitation dataset is derived from in situ

measurements at National Climatic Data Center (NCDC)

Cooperative Observer stations (DSI3200). Approxi-

mately 20 000 stations are used in the product. The

Synergraphic Mapping System (SYMAP) interpolation

algorithm was applied to grid station data and in-

terpolated onto a 1/168 grid, with quality control in-

formation (provided by NCDC) incorporated into the

gridding process. After interpolation, precipitation

was scaled to match the monthly accumulation in

the Parameter-Elevation Regressions on Independent

Slopes Model (PRISM; Daly et al. 1994) long-term

means. Livneh et al. (2013) performed extensive com-

parisons of simulated hydrologic variables using the

UW-L13 dataset to force the VIC model with in situ

measurements of soil moisture, radiative and turbulent

heat fluxes, snow water equivalent, and runoff, showing

good agreement. The UW dataset was used as a refer-

ence for daily and monthly analyses. However, as will be

shown, UW and STIV produce similar estimates at both

time scales.

b. Streamflow observations and other datasets

The othermeteorological forcings required byVIC (air

temperature and wind speed) are included in the UW-

L13 dataset. Gridded maximum and minimum daily air

temperatures are produced similarly to precipitation us-

ing the SYMAP interpolation algorithm, while wind

speed is linearly interpolated from the coarser-scale

NCEP–National Center for Atmospheric Research re-

analysis product (Kalnay et al. 1996).

Simulated streamflow time series (different for each

precipitation product forcing VIC) were evaluated with

naturalized streamflow observations that were obtained

from the California Data Exchange Center (http://cdec.

water.ca.gov). The version of the VICmodel used in this

study did not account for any anthropogenic effects,

hence the reason naturalized streamflow measurements

had to be used. The latter are reconstructed from the

actual streamflow gauge measurements after adding

back the consumptive use for eachmonth (Hidalgo et al.

2009).

3. Results

Analyses are performed for both precipitation inputs

and simulated streamflow. The precipitation (UW-L13)

and streamflow observations are used as a benchmark

for comparative analysis with the other precipitation

products and simulated streamflows. Calculations are

conducted at each basin and the mean precipitation and

streamflow results are compared at monthly and daily

time scales. Furthermore, detailed analysis is performed

to diagnose sources of error in the remote sensing of

precipitation over the region (section 3c).

a. Analysis of precipitation inputs

Figure 2 shows daily precipitation time series (2003–

09) for each basin together with the time series of the

average precipitation across all basins (shown as a thick

black line) for the seven precipitation products. Visual

inspection of the UW-L13 and NCEP stage IV (ST4)

products (Figs. 2a,b) suggests that the two products

agree well in capturing most of the precipitation events,

both in terms of their magnitude and timing. The ob-

served similarity is expected because the two products

use gauge observations either directly or as a supplement.

Gauge data are also used in T3B42, for monthly bias

adjustment, as described in section 2a(1). Therefore,
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FIG. 2. Daily basin-averaged precipitation time series (2003–09) for each basin (thin vertical gray lines) together with the average

of precipitation across all basins (thick black line) from seven products: (a) UW, (b) ST4, (c) T3B42, (d), T3B42-RT, (e) CMORPH,

(f) PERSIANN, and (g) CCS. Basins typically show similar precipitation patterns, but with differentmagnitudes.While daily precipitation

time series of individual basins are not easily distinguishable, they collectively display themajor differences in the performance of HRPPs.
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T3B42 (Fig. 2c) shows higher skill, than the other re-

mote sensing products in capturing precipitation event

patterns and magnitudes. The role of gauge adjustment

in improving the T3B42 becomes clearer when it is

compared with T3B42-RT (Fig. 2d), which does not in-

clude gauge adjustment, although the recent version of

3B42-RT (version 7) benefits from some climatology

adjustment (Huffman and Bolvin 2014). The other

products—CMORPH (Fig. 2e), PERSIANN (Fig. 2f),

and CCS (Fig. 2g)—are exclusively based on remote

sensing data. CCS outperforms CMORPH and

PERSIANN in capturing precipitation event patterns

and magnitudes, but it also shows more frequent false

precipitation than do the other products. Monthly pre-

cipitation time series are shown in Fig. 3, which facili-

tates intercomparison of the products by focusing on

fewer but major precipitation patterns. Similarly, no

major differences between the UW-L13 and ST4 prod-

ucts exist, while the gauge-adjusted T3B42 shows rela-

tively good agreement with ST4 and UW-L13. CCS

captures the major precipitation patterns, but the other

two products (CMORPHand PERSIANN) fail to capture

most of the precipitation events. It should be noted that

during winter, the precipitation season, more than 1% of

the CMORPH data are reported as missing. As will be

discussed in section 3b, a large fraction of the missing data

can be attributed to precipitation events over frozen sur-

faces. The missing data are removed in calculating the

average precipitation time series (Figs. 2 and 3). However,

this could hamper a comparative analysis of CMORPH

with the other products. Therefore, CMORPH is not in-

cluded in the remaining analysis.

Table 1 provides skill scores for the studied products

using theUW-L13 precipitation dataset as a benchmark.

Corresponding daily and monthly precipitation esti-

mates were collected from all of the basins (shown in

Fig. 1) and used to compute the reported skill scores.

The results confirm that the ST4 and UW-L13 products

are in close agreement, especially on monthly scales

(e.g., COR 5 0.97, RMSE 5 0.97mday21, BIASv 5
0.95). The bias-adjusted T3B42 performs well on

a monthly time scale, but its skill diminishes when

comparing daily values. Comparison of T3B42 with

T3B42-RT suggests that the bias adjustment is effective

and the performance of the product is reduced sub-

stantially if no bias adjustment is performed. CCS, an

infrared-only technique, outperforms both CMORPH

and 3B42-RT at daily and monthly time scales, and

shows a bias comparable to T3B42.

The performance of the products is also assessed by

binary analysis of daily and monthly precipitation data

using a contingency table (Wilks 2011). The construc-

tion of the contingency table is based on identifying

binary (0/1 or yes/no) events by selecting a precipitation

threshold above which a rain event would be considered

to have occurred (see the appendix). Figures 4 and 5

demonstrate the ability of the products in capturing the

occurrence of precipitation events at a range of

precipitation-intensity thresholds. For example, if one

considers 1mmday21 to be a threshold for separating rain

from no-rain or major rain from no-major rain, the skill of

the products can be assessed using the following metrics:

critical success index [CSI; panel a in Figs. 4 and 5],

probability of detection (POD; panel b in Figs. 4 and 5),

false-alarm ratio (FAR; panel c in Figs. 4 and 5), and

BIAS (panel d in Figs. 4 and 5). Capturing the occurrence

of precipitation at a range of precipitation rates is impor-

tant for bias adjustment and assessing the ability of prod-

ucts to capture extreme precipitation events, as well as for

improved hydrologic simulations. For example, if precip-

itation is detected correctly, soil moisture and snowfall can

be estimated more reliably, affecting both the timing and

intensity of the resulting streamflow simulations.

Figures 4 and 5 suggest that the precipitation de-

tection skill of the products (e.g., based on CSI) di-

minishes as the precipitation threshold increases. ST4

maintains higher skills (based on CSI and POD) than do

the other products across all intensity thresholds, but its

FAR increases at more intense precipitation thresholds.

The bias-adjusted T3B42 product outperforms other

satellite products at the monthly scale. However, at the

daily scale the detection performance is comparable to

the other products for precipitation intensity less than

5mmday21. CCS displays an overall higher skill (e.g.,

based on CSI) than do T3B42-RT and PERSIANN.

Although not bias adjusted using gauges, CCS shows

a detection bias comparable to T3B42 that employs bias

adjustment using monthly gauge data. Further discus-

sion of the performance of the HRPPs is provided in

section 3c. Note that the monthly comparison (Fig. 5)

shows only small BIAS between the two products and

both monthly BAIS and FAR are fairly independent of

the precipitation intensity. This suggests that the algo-

rithmic and instrumental differences used in the UW

and ST4 datasets likely cause considerable differences in

capturing daily precipitation. Compared to UW pre-

cipitation, ST4 shows an underestimation of light and an

overestimation of intense precipitation. Arguably, the

monthly average of daily precipitation rates can reduce

the overall BIAS between the two products. Detailed

analysis of the observed differences remains a topic for

future research.

b. Evaluation of streamflow predictions

Simulation of streamflowusing theVICmodel forced by

different precipitation products allows further assessment
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FIG. 3. As in Fig. 2, but for monthly time series.
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of the products, especially with respect to their impact

on hydrologic prediction linked to many applications

(e.g., flood prediction, water resources management,

etc.). Through comparison with streamflow observations

at basin outlets, the precipitation products can be eval-

uated indirectly. This evaluation is also important be-

cause ground observations of precipitation rate are likely

more uncertain in mountainous regions and streamflow,

as an integrator of water available on the basin, allows for

the overall comparison of the precipitation products.

Figure 6 shows observed monthly streamflow hydro-

graphs (Fig. 6a), as well as those generated by forcing the

hydrologic model with the different precipitation prod-

ucts (Figs. 6b–g). Hydrographs for individual basins are

shown with thin lines and their average across all the

basins is shown with a thick black line. Note that the

magnitude of the hydrographs, displayed in Fig. 6, is

transformed using the following transformation equation

(Hogue et al. 2000; Yilmaz et al. 2005; Behrangi et al.

2011) to enhance the visualization of streamflow peaks

along with low flows (e.g., recession parts):

Qtrans5
(Q1 1)0:62 1

0:6
, (1)

FIG. 4. Binary analysis of daily precipitation from various products using CSI, POD, FAR, and BIASb scores at

a range of precipitation intensity thresholds. The binary scores are defined in the appendix. POD, FAR, and CSI

range from 0 to 1, with perfection51 for PODandCSI and 0 for FAR.ABIASb of 1means that the total number of

predicted occurrences is equal to the total number of observed occurrences.

TABLE 1.A summary of daily andmonthly skill scores for precipitation estimates over the studied basins. COR is correlation coefficient,

and RMSE is root-mean-square error. BIASv is defined as the ratio of the total estimated to the total observed values with perfection

represented by 1. The v in BIASv stands for volume.

Products

Monthly Daily

COR RMSE (mmday21) BIASv COR RMSE (mmday21) BIASv

ST4 0.97 0.97 0.95 0.79 5.76 0.95

T3B42 0.86 2.17 0.73 0.55 7.23 0.73

T3B42-RT 0.42 3.55 0.60 0.44 7.39 0.60

CMORPH 0.42 3.78 0.35 0.41 7.46 0.35

PERSIANN 0.72 3.61 0.30 0.50 7.24 0.30

CCS 0.73 2.78 0.65 0.49 7.13 0.65
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where Qtrans represents streamflow values after trans-

formation from their original value Q.

High similarities (both pattern andmagnitude) between

observed (Fig. 6a) and simulated streamflows, forced by

UW-L13 (Fig. 6b) and ST4 (Fig. 6c) precipitation prod-

ucts, are evident. T3B42-derived streamflows (Fig. 6d)

also perform reasonably well in capturing the observed

streamflow pattern, but the peak flows are often under-

estimated. Simulated streamflows forced by CCS, T3B42-

RT, and PERSIANN are less skillful, but CCS-derived

streamflows seem to outperform those of T3B42-RT and

PERSIANN in capturing the magnitudes and patterns

of observed streamflows. Further assessment can be ob-

tained using a scatterplot (Fig. 7) of simulated versus

observed monthly streamflows, collected from the stud-

ied basins. Statistical scores (e.g., COR, RMSE, and

BIAS) for monthly and daily time scales are also shown in

Table 2 for quantitative comparison. Simulated stream-

flows forced by UW and ST4 show remarkable skill

(COR . 0.9 and BIAS ; 0.9) compared to streamflow

observations. At daily time scales, some of the daily data

contain missing values. Therefore, the daily comparisons

were conducted using the UW-derived streamflows as a

reference. Figure 8 is used to cross-compare the simulated

streamflows, forced by different precipitation products, at

a range of streamflow thresholds. Notable is the sharp

decrease in the skills of the simulated streamflows at

higher streamflow thresholds, especially for PERSIANN,

CCS, and T3B42-RT. The simulated streamflows from

UW and ST4 show almost identical levels of skill with less

dependence, compared with the other products, to the

streamflow thresholds (except for FAR).Despitemonthly

bias adjustment employed in T3B42, streamflow simula-

tions forced by T3B42 are not as robust as those forced

by the ST4 or UW products. This could be a result of the

shortcomings in satellite-based precipitation retrievals,

differences in bias-adjustment techniques, or differences

in the employed ground observations. However, T3B42

produces a more robust streamflow simulation than does

T3B42-RT, suggesting that the employed bias-adjustment

technique is valuable.

Results of streamflow analysis are in good agreement

with those obtained from analyses of precipitation data.

In other words, the results confirm that UW and ST4 are

fairly similar and, once used to force the hydrologic

model, can produce robust streamflows. Similarly, T3B42

shows significant improvement over T3B42-RT, CCS

shows more skill than T3B42-RT, and PERSIANN dis-

plays significant underestimation in producing stream-

flows. While the relatively poor performance for

simulating extreme streamflows can be relevant to the

choice of hydrologic model and calibration details, a large

FIG. 5. As in Fig. 4, but at a monthly time scale.
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FIG. 6. Monthly streamflow hydrographs from (a) observations, and those generated using (b) UW, (c) ST4, (d) T3B42, (e) T3B42-RT,

(f) PERSIANN, and (g) CCS precipitation forcing. A hydrograph of each basin is shown by a thin gray line, and their average across all the

basins is shown by a thick black line. The streamflow magnitude (y axis) is transformed using Eq. (1) to improve the visualization.
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part of it is linked to the skill of the precipitation prod-

ucts in capturing extreme precipitation events as dis-

cussed in section 3a.

c. Discussion of the performance of the satellite
precipitation products

Remote sensing products are increasingly being used

for hydrologic prediction and decision making, espe-

cially where ground observations are sparse or non-

existent. The present study suggests that the performance

of the precipitation products, exclusively derived from

remote sensing data, is not yet satisfactory in mountain-

ous basins. This suggests that more investigations are

needed to diagnose the problems and improve the re-

motely sensed precipitation products. This section ex-

tends the previous analysis in an attempt to diagnose

potential sources for the observed discrepancies be-

tween satellite precipitation products and observations

discussed earlier.

Figure 9 shows geographical maps of average seasonal

precipitation for different products over a box (358–438N
and 1158–1258W) that includes the studied basins. From

the top to the bottom row the precipitation products are

UW, ST4, T3B42, T3B42-RT, CMORPH, PERSIANN,

and CCS. The black ellipse, in the top-left panel of

Fig. 9, bounds the location of the studied basins (also see

Fig. 1). The following points are notable from Fig. 9:

1) themajority of precipitation occurs inwinter; 2) average

precipitation is intense along the Sierra Nevada because of

orographic precipitation; 3) UW and ST4 show strong

consistency in capturing the seasonal and regional distri-

butions of precipitation; 4) among the remotely sensed

FIG. 7. Scatterplot of observed (x axis) vs simulated (y axis) transformed monthly streamflows (m3 s21) using

various precipitation products: (a) UW, (b) ST4, (c) T3B42, (d) T3B42-RT, (e) PERSIANN, and (f) CCS pre-

cipitating forcing. The pairs are collected from the entire studied basins. Transformed streamflows [using Eq. (1)]

are plotted to improve the visualization of streamflow peaks along with low flows.
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products, only T3B42 can reasonably capture the sea-

sonal and regional distributions of precipitation, per-

haps due to the implementation of ground-based bias

adjustment; 5) while T3B42-RT is less robust than T3B42,

it performs more reasonably than do the other pre-

cipitation products, exclusively derived from remote

sensing data; 6) CMORPHpartially captures the regional

distribution of precipitation, but shows a significant un-

derestimation of precipitation rate; 7) PERSIANN is not

as capable as the other products of capturing the re-

gional and seasonal distributions of precipitation over

the region; and 8) CCS reasonably locates mountainous

precipitation, but also displays significant false alarms at

higher latitudes, especially during the cold months.

While the reason for such overestimation has to be in-

vestigated in detail, a potential reason could be related

to the inability of the infrared data to distinguish be-

tween cold surface and cloud-top temperatures.

Careful analysis of CMORPH data over the studied

region shows that more than 1% of the observations are

missing, especially during winter (Fig. 10). The missing

data are mainly due to the missing MW precipitation

data from individual sensors, which collectively and

exclusively (no IR data) are used in CMORPH. It was

FIG. 8. Binary analysis of monthly streamflow simulations forced by various precipitation products. Comparisons

are made for (a) CSI, (b) POD, (c) FAR, and (d) BIASb scores at a range of transformed streamflow thresholds.

The binary scores are defined in the appendix.

TABLE 2. A summary of daily and monthly skill scores for streamflow estimates over the studied basins. COR is correlation coefficient,

and RMSE is root-mean-square error. BIASv is defined as the ratio of the total estimated to the total observed values, with perfection

represented by 1.

Products

Monthly Daily*

COR RMSE (m3 s21) BIASv COR RMSE (m3 s21) BIASv

UW 0.92 60.44 0.89

ST4 0.91 62.12 0.88 0.95 18.97 0.97

T3B42 0.86 79.55 0.49 0.88 62.71 0.54

T3B42-RT 0.72 126.15 0.31 0.68 94.34 0.30

CMORPH 0.41 152.74 0.05 0.35 114.43 0.05

PERSIANN 0.66 149.04 0.08 0.62 112.39 0.08

CCS 0.72 103.52 0.42 0.76 0.78 0.47

*Because of a lack of daily streamflow observations, simulation of streamflows using UW precipitation forcing is used as a reference.
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FIG. 9. Geographical maps of average seasonal precipitation for different products.
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also noted that a large fraction of themissing data occurs

during precipitation events. In CMORPH the missed

MW precipitation data are assigned to zero if no pre-

cipitation is inferred from IR images. However, missing

data remain for precipitation events over frozen land

(R. Joyce 2013, personal communication). This hampers

comparative analyses of CMORPHwith other products;

thus, CMORPH was not included in the analysis de-

scribed in sections 3a and 3b. T3B42 also depends highly

on MW precipitation data, but it fills the missing data

with IR-based precipitation estimates. As described in

section 2a(1), PERSIANN derives its precipitation re-

sults from IR data, and MW precipitation data are only

used to adjust the relationship between the IR and

precipitation rates. While IR-based precipitation does

not typically containmissing values, the quality of the IR

precipitation is highly affected by the quality of the MW

precipitation, especially when regional training is im-

plemented. This is the case for PERSIANN and T3B41

[T3B41 is an infrared-based rain product used in the

production of T3B42; see Huffman et al. (2007)].

Missing data in the MW-derived precipitation dataset

occur mainly over snow and frozen surfaces because the

current precipitation retrieval techniques from MW

observations face difficulties in discriminating the ra-

diometric signal of the precipitation from the underlying

surface. This largely impacts the precipitation retrieval

from sub-183-GHz-type MW imagers such as the Ad-

vanced Microwave Scanning Radiometer for Earth

Observing System (AMSR-E; Wilheit et al. 2003) and

the Special SensorMicrowave Imager and Sounder (SSM/

IS). Precipitation is also retrieved from combinations of

channels of the Advanced Microwave Sounding Unit

(AMSU) and microwave humidity sounders (MHSs). For

example, AMSU/MHS precipitation from the Microwave

Surface and Precipitation Products System (Ferraro et al.

2000; Weng et al. 2003; Vila et al. 2007) benefits from

a technique (Kongoli et al. 2003) through which a combi-

nation of MW sounding channels is used to discriminate

the scattering features over land surfaces (especially snow

cover) and that of the atmosphere (precipitation-sized ice

particles). However, a longstanding difficulty occurs in dry

atmospheres (e.g., total water vapor column below 10–

15mm), where even the 183-GHz sounding channels are

impacted by the surface.

Figure 11 compares the frequency of precipitation

occurrence (Figs. 11a,b), frequency of missing data

(Figs. 11c,d), and average precipitation rates (Figs. 11e,f)

from AMSR-E (on board Aqua, representing MW im-

agers) andAMSU/MHS [on board theNational Oceanic

and Atmospheric Administration-18 (NOAA-18) satel-

lite, representing MW sounders] during winter over the

studied box (shown in Fig. 9). The two sensors have

similar local time observations (;0130/1330 LT at the

equator); thus, the diurnal cycle of precipitation does

not impact the analysis. As compared with AMSU/

MHS, the AMSR-E product misses a significant fraction

of the precipitation over land. In contrast, AMSR-E

suggests a higher frequency of precipitation over ocean.

This is because AMSR-E precipitation retrieval uses

a combination of low- and high-frequency channels over

the ocean (so it can detect warm rainfall) but mainly

relies on the high-frequency channel (e.g., 89GHz) over

land to avoid surface contamination of signals. There-

fore, precipitation events that lack ice particles (e.g.,

warm rainfall that can be produced by low-level atmo-

spheric rivers) are missed. This could be in addition to

the missing precipitation events in the presence of snow

or ice over land (Fig. 11c). Missing data are also ob-

served in the AMSU/MHS precipitation product,

mainly over the north-northeast of Nevada, that are

possibly related to the presence of a dry atmosphere.

Comparisons of the winter precipitation rate from

AMSR-E (Fig. 11e), AMSU/MHS (Fig. 11f), and that

from the UW/ST4 products suggest that AMSU/MHS is

more robust in producing regional distributions of win-

ter precipitation over land, although it still under-

estimates the magnitude of precipitation.

It is also important to note that the current pre-

cipitation retrieval algorithms over land using MW im-

agers are almost exclusively limited to rainfall. Therefore,

a large fraction of precipitation falling as snowfall can be

missed, a considerable problem in the western United

States where snowfall dominates the freshwater supply.

Figure 12a compares the precipitation detection skill of

AMSR-E with that of CloudSat as a function of surface

elevation. Figure 12 is constructed using collocated

AMSR-E and CloudSat data over land, during winter

(2007–09), and within the studied box shown in Fig. 9.

FIG. 10. Frequency (%) of missing data in CMORPH.
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CloudSat precipitation is obtained from the 2C-

PRECIPCOLUMN product (Haynes et al. 2009) and

is shown for different precipitation phases (rain, snow,

and mixed phase). The product provides flags of

‘‘possible,’’ ‘‘probable,’’ and ‘‘certain’’ precipitation

occurrence for rain, snow, andmixed-phase precipitation.

Only certain precipitation flags are used in our analysis.

Note that when precipitation forms below about 720m,

contamination from ground clutter may prevent the

detection of rain in the 2C-PRECIPCOLUMN prod-

uct. Sample counts are also shown in Fig. 12b. The high

sensitivity of the CloudSat Cloud Profiling Radar to

liquid and frozen hydrometeors enables superior esti-

mates of light rain and snowfall, which goes undetected

by other sensors (Behrangi et al. 2012; Behrangi et al.

2014; Smalley et al. 2014). Clearly, a major fraction of

precipitation is missed by the AMSR-E precipitation

product, especially at higher elevations where snowfall

is the dominant type of precipitation.

4. Concluding remarks

The performance of several commonly used satellite-

combined precipitation products (HRPPs) in estimating

observed precipitation and streamflow are investigated

over the mountainous San Joaquin–Sacramento basins

(Fig. 1). A large fraction of the annual precipitation over

the studied basins occurs during winter (Figs. 2 and 3),

FIG. 11. Comparison of (left) AMSR-E and (right) AMSU/MHS precipitation estimates over the studied region:

(a),(b) frequency of precipitation occurrence, (c),(d) frequency of missing data, and (e),(f) average precipitation

rates from AMSR-E (on board Aqua, representing MW imagers) and AMSU/MHS (on board NOAA-18, repre-

senting MW sounders) during winter (2007–09).
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often with substantial snowfall at high elevations (Fig. 12).

Streamflows are simulated by forcing the Variable In-

filtration Capacity hydrological model with HRPPs.

Most of the HRPPs and simulated streamflows capture

major precipitation patterns. However, the study sug-

gests that the performance of HRPPs is not yet satis-

factory in mountainous basins, especially if not adjusted

for bias using ground observations. Precipitation is

typically not well detected and the intensities are often

significantly underestimated (e.g., Figs. 4 and 5). As

precipitation is the major forcing for hydrologic simu-

lations, the observed errors are well propagated and

manifested in simulated streamflows (Figs. 6–8) that can

negatively impact several applications such as water

resource management and flood control. The high

similarity between precipitation and streamflow errors

suggests that significant improvement in streamflow

simulation is possible if higher quality HRPPs are

obtained.

Recognizing that a majority of global mountainous

basins lack ground observations, HRPPs remain a main

observational source for quantifying precipitation and

deriving hydrologic products for applications and

societal benefit. Detailed investigations show that the

performance of HRPPs is tightly linked to the pre-

cipitation retrievals from individual sensors. Currently,

the precipitation retrieval technique faces major diffi-

culties in retrieving snowfall and warm rainfall (Fig. 12;

also see Behrangi et al. 2012). Precipitation over fro-

zen land is also challenging and at the present time

results in missing data in microwave precipitation

products, especially from microwave imagers (Figs. 10

and 11), which negatively impacts the HRPPs (Fig. 10).

Precipitation retrievals from microwave sounder and

infrared data can produce more reasonable pre-

cipitation estimates over the studied region, but the

indirect infrared techniques often show poor detection

skill, and microwave sounding in dry atmosphere re-

mains challenging. This calls for more rigorous effort

to diagnose the problems directly at level 2 (orbital

data products), especially over regions that experience

snowfall, as well as cold or snow-covered surfaces.

Understanding the error characteristics of level-2

products is also critical to designing more appropri-

ate combination techniques for the production of

HRPPs.

FIG. 12. Comparison of CloudSat and AMSR-E precipitation detection results using collo-

cated data over land from three winter seasons (2007–09). (a) Fraction of total precipitation

observed by CloudSat. (b) Count of collocated data used for analysis. In (a), the fractions of

CloudSat rain, snow, and mixed-phase precipitation sum to 1 at each elevation bin.
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In the near future, the joint NASA–Japanese Aero-

space Exploration Agency (JAXA) Global Precipitation

Measurement mission will deploy a dual-frequency Ka–

Ku-band precipitation radar (DPR) on its ‘‘core’’ sat-

ellite, covering ocean and land surfaces between 658S
and 658N. Data from the DPR should improve the

ability to distinguish precipitation phases and provide

better descriptions of the hydrometeor size distribution

needed for the level 2 precipitation products from the

constellation of satellites (which are the main micro-

wave inputs to the HRPPs). Also, the overland pre-

cipitation retrieval techniqueswill bemorephysically based,

taking into account surface characteristics (Kummerow

et al. 2011; Ferraro et al. 2013). The GPM mission to-

gether with these improved precipitation retrieval al-

gorithms will create an unprecedented opportunity to

improve the global quantification of precipitation and its

characteristics and by extension hydrologic predictions,

especially over higher latitudes and cold regions.
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APPENDIX

Binary Scores Based on a Contingency Table

Using observed and estimated–predicted data, a contin-

gency table can be constructed to classify the predictions–

estimates into the following four possibilities based

on binary (1/0 or yes/no) occurrences (e.g., rain/no

rain):

1) hit (H)—number of events correctly classified as

having occurred (e.g., rain),

2) miss (M)—number of events incorrectly classified as

not having occurred (e.g., no rain),

3) false alarm (F)—number of events incorrectly clas-

sified as having occurred (e.g., rain), and

4) correct negative (Z)—number of events correctly

classified as not having occurred (e.g., no rain).

A perfect predictor would produce only hits and cor-

rect negatives and no misses or false alarms, but pre-

diction systems are not always perfect. The contingency

table can be used to derive the following scores that are

commonly used to evaluate the prediction skills of the

models:

d probability of detection: POD5H/(H1m),
d false-alarm ratio: FAR5F/(H1F),
d BIAS: BIASb5 (H1F)/(H1M), where b stands for

binary, and
d critical success index: CSI5H/(H1F1M).

POD, FAR, and CSI range from 0 to 1, with perfec-

tion represented by 1 for POD and CSI and 0 for FAR.

POD is sensitive to the number of hits, but it ignores

false alarms; FAR, on the other hand, is sensitive to false

alarms, but it ignoresmisses. CSI takes into account both

false alarms and missed events and, unlike the POD and

the FAR, is a more balanced score. BIAS considers both

predictions and observations. A BIAS of 1 means that

the total number of predicted occurrences (H 1 F ) is

equal to the total number of observed occurrences.

However, a perfect BIAS score of 1 does not necessarily

indicate a perfect skill of the predictor.

REFERENCES

Andreadis, K. M., E. A. Clark, A. W. Wood, A. F. Hamlet, and

D. P. Lettenmaier, 2005: Twentieth-century drought in the

conterminous United States. J. Hydrometeor., 6, 985–1001,

doi:10.1175/JHM450.1.

Baird, B. P., and R. R. Robles, 1997: Emergency management is-

sues in the California floods of 1997: Lessons learned or les-

sons lost? California Specialized Training Institute Doc.

G4173N3, San Luis Obispo, CA, 54 pp. [Available from

California Specialized Training Institute, P.O. Box 8123, San

Luis Obispo, CA 93403-8123.]

Behrangi, A., K. Hsu, B. Imam, S. Sorooshian, G. J. Huffman, and

R. J. Kuligowski, 2009: PERSIANN-MSA: A precipitation

estimation method from satellite-basedmultispectral analysis.

J. Hydrometeor., 10, 1414–1429, doi:10.1175/2009JHM1139.1.

——,——,——, and——, 2010: Daytime precipitation estimation

using bispectral cloud classification system. J. Appl. Meteor.

Climatol., 49, 1015–1031, doi:10.1175/2009JAMC2291.1.

——, B. Khakbaz, T. C. Jaw, A. AghaKouchak, K. Hsu, and

S. Sorooshian, 2011: Hydrologic evaluation of satellite pre-

cipitation products over a mid-size basin. J. Hydrol., 397, 225–

237, doi:10.1016/j.jhydrol.2010.11.043.

——, M. Lebsock, S. Wong, and B. Lambrigtsen, 2012: On the

quantification of oceanic rainfall using spaceborne sensors.

J. Geophys. Res., 117, D20105, doi:10.1029/2012JD017979.

——, G. Stephens, R. F. Adler, G. J. Huffman, B. Lambrigtsen, and

M. Lebsock, 2014: An update on the oceanic precipitation rate

and its zonal distribution in light of advanced observations from

space. J. Climate, 27, 3957–3965, doi:10.1175/JCLI-D-13-00679.1.

Berg, W., T. L’Ecuyer, and C. Kummerow, 2006: Rainfall climate

regimes: The relationship of regional TRMM rainfall biases to

the environment. J. Appl. Meteor. Climatol., 45, 434–454,

doi:10.1175/JAM2331.1.

Bitew, M. M., M. Gebremichael, L. T. Ghebremichael, and Y. A.

Bayissa, 2012: Evaluation of high-resolution satellite rainfall

products through streamflow simulation in a hydrological

2840 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 53

http://dx.doi.org/10.1175/JHM450.1
http://dx.doi.org/10.1175/2009JHM1139.1
http://dx.doi.org/10.1175/2009JAMC2291.1
http://dx.doi.org/10.1016/j.jhydrol.2010.11.043
http://dx.doi.org/10.1029/2012JD017979
http://dx.doi.org/10.1175/JCLI-D-13-00679.1
http://dx.doi.org/10.1175/JAM2331.1


modeling of a small mountainous watershed in Ethiopia.

J. Hydrometeor., 13, 338–350, doi:10.1175/2011JHM1292.1.

Cayan, D., E. Maurer, M. Dettinger, M. Tyree, and K. Hayhoe,

2008: Climate change scenarios for the California region.

Climatic Change, 87, 21–42, doi:10.1007/s10584-007-9377-6.

Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical–

topographic model for mapping climatological precipitation

over mountainous terrain. J. Appl. Meteor., 33, 140–158,

doi:10.1175/1520-0450(1994)033,0140:ASTMFM.2.0.CO;2.

Defries, R. S., M. C.Hansen, J. R.G. Townshend,A. C. Janetos, and

T. R. Loveland, 2000: A new global 1-km dataset of percentage

tree cover derived from remote sensing.Global Change Biol., 6,

247–254, doi:10.1046/j.1365-2486.2000.00296.x.

Dettinger,M., 2011: Climate change, atmospheric rivers, and floods

in California—A multimodel analysis of storm frequency and

magnitude changes1. J. Amer. Water Resour. Assoc., 47, 514–

523, doi:10.1111/j.1752-1688.2011.00546.x.

Dinku, T., P. Ceccato, K. Cressman, and S. J. Connor, 2010: Eval-

uating detection skills of satellite rainfall estimates over desert

locust recession regions. J. Appl. Meteor. Climatol., 49, 1322–

1332, doi:10.1175/2010JAMC2281.1.

Ebert, E. E., J. E. Janowiak, and C. Kidd, 2007: Comparison of

near-real-time precipitation estimates from satellite observa-

tions and numerical models. Bull. Amer. Meteor. Soc., 88, 47–

64, doi:10.1175/BAMS-88-1-47.

Ferraro, R. R., N. Grody, and G. Marks, 1994: Effects of surface

conditions on rain identification using the DMSP-SSM/I. Re-

mote Sens. Rev., 11, 195–209, doi:10.1080/02757259409532265.

——, F. H. Weng, N. C. Grody, and L. M. Zhao, 2000: Precipitation

characteristics over land from the NOAA-15 AMSU sensor.

Geophys. Res. Lett., 27, 2669–2672, doi:10.1029/2000GL011665.

——, and Coauthors, 2005: NOAA operational hydrological

products derived from the advancedmicrowave sounding unit.

IEEE Trans. Geosci. Remote Sens., 43, 1036–1049.
——, and Coauthors, 2013: An evaluation of microwave land sur-

face emissivities over the continental United States to benefit

GPM-Era precipitation algorithms. IEEE Trans. Geosci. Re-

mote Sens., 51, 378–398.

Gebregiorgis, A. S., Y. Tian, C. D. Peters-Lidard, and F. Hossain,

2012: Tracing hydrologic model simulation error as a function

of satellite rainfall estimation bias components and land use

and land cover conditions. Water Resour. Res., 48, W11509,

doi:10.1029/2011WR011643.

Gopalan, K., N.-Y.Wang, R. Ferraro, and C. Liu, 2010: Status of the

TRMM 2A12 land precipitation algorithm. J. Atmos. Oceanic

Technol., 27, 1343–1354, doi:10.1175/2010JTECHA1454.1.

Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J.

Neiman, 2010: Extreme snowfall events linked to atmospheric

rivers and surface air temperature via satellite measurements.

Geophys. Res. Lett., 37, L20401, doi:10.1029/2010GL044696.

Haddad, Z. S., E. A. Smith, C. D. Kummerow, T. Iguchi, M. R.

Farrar, S. L. Durden, M. Alves, and W. S. Olson, 1997: The

TRMM ‘‘day-1’’ radar/radiometer combined rain-profiling

algorithm. J. Meteor. Soc. Japan, 75, 799–809.
Haynes, J. M., T. S. L’Ecuyer, G. L. Stephens, S. D. Miller,

C. Mitrescu, N. B. Wood, and S. Tanelli, 2009: Rainfall re-

trieval over the ocean with spaceborne W-band radar. J. Geo-

phys. Res., 114, D00A22, doi:10.1029/2008JD009973.

Hidalgo, H. G., and Coauthors, 2009: Detection and attribution of

streamflow timing changes to climate change in thewesternUnited

States. J. Climate, 22, 3838–3855, doi:10.1175/2009JCLI2470.1.
Hogue, T. S., S. Sorooshian, H. Gupta, A. Holz, and D. Braatz,

2000: A multistep automatic calibration scheme for river

forecasting models. J. Hydrometeor., 1, 524–542, doi:10.1175/

1525-7541(2000)001,0524:AMACSF.2.0.CO;2.

Hong, Y., K. L. Hsu, S. Sorooshian, and X. G. Gao, 2004: Pre-

cipitation estimation from remotely sensed imagery using an

artificial neural network cloud classification system. J. Appl.

Meteor., 43, 1834–1852, doi:10.1175/JAM2173.1.

——,R. F. Adler, F. Hossain, S. Curtis, and G. J. Huffman, 2007: A

first approach to global runoff simulation using satellite rain-

fall estimation. Water Resour. Res., 43, W08502, doi:10.1029/

2006WR005739.

Hossain, F., and E. N. Anagnostou, 2004: Assessment of current

passive-microwave- and infrared-based satellite rainfall re-

mote sensing for flood prediction. J. Geophys. Res., 109,

D07102, doi:10.1029/2003JD003986.

Hou, A. Y., and Coauthors, 2013: The Global Precipitation Mea-

surement (GPM) mission. Bull. Amer. Meteor. Soc., 95, 701–

722, doi:10.1175/BAMS-D-13-00164.1.

Hsu, K. L., X. G. Gao, S. Sorooshian, and H. V. Gupta, 1997: Pre-

cipitation estimation from remotely sensed information using

artificial neural networks. J. Appl. Meteor., 36, 1176–1190,

doi:10.1175/1520-0450(1997)036,1176:PEFRSI.2.0.CO;2.

Huffman, G. J., and D. T. Bolvin, 2014: TRMM and other data

precipitation data set documentation. NASA GSFC, 42 pp.

[Available online at ftp://precip.gsfc.nasa.gov/pub/trmmdocs/

3B42_3B43_doc.pdf.]

——, and Coauthors, 2007: The TRMM Multisatellite Pre-

cipitation Analysis (TMPA): Quasi-global, multiyear,

combined-sensor precipitation estimates at fine scales. J. Hy-

drometeor., 8, 38–55, doi:10.1175/JHM560.1.

——, D. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, and P. P. Xie,

2013: IntegratedMulti-satellite Retrievals for GPM (IMERG),

algorithm theoretical basis document (ATBD), version 4.1.

NASA, 25 pp. [Available online at http://pmm.nasa.gov/sites/

default/files/document_files/IMERG_ATBD_V4.1.pdf .]

Kongoli, C., P. Pellegrino, R. R. Ferraro, N. C. Grody, and

H. Meng, 2003: A new snowfall detection algorithm over land

using measurements from theAdvancedMicrowave Sounding

Unit (AMSU). Geophys. Res. Lett., 30, 1756, doi:10.1029/

2003GL017177.

Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004:

CMORPH: A method that produces global precipitation es-

timates from passive microwave and infrared data at high

spatial and temporal resolution. J. Hydrometeor., 5, 487–503,

doi:10.1175/1525-7541(2004)005,0487:CAMTPG.2.0.CO;2.

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Re-

analysis Project. Bull. Amer. Meteor. Soc., 77, 437–471,

doi:10.1175/1520-0477(1996)077,0437:TNYRP.2.0.CO;2.

Kidd, C., P. Bauer, J. Turk, G. J. Huffman, R. Joyce, K. L. Hsu, and

D. Braithwaite, 2012: Intercomparison of high-resolution

precipitation products over northwest Europe. J. Hydrome-

teor., 13, 67–83, doi:10.1175/JHM-D-11-042.1.

——, E. Dawkins, and G. Huffman, 2013: Comparison of pre-

cipitation derived from the ECMWF operational forecast

model and satellite precipitation datasets. J. Hydrometeor., 14,

1463–1482, doi:10.1175/JHM-D-12-0182.1.

Krakauer, N., S. Pradhanang, T. Lakhankar, and A. Jha, 2013:

Evaluating satellite products for precipitation estimation in

mountain regions: A case study for Nepal. Remote Sens., 5,

4107–4123, doi:10.3390/rs5084107.

Kucera, P., and B. Lapeta, 2013: IPWG recent accomplishments

and future directions. Expert Team on Satellite Utilization and

Products (ET-SUP 7), Coordination Group for Meteorological

Satellites (CGMS), Geneva, Switzerland, 13 pp. [Available

DECEMBER 2014 BEHRANG I ET AL . 2841

http://dx.doi.org/10.1175/2011JHM1292.1
http://dx.doi.org/10.1007/s10584-007-9377-6
http://dx.doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
http://dx.doi.org/10.1046/j.1365-2486.2000.00296.x
http://dx.doi.org/10.1111/j.1752-1688.2011.00546.x
http://dx.doi.org/10.1175/2010JAMC2281.1
http://dx.doi.org/10.1175/BAMS-88-1-47
http://dx.doi.org/10.1080/02757259409532265
http://dx.doi.org/10.1029/2000GL011665
http://dx.doi.org/10.1029/2011WR011643
http://dx.doi.org/10.1175/2010JTECHA1454.1
http://dx.doi.org/10.1029/2010GL044696
http://dx.doi.org/10.1029/2008JD009973
http://dx.doi.org/10.1175/2009JCLI2470.1
http://dx.doi.org/10.1175/1525-7541(2000)001<0524:AMACSF>2.0.CO;2
http://dx.doi.org/10.1175/1525-7541(2000)001<0524:AMACSF>2.0.CO;2
http://dx.doi.org/10.1175/JAM2173.1
http://dx.doi.org/10.1029/2006WR005739
http://dx.doi.org/10.1029/2006WR005739
http://dx.doi.org/10.1029/2003JD003986
http://dx.doi.org/10.1175/BAMS-D-13-00164.1
http://dx.doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2
ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf
ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf
http://dx.doi.org/10.1175/JHM560.1
http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.1.pdf
http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.1.pdf
http://dx.doi.org/10.1029/2003GL017177
http://dx.doi.org/10.1029/2003GL017177
http://dx.doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
http://dx.doi.org/10.1175/JHM-D-11-042.1
http://dx.doi.org/10.1175/JHM-D-12-0182.1
http://dx.doi.org/10.3390/rs5084107


online at http://www.wmo.int/pages/prog/sat/meetings/

documents/ET-SUP-7_Doc_15-02_IPWG.pdf.]

——, E. E. Ebert, F. J. Turk, V. Levizzani, D. Kirschbaum, F. J.

Tapiador, A. Loew, and M. Borsche, 2013: Precipitation from

space: Advancing earth system science. Bull. Amer. Meteor.

Soc., 94, 365–375, doi:10.1175/BAMS-D-11-00171.1.

Kuligowski, R. J., 2002: A self-calibrating real-time GOES rainfall al-

gorithm for short-term rainfall estimates. J. Hydrometeor., 3, 112–
130, doi:10.1175/1525-7541(2002)003,0112:ASCRTG.2.0.CO;2.

Kummerow, C. D., S. Ringerud, J. Crook, D. Randel, andW. Berg,

2011: An observationally generated a priori database for mi-

crowave rainfall retrievals. J. Atmos. Oceanic Technol., 28,
113–130, doi:10.1175/2010JTECHA1468.1.

Lebsock,M.D., and T. S. L’Ecuyer, 2011: The retrieval of warm rain

from CloudSat. J. Geophys. Res., 116, D20209, doi:10.1029/

2011JD016076.

Liang, X., and Z. Xie, 2001: A new surface runoff parameteriza-

tion with subgrid-scale soil heterogeneity for land surface

models. Adv. Water Resour., 24, 1173–1193, doi:10.1016/

S0309-1708(01)00032-X.

——, D. P. Lettenmaier, and E. F. Wood, 1996: One-dimensional

statistical dynamic representation of subgrid spatial variability

of precipitation in the two-layer variable infiltration capacity

model. J. Geophys. Res., 101, 21403–21 422, doi:10.1029/

96JD01448.

Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly

precipitation analyses: Development and applications. 19th

Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2.

[Available online at https://ams.confex.com/ams/pdfpapers/

83847.pdf.]

Livneh, B., E. A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K. M.

Andreadis, E. P. Maurer, and D. P. Lettenmaier, 2013: A

long-term hydrologically based dataset of land surface fluxes

and states for the conterminous United States: Update and

extensions. J. Climate, 26, 9384–9392, doi:10.1175/

JCLI-D-12-00508.1.

Lohmann, D., E. Raschke, B. Nijssen, andD. P. Lettenmaier, 1998:

Regional scale hydrology: I. Formulation of the VIC-2L

model coupled to a routing model. Hydrol. Sci. J., 43, 131–

141, doi:10.1080/02626669809492107.

——, and Coauthors, 2004: Streamflow and water balance in-

tercomparisons of four land surface models in the North

American Land Data Assimilation System project. J. Geo-

phys. Res., 109, D07S91, doi:10.1029/2003JD003517.

Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier, and

B. Nijssen, 2002: A long-term hydrologically based dataset of

land surface fluxes and states for the conterminousUnited States.

J. Climate, 15, 3237–3251, doi:10.1175/1520-0442(2002)015,3237:

ALTHBD.2.0.CO;2.

Miller, D. A., and R. A. White, 1998: A conterminous United

States multilayer soil characteristics dataset for regional cli-

mate and hydrology modeling. Earth Interact., 2, doi:10.1175/
1087-3562(1998)002,0001:ACUSMS.2.3.CO;2.

Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, andM. D.

Dettinger, 2008: Meteorological characteristics and overland

precipitation impacts of atmospheric rivers affecting the

west coast of North America based on eight years of SSM/I

satellite observations. J. Hydrometeor., 9, 22–47, doi:10.1175/

2007JHM855.1.

Nijssen, B., R. Schnur, and D. P. Lettenmaier, 2001: Global retro-

spective estimation of soil moisture using the variable infiltration

capacity land surface model, 1980–93. J. Climate, 14, 1790–1808,

doi:10.1175/1520-0442(2001)014,1790:GREOSM.2.0.CO;2.

Ralph, F. M., and M. D. Dettinger, 2011: Storms, floods, and the

science of atmospheric rivers. Eos, Trans. Amer. Geophys.

Union, 92, 265–266, doi:10.1029/2011EO320001.

Shiklomanov, A. I., R. B. Lammers, and C. J. Vörösmarty, 2002:
Widespread decline in hydrological monitoring threatens pan-

Arctic research.Eos, Trans. Amer. Geophys. Union, 83, 13–17,

doi:10.1029/2002EO000007.

Smalley, M., T. L’Ecuyer, M. Lebsock, and J. Haynes, 2014: A

comparison of precipitation occurrence from the NCEP stage

IV QPE product and the CloudSat Cloud Profiling Radar.

J. Hydrometeor., 15, 444–458, doi:10.1175/JHM-D-13-048.1.

Sorooshian, S., K. L. Hsu, X. Gao, H. V. Gupta, B. Imam, and

D. Braithwaite, 2000: Evaluation of PERSIANN system

satellite-based estimates of tropical rainfall. Bull. Amer. Meteor.

Soc., 81, 2035–2046, doi:10.1175/1520-0477(2000)081,2035:

EOPSSE.2.3.CO;2.

Stampoulis, D., E. N. Anagnostou, and E. I. Nikolopoulos, 2013:

Assessment of high-resolution satellite-based rainfall estimates

over the Mediterranean during heavy precipitation events.

J. Hydrometeor., 14, 1500–1514, doi:10.1175/JHM-D-12-0167.1.

Stokstad, E., 1999: Scarcity of rain, stream gages threatens forecasts.

Science, 285, 1199–1200, doi:10.1126/science.285.5431.1199.

Tian, Y., and C. D. Peters-Lidard, 2010: A global map of un-

certainties in satellite-based precipitation measurements.

Geophys. Res. Lett., 37, L24407, doi:10.1029/2010GL046008.

——, ——, B. J. Choudhury, and M. Garcia, 2007: Multitemporal

analysis of TRMM-based satellite precipitation products for

land data assimilation applications. J. Hydrometeor., 8, 1165–

1183, doi:10.1175/2007JHM859.1.

Tobin, K. J., and M. E. Bennett, 2010: Adjusting satellite pre-

cipitation data to facilitate hydrologic modeling. J. Hydro-

meteor., 11, 966–978, doi:10.1175/2010JHM1206.1.

Turk, F. J., and S. D. Miller, 2005: Toward improved character-

ization of remotely sensed precipitation regimes withMODIS/

AMSR-E blended data techniques. IEEE Trans. Geosci. Re-

mote Sens., 43, 1059–1069, doi:10.1109/TGRS.2004.841627.

Vila, D., R. Ferraro, and R. Joyce, 2007: Evaluation and im-

provement of AMSU precipitation retrievals. J. Geophys.

Res., 112, D20119, doi:10.1029/2007JD008617.

Weng, F. Z., L. M. Zhao, R. R. Ferraro, G. Poe, X. F. Li, and N. C.

Grody, 2003: Advanced Microwave Sounding Unit cloud and

precipitation algorithms. Radio Sci., 38, 8068, doi:10.1029/

2002RS002679.

Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam,

2006: Warming and earlier spring increase western U.S. forest

wildfire activity. Science, 313, 940–943, doi:10.1126/science.1128834.

Wilheit, T., C. D. Kummerow, and R. Ferraro, 2003: NASDA

rainfall algorithms for AMSR-E. IEEETrans. Geosci. Remote

Sens., 41, 204–214, doi:10.1109/TGRS.2002.808312.

Wilks, D. S., 2011. Statistical Methods in the Atmospheric Sciences.

3rd ed. Academic Press, 676 pp.

Wu, H., R. F. Adler, Y. Hong, Y. Tian, and F. Policelli, 2012:

Evaluation of global flood detection using satellite-based

rainfall and a hydrologic model. J. Hydrometeor., 13, 1268–

1284, doi:10.1175/JHM-D-11-087.1.

Yilmaz, K. K., T. S. Hogue, K. L. Hsu, S. Sorooshian, H. V. Gupta, and

T. Wagener, 2005: Intercomparison of rain gauge, radar, and

satellite-based precipitation estimates with emphasis on hydrologic

forecasting. J. Hydrometeor., 6, 497–517, doi:10.1175/JHM431.1.

Zhang, X., E. N.Anagnostou,M. Frediani, S. Solomos, andG.Kallos,

2013: Using NWP simulations in satellite rainfall estimation of

heavy precipitation events over mountainous areas. J. Hydro-

meteor., 14, 1844–1858, doi:10.1175/JHM-D-12-0174.1.

2842 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 53

http://www.wmo.int/pages/prog/sat/meetings/documents/ET-SUP-7_Doc_15-02_IPWG.pdf
http://www.wmo.int/pages/prog/sat/meetings/documents/ET-SUP-7_Doc_15-02_IPWG.pdf
http://dx.doi.org/10.1175/BAMS-D-11-00171.1
http://dx.doi.org/10.1175/1525-7541(2002)003<0112:ASCRTG>2.0.CO;2
http://dx.doi.org/10.1175/2010JTECHA1468.1
http://dx.doi.org/10.1029/2011JD016076
http://dx.doi.org/10.1029/2011JD016076
http://dx.doi.org/10.1016/S0309-1708(01)00032-X
http://dx.doi.org/10.1016/S0309-1708(01)00032-X
http://dx.doi.org/10.1029/96JD01448
http://dx.doi.org/10.1029/96JD01448
https://ams.confex.com/ams/pdfpapers/83847.pdf
https://ams.confex.com/ams/pdfpapers/83847.pdf
http://dx.doi.org/10.1175/JCLI-D-12-00508.1
http://dx.doi.org/10.1175/JCLI-D-12-00508.1
http://dx.doi.org/10.1080/02626669809492107
http://dx.doi.org/10.1029/2003JD003517
http://dx.doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2
http://dx.doi.org/10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2
http://dx.doi.org/10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2
http://dx.doi.org/10.1175/2007JHM855.1
http://dx.doi.org/10.1175/2007JHM855.1
http://dx.doi.org/10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2
http://dx.doi.org/10.1029/2011EO320001
http://dx.doi.org/10.1029/2002EO000007
http://dx.doi.org/10.1175/JHM-D-13-048.1
http://dx.doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
http://dx.doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
http://dx.doi.org/10.1175/JHM-D-12-0167.1
http://dx.doi.org/10.1126/science.285.5431.1199
http://dx.doi.org/10.1029/2010GL046008
http://dx.doi.org/10.1175/2007JHM859.1
http://dx.doi.org/10.1175/2010JHM1206.1
http://dx.doi.org/10.1109/TGRS.2004.841627
http://dx.doi.org/10.1029/2007JD008617
http://dx.doi.org/10.1029/2002RS002679
http://dx.doi.org/10.1029/2002RS002679
http://dx.doi.org/10.1126/science.1128834
http://dx.doi.org/10.1109/TGRS.2002.808312
http://dx.doi.org/10.1175/JHM-D-11-087.1
http://dx.doi.org/10.1175/JHM431.1
http://dx.doi.org/10.1175/JHM-D-12-0174.1

