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Evapotranspiration (ET) is critical to terrestrial ecosystems as it links the water, carbon, and surface
energy exchanges. Numerous ET models were developed for the ET estimations, but there are large model
uncertainties. In this study, a Bayesian Model Averaging (BMA) method was used to merge eight
satellite-based models, including five empirical and three process-based models, for improving the
accuracy of ET estimates. At twenty-three eddy covariance flux towers, we examined the model perfor-
mance on all possible combinations of eight models and found that an ensemble with four models
(BMA_Best) showed the best model performance. The BMA_Best method can outperform the best of eight
models, and the Kling–Gupta efficiency (KGE) value increased by 4% compared with the model with the
highest KGE, and decreased RMSE by 4%. Although the correlation coefficient of BMA_Best is less than the
best single model, the bias of BMA_Best is the smallest compared with the eight models. Moreover, based
on the water balance principle over the river basin scale, the validation indicated the BMA_Best estimates
can explain 86% variations. In general, the results showed BMA estimates will be very useful for future
studies to characterize the regional water availability over long-time series.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Evapotranspiration (ET) is one of the most important variables
of terrestrial ecosystems as it links water, carbon, and surface
energy exchanges. Therefore, accurate estimations of ET in large
scale is crucial for understanding the interactions between land
surfaces and the atmosphere (Keane et al., 2002), drought and land
resource management (Raupach, 2001), and coupling water cycling
and ecosystem carbon exchange (Eamus, 2003). Over the past sev-
eral years, there have been substantial efforts to retrieve ET over
large areas. Zeng et al. (2012) estimated global ET with a spatial
regression model by integrating precipitation, temperature and
satellite-derived normalized difference vegetation index (NDVI)
data. Xia et al. (2014) calculated ET over grassland ecosystems of
dryland East Asia using regression tree method. Shu et al. (2011)
estimated the regional ET over the North China Plain using the data
from Chinese geostationary satellite Fengyun-2C and found spatial
variations of ET compare very well to the land use types. However,
ET is still the component with the most problem in the water cycle
processes because of the complex controlling factors and hetero-
geneity of the landscape (Lettenmaier and Famiglietti, 2006;
Yuan et al., 2010a).

Numerous models are developed for quantifying spatiotempo-
ral variations of ET using remote sensing observations (Cleugh
et al., 2007; Mu et al., 2007; Fisher et al., 2008; Leuning et al.,
2008; Jung et al., 2009; Yuan et al., 2010b; Zhang et al., 2010;
Mu et al., 2011; Vinukollu et al., 2011a; Yang et al., 2012; Baik
and Choi, 2015; French et al., 2015; Liu et al., 2015; Tang and Li,
2015). Satellite-based modeling has been an important tool for
accurately parameterizing surface biophysical variables because
remotely sensed data provide temporally and spatially continuous
information over heterogeneous surfaces. In previous studies, the
net radiation products, remotely sensed variables (e.g., vegetation
index) and meteorological measurements (e.g., vapor pressure
and air temperature) were used to calculate the special
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evapotranspiration. For example, the global land ET was estimated
by Vinukollu et al. (2011) using a set of remote sensing and obser-
vational based radiation and meteorological forcing datasets such
as International Satellite Cloud Climatology Project (ISCCP),
Advanced Very High Resolution Radiometer (AVHRR) and Global
Meteorological Forcing Data set from Princeton University (PU).

However, there are large model uncertainties revealed by the
inter-comparisons of ET estimates (Vinukollu et al., 2011b). For
example, Jiménez et al. (2011) indicated that the global annual
mean ET between different models and datasets had 50% uncer-
tainties, which induced large uncertainties for the global water
and energy cycles. The mean annual ET in China calculated by dif-
ferent models ranged from 535 to 852 mm/year. The major reason
for the different models estimations were the differences in model
structures and their dominant variables (Chen et al., 2014).

The multi-model ensembles method has increasingly been used
to improve model estimations (Hagedorn et al., 2005). The
Bayesian Model Averaging (BMA) method, a statistical scheme
based on multi-model ensemble, was originally developed as a
way to combine different models or forecasts (Hoeting et al.,
1999). The contribution of each individual model in the BMA
method is weighted by its posterior weight of evidence (Ellison,
2004). BMA has been widely used to study the climate change
(Duan and Phillips, 2010), improve the predictions accuracy of
hydrology (Duan et al., 2007), weather (Raftery et al., 2005; Wu
et al., 2012), forest biomass (Li et al., 2008) and economics
(Fernandez et al., 2001). Previous studies indicated better estima-
tions of BMA than other multi-model ensemble methods
(Viallefont et al., 2001; Ellison, 2004; Raftery et al., 2005;
Sloughter et al., 2007). For example, Wang et al. (2012) merged
seasonal rainfall forecasts from multiple models using BMA and
improved effectively skills of the models. Similarly, BMA method
also was used to merge estimates of hydrological flows from
multi-model and BMA ensembles decreased estimates bias value
and increase correlation coefficient compared with the single best
model (Jiang et al., 2012). Moreover, BMA method can quantify the
uncertainties from the inputs, model structure and parameters and
improve the model accuracy (Najafi et al., 2011). For example,
Fig. 1. Locations of the twenty-three EC sites and eleven hydrological stations. Number
deciduous needleleaf forests; EBF: evergreen broadleaf forests; ENF: evergreen needlele
Najafi et al. (2011) used BMA to merge the hydrologic models
variance and quantify the uncertainties, which were useful in eval-
uating the regional water resources.

This study uses BMA method to improve China terrestrial ET
estimates based on eight ET models. The objectives of this study
are to: (1) use the BMA method to improve the accuracy of ET esti-
mates; (2) compare two ensemble strategies: ensemble with all
models and ensemble with the selected models; (3) examine the
performance of the BMA method through a water balance analysis;
and (4) analyze the spatiotemporal patterns of ET calculated by the
BMA method over China from 1982 to 2009.

2. Data

2.1. Data at eddy covariance (EC) site

Twenty-three EC sites (Fig. 1, Table 1) were used to examine
model performance. The data were collected from Arid/Semi-arid
experimental observation synergy and integration, ChinaFlux,
AsiaFLUX and LathuileFLUX. The sites included seven major
biomes, evergreen needleleaf forests, evergreen broadleaf forests,
deciduous needleleaf forests, deciduous broadleaf forests, mixed
forests, grasslands and croplands. The eight ET models are driven
by 8-day net radiation (Rn), solar radiation (Rg), relative humidity
(Rh), air temperature (Ta), maximum air temperature (Tmax), atmo-
spheric pressure (Pr), wind speed (Ws), vapor pressure deficit (VPD)
and Minimum air temperature (Tmin) (see Table 2).

It has been recognized that the sum of latent heat (LE) and sen-
sible heat (H) as measured in EC towers is generally less than the
available energy (Foken, 2008). LE observations can be corrected
with the following formulas (Jung et al., 2010),

LEcor ¼ ðRn � GÞ=ðHuncor þ LEuncorÞ � LEuncor ð1Þ

where Rn is the net radiation, G is the soil heat flux, Huncor is uncor-
rected sensible heat, LEuncor is uncorrected latent heat and LEcor is
corrected latent heat.

The leaf area index (LAI) and normalized difference vegetation
index (NDVI) for the eddy covariance towers were from
s match with the sites ID in Tables 1 and 3. DBF: deciduous broadleaf forests; DNF:
af forests; CRO: croplands; GRA: grasslands; MF: mixed forests.



Table 1
Name, location and vegetation types of the 23 EC sites.

ID Site Lat (�N) Long (�E) Ele (m) Veg Tann (�C) Pann (mm) Obs periods

1 CN-Aro 38.04 100.46 3033 GRA 2.12 314.90 2008–2009
2 ID-Bks �0.86 117.05 20 EBF 25.59 2576.27 2002
3 CN-Bed 39.53 116.25 30 MF 11.69 531.85 2005–2006
4 CN-Cha 42.40 128.10 761 MF 3.38 811.35 2003
5 CN-Du2 42.05 116.28 1350 GRA 3.07 425.54 2006
6 CN-Ku1 40.54 108.69 1020 GRA 7.96 277.08 2006
7 CN-Xi1 43.55 116.68 1250 GRA 1.86 378.49 2006
8 CN-Xi2 43.55 116.67 1250 GRA 1.86 378.49 2006
9 CN-Din 23.17 112.57 364 MF 20.55 1829.12 2002–2007
10 CN-Gta 36.52 115.13 1999 CRO 14.09 613.14 2009
11 JP-Mas 36.05 140.03 12 CRO 10.86 1544.03 2002–2003
12 MN-Kbu 47.21 108.74 1235 GRA 0.20 239.70 2003–2008
13 CN-Mqu 33.89 102.14 3423 GRA 5.83 660.44 2009
14 JP-Mbf 44.38 142.32 585 DBF 7.80 755.79 2004–2005
15 CN-Myu 40.63 117.32 350 CRO 9.60 531.74 2008–2009
16 CN-Qya 35.66 107.84 1136 GRA 8.98 537.44 2009
17 CN-Qia 26.74 115.06 79 ENF 18.73 1771.52 2003–2004, 2006–2007
18 TL-Skr 14.57 101.92 543 EBF 25.11 2477.54 2001–2003
19 MN-Skt 48.35 108.65 1630 DNF �3.10 445.32 2003–2006
20 CN-Tyc 44.57 122.88 184 CRO 6.18 495.86 2009
21 CN-Xsh 21.96 101.20 756 EBF 21.10 1424.37 2004–2007
22 CN-Yke 38.86 100.41 1519 CRO 11.61 254.66 2008–2009
23 CN-Yzh 35.95 104.13 1966 CRO 10.94 422.45 2008

Lat: latitude; Long: longitude; Ele: elevation; Veg: vegetation type; Tann: annual mean temperature; Pann: annual mean precipitation; Obs periods: observation periods.
DBF, deciduous broadleaf forests; MF, mixed forests; ENF, evergreen needleleaf forests; EBF, evergreen broadleaf forests; DNF, deciduous needleleaf forests; GRA, grasslands;
CRO, croplands. Positive values represent north latitude and east longitude. Negative values represent south latitude and west longitude.

Table 2
Summary of the eight ET models and forcing variables.

ID ET algorithm Forcing inputs Outputs References

1 Artificial neural network (ANN) Rn, Ta, Rh, NDVI ET Chen et al., 2014
2 Regression tree (RT) Rn, Ta, Rh, NDVI ET Xia et al., 2014
3 Support vector model (SVM) Rn, Ta, Rh, NDVI ET Chen et al., 2014
4 Empirical ET algorithm (Reg1) Rn, Ta, NDVI ET Wang et al., 2007
5 Semi-empirical ET algorithm (Reg2) Rg, Ta, Rh, VPD, Ws, NDVI ETA, ETE Wang et al., 2010
6 Revised Penman–Monteith model (RRS-PM) Rn, Ta, Rh, VPD, LAI, Pr ETs, ETc Yuan et al., 2010b
7 MODIS ET algorithm (PM-MOD16) Rn, Ta, Rh, VPD, LAI, Tmin ETs, ETc, ETi Mu et al., 2011
8 Bio-meteorological approach based on Priestley–Taylor equation (PT-JPL) Rn, Ta, Tmax, VPD, NDVI ETs, ETc, ETi Fisher et al., 2008

ET, total evapotranspiration; ETA, the atmospheric control component; ETE, the energy control component; ETs, soil evaporation; ETc, canopy transpiration; ETi, interception
evaporation.
Forcing variables are Rn: net radiation; Ta: air temperature; Tmin: minimum air temperature; Tmax: maximum air temperature; Rh: relative humidity; NDVI: normalized
difference vegetation index; Rg: solar radiation; VPD: vapor pressure deficit; Ws: wind speed; LAI: leaf area index; Pr: atmospheric pressure.
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Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS
ASCII data generated from MODIS Collection 5 data (http://daac.
ornl.gov/MODIS/) was used in this study. The resolution of the
MODIS LAI (MOD15A2) and MODIS NDVI (MOD13A2) is
1 � 1 km. Only the LAI and NDVI values of the pixels containing
the towers were used. Quality control (QC) flags, which contain
cloud contamination for pixels, were examined reject the data with
poor quality. Finally MODIS LAI and NDVI data with the interval of
eight days for each flux site were produced.

The runoff measurements at eleven river basins used in the
water balance approach were collected from the Hydrological
Year Book (Fig. 1, Table 3).

2.2. Data at regional scale

To estimate regional ET, Rg, Rn, Ta, Rh, Ws, VPD, Pr, Tmax and Tmin

datasets from the Modern Era Retrospective–Analysis for Research
and Applications (MERRA, Global Modeling and Assimilation
Office, 2004) were used. MERRA is the National Aeronautics and
Space Administration (NASA) reanalysis for the satellite era that
uses the new version of the Goddard Earth Observing System
Data Assimilation System Version 5 (GEOS-5). Details about the
MERRA dataset are available at the NASA website (http://gmao.
gsfc.nasa.gov/research/merra). The precipitation (P) data were
obtained from the National Climate Center of China
Meteorological Administration. We used the thin-plate spline
(Hutchinson 1995, 2004) on the 600 meteorological sites to get
the precipitation over China at a spatial resolution of 0.1� latitude
and longitude for the period, 1982–2009 (Yuan et al., 2014).

Satellite-based vegetation index (NDVI) was used to indicate
the vegetation conditions in the six ET models (i.e. ANN, RT,
SVM, Reg1 and Reg2) and calculate the energy partition (PT-JPL).
Satellite-based LAI was used to calculate the canopy resistance in
the RRS-PM and PM-MOD16. This study used the MODIS LAI and
NDVI datasets and Advanced Very High Resolution Radiometer
(AVHRR) to calculate the combined LAI and NDVI from 1982 to
2009. The spatial resolution of AVHRR Global Inventory Modeling
and Mapping Studies (GIMMS) NDVI is based on a composite of
monthly maximum values of biweekly data with a 0.0727� spatial
resolution and covers the period from 1982 to 2006. The monthly
NDVI data aggregated from the 16-day MODIS NDVI (MOD13A2)
data at 1-km spatial resolution from 2000 to 2009 was used in this
study. The QC flags were used to judge the quality of the NDVI data
and then rejected the poor quality NDVI data. To be consistent with

http://daac.ornl.gov/MODIS/
http://daac.ornl.gov/MODIS/
http://gmao.gsfc.nasa.gov/research/merra
http://gmao.gsfc.nasa.gov/research/merra


Table 3
Hydrological stations and river basins used in this study.

ID Site name River basin Lat (�N) Long (�E) Ele (m) Area (km2) Tann (�C) Pann (mm) Obs periods

I Ha erbin Songhua River 45.79 126.58 118 379,079 15.13 1012.55 1982–2004
II Tie ling Liao River 42.32 123.83 59 129,421 12.29 1131.26 1982–2004
III Shi zhali Hai River 40.21 114.66 805 22,487 8.06 579.14 1982–2004
IV Guan tai Hai River 36.36 113.87 648 16,797 �2.01 564.11 1982–2004
V Zhang jiashan Yellow River 34.66 108.58 360 43,173 7.43 472.33 1982–2009
VI Wen jiachuan Yellow River 38.48 110.75 760 8476 5.59 464.89 1982–2009
VII Liu jiahe Yellow River 36.56 108.76 1153 7429 5.58 518.58 1982–2009
VIII Beng bu Huai River 32.95 117.37 11 121,330 6.84 400.26 1999–2008
IX Da tong Yangtze River 30.77 117.62 1 1,705,383 6.86 1518.82 2001–2006
X Wu zhou Pearl River 23.47 111.33 64 327,006 0.91 355.37 1982–2004
XI Za musi Inland River 37.7 102.57 2248 851 8.65 532.73 1982–2005

Lat: latitude; Long: longitude; Ele: elevation; Area: watershed area; Tann: annual mean temperature; Pann: annual mean precipitation; Obs periods: observation periods.
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the spatial resolution of the AVHRR NDVI data, MODIS NDVI data
were first spatially aggregated to a resolution of approximately
0.0727�. The procedures following the method of Zhang et al.
(2008) were used to combine the two series: (1) a simple linear
regression was used to regress the monthly MODIS NDVI on corre-
sponding AVHRR NDVI from 2000 to 2006; (2) use the regression
equations in step one to adjust the AVHRR NDVI time series and
then calculate an integrated AVHRR–MODIS NDVI monthly time
series from 1982 to 2009 (Chen et al., 2014). 8-day MODIS LAI
(MOD15A2) (Myneni et al., 2002) and monthly AVHRR LAI
(Myneni et al., 1997) were used with the same procedures as those
of NDVI to generate a continuous LAI dataset from 1982 to 2009.

3. Methods

3.1. Evapotranspiration models

Five empirical ET models and three process-based models were
used in this study. These eight models were the representatives of
current various ET estimate methods and they have been cali-
brated and validated at regional even global scales. The five empir-
ical models include an artificial neural network (ANN) model, a
regression tree (RT) model, a support vector model (SVM) and
two models (Reg1 and Reg2) developed by Wang et al. (2007)
and Wang et al. (2010). All measurements needed to be split to
two datasets for model calibration and validation (Irmak et al.,
2003; Tabari et al., 2013; Xu and Singh, 2000; Valipour, 2014a,
2014b, 2015). Half of the measurements from all sites were
selected randomly to train the three machine learning methods
(ANN, SVM and RT), and validate with the other half of the mea-
surements. The three process-based models are a revised
Penman–Monteith model (RRS-PM, Yuan et al., 2010b), MODIS
evapotranspiration algorithm (PM-MOD16, Mu et al., 2011) and a
bio-meteorological approach developed from Priestley–Taylor
equation (PT-JPL, Fisher et al., 2008).

ANN is a machine learning method. It is a modeling tool to solve
not only the linear but also the non-linear multivariate regression
problems. It has three layers: input layer, hidden layer, and output
layer. The ANN adjusts the weight of internal nodes with training
data. The back propagation artificial neural and multilayer percep-
tron (Rumelhart et al., 1986) were used in this study. ANN can rep-
resent any arbitrary nonlinear function given sufficient complexity
of the trained network, and it can find relationships between dif-
ferent input samples. Most importantly, the ANN is able to gener-
alize a relationship from small subsets of the data while remaining
relatively robust in the presence of noisy or missing inputs, and can
adapt or learn in response to changing environments (Dawson and
Wilby, 1998). There are some of the successful applications of back
propagation artificial neural and multilayer perceptron in hydrol-
ogy (Landeras et al., 2008; Valipour et al., 2012, 2013; Li et al.,
2014b).
RT algorithm is a machine-learning method for constructing
prediction models. It recursively partitions a dataset into more
homogeneous subsets to predict class membership (Xiao et al.,
2010). The RT model can handle the non-linear relationship
between predictive and target variables. It also can allow both con-
tinuous and discrete variables. A commercial software called
Cubist which implements a modified regression tree algorithm
was used in this study. It is proved to be a very effective approach
for producing rule-based models (Xia et al., 2014).

SVM represents a useful technique for nonlinear classification,
regression and outlier detection. It is based on the statistical learn-
ing theory and to produce a model which predicts the target values
of the test data. It can generate rules through a training process
with the training data. The characteristic of the SVM is that it
can change nonlinear regression to linear regressions (Vapnik
et al., 1998). It is widely used to approximate regressions due to
its ability to approximate any nonlinear functions, especially when
samples are limited.

The Reg1 model estimates ET using a vegetation index, air tem-
perature and surface net radiation as the dominant variables:

ET ¼ Rn � ða0 þ a1 �NDVIþ a2 � TaÞ ð2Þ

where Rn is net radiation, Ta is air temperature and NDVI is normal-
ized difference vegetation index. It expresses the dependence of ET
variations on the vegetation in the simplest form that is consistent
with the Priestley–Taylor equation while incorporation the influ-
ence on vegetation control on ET. Although it uses the simplest form
to express the influence of the vegetation, it can predict ET through
different surface land cover types and soil moisture contents (Wang
et al., 2007).

The Reg2 algorithm partitions total ET into two components,
the atmospheric control component (ETA) and then energy control
component (ETA, Wang et al., 2010):

ETE ¼
D

Dþ c
� Rg � ½a1 þ a2 � NDVIþ ð1� RhÞ � ða3 þ a4 � NDVIÞ� ð3Þ

ETA ¼
c

Dþ c
�Ws � VPD � ½a5 þ ð1� RhÞ � ða6 þ a7 � NDVIÞ� ð4Þ

ET ¼ a8 � ðETE þ ETAÞ þ a9 � ðETE þ ETAÞ2 ð5Þ

where the D is slope of saturation-to-vapor pressure curve, c is the
psychrometric constant, Rg is the solar radiation, NDVI is normal-
ized difference vegetation index, Ws is wind speed, VPD is water
vapor pressure deficit, and Rh is relative humidity. This method
was developed based on a Penman-based equation. The empirical
coefficients were added to include the function of vegetation and
soil moisture. The vegetation is diagnosed by NDVI term and soil
moisture is diagnosed by (1 � Rh) term (Wang et al., 2010). This
method can estimate ET over different climate conditions.
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Although this method is simple, it can investigate long-term ET
variation in regional ET over the land.

The RRS-PM algorithm is a Penman–Monteith type model mod-
ified by Yuan et al. (2010b). In the RRS-PM model, Beer–Lambert
law was used to partition net radiation between the soil surface
and the canopy (Ruimy et al., 1999):

Rns ¼ Rn � expð�k � LAIÞ ð6Þ

Rnc ¼ Rn � Rns ð7Þ

where Rn is net radiation, Rns is net radiation to the soil, Rnc is net
radiation to the canopy, LAI is leaf area index, and k is extinction
coefficient (0.5). The temperature constraint controlling the stom-
atal conductance uses the equation expressed by June et al.
(2004) and in PT-JPL from Fisher et al. (2008):

mT ¼ exp � Ta � Topt

Topt

� �2
 !

ð8Þ

where Ta is air temperature, Topt is optimum temperature. This
method was proved to improve the ET estimates effectively than
the original RS-PM algorithm (Yuan et al., 2010b; Yuan et al., 2012).

The PM-MOD16 algorithm developed by Mu et al. (2011) is
another Penman–Monteith type model. The total ET is sum of soil
evaporation (ETs), canopy transpiration (ETc), and interception
evaporation (ETi). It was developed based on the Penman–
Monteith equation (Monteith, 1965) after adapting by Cleugh
et al. (2007):

LE ¼ DRn þ qCpðesat � eÞ=ra

Dþ cð1þ rs=raÞ
ð9Þ

where LE is the latent heat flux, q is air density, Cp is the specific
heat capacity of air, ra is the aerodynamic resistance, rs is the
surface resistance. Mu et al. (2011) modified their ET algorithm
published in 2007 mainly by simplifying the vegetation cover frac-
tion estimations; calculating total ET as the sum of daytime ET and
nighttime ET; adding the calculation of soil heat flux; improving
estimates of aerodynamic resistance, boundary layer resistance
and stomatal conductance; and separating the dry canopy from
the wet one and dividing the soil into moist (ETs_moist) and saturated
wet (ETs_wet) surfaces (Mu et al., 2011):

ETc ¼
ðD � Rnc þ q � Cp � ðesat � eÞ=raÞ � ð1� FwetÞ

Dþ cð1þ rs=raÞ
ð10Þ

ETs moist ¼
ðD �Rnsþq �Cp � ð1�FcÞ � ðesat�eÞ=rasÞ � ð1�FwetÞ

Dþc � rtot=ras
� ðRhÞVPD=b

ð11Þ

ETs wet ¼
ðD � Rns þ q � Cp � ð1� FcÞ � ðesat � eÞ=rasÞ � Fwet

Dþ c � rtot=ras
ð12Þ

ETs ¼ ETs moist þ ETs wet ð13Þ

ETi ¼
ðD � Rnc þ q � Cp � ðesat � eÞ=rhrcÞ � Fwet

Dþ Pa �Cp �rvc
k�e�rhrc

ð14Þ

ET ¼ ETc þ ETs þ ETi ð15Þ

where Fc is vegetation cover fraction, ras is the aerodynamic resis-
tance at the soil surface, rtot is the total aerodynamic resistance to
vapor transport, rhrc is the aerodynamic resistance on the wet
canopy surface, and rvc is the wet canopy resistance.

The PT-JPL algorithm was developed by Fisher et al. (2008) and
was based on the Priestley and Taylor (1972) equation. It contains
dynamic coefficients estimated from vegetation indices and atmo-
spheric moisture to estimate actual ET. The total ET is partitioned
into soil evaporation, canopy transpiration, and interception evap-
oration. Every component is calculated based on the Priestley–
Taylor equation by adding the corresponding ecophysiological
constraints:

ET ¼ ETs þ ETc þ ETi ð16Þ

ETs ¼ ðf wet þ f SMð1� f wetÞÞa
D

Dþ c
ðRns � GÞ ð17Þ

ETc ¼ ð1� f wetÞf gf T f Ma
D

Dþ c
ðRnc � GÞ ð18Þ

ETi ¼ f weta
D

Dþ c
Rnc ð19Þ

where f wet is relative surface wetness, f SM is soil moisture
constraint, f g is green canopy fraction, f T is plant temperature
constraint, f M is plant moisture constraint.

3.2. Bayesian Model Averaging (BMA)

BMA method was used in this study to combine single ET mod-
els to estimate terrestrial ET. The BMA method thinks about a
dependent variable y, the training data yT , and the ensemble of
all members’ predictions Xfx1; x2; . . . ; xKg. In this study, y refers to
the ensemble ET and K indicates the number of ET models. Based
on the law of total probability, the probability density function
(PDF) can be expressed as

pðyjx1; x2; . . . ; xKÞ ¼
XK

k¼1

pðyjxkÞ � pðxkjyTÞ ð20Þ

where pðyjxkÞ is the predictive PDF given by the simulation of xk

alone and pðxkjyTÞ is the posterior probability of the model predic-
tion xk. yT is the target data. Identifying pðxkjyTÞ is a fractional sta-
tistical weight wk. The magnitude of the weight reflects how well
xk matches yT , and

PK
k¼1wk ¼ 1. Eq. (20) can be expressed as

pðyjx1; x2; . . . ; xKÞ ¼
XK

k¼1

pðyjxkÞ �wk ð21Þ

Before the BMA method is used, it is reasonable to assume that
pðyjxkÞ is a Gaussian distribution defined by a mean xk and a vari-
ance x2

k (Duan and Phillips, 2010; Raftery et al., 2005).

pðyjxkÞ ¼ gðyjhkÞ ð22Þ

where g refers to Gaussian distribution and hk ¼ fxk;x2
kg donates

parameter vector.
Combining Eqs. (21) and (22), the PDF of the BMA probabilistic

prediction of y can be expressed as:

pðyjx1; x2; . . . ; xKÞ ¼
XK

k¼1

gðyjhkÞ �wk ð23Þ

The log-likelihood function l was used to obtain both Bayesian
weights wk and parameter vectors hk because it is more convenient
to compute than the likelihood function itself. l is approximated as

lðh1; h2; . . . ; hkÞ ¼
X
ðs;tÞ

log
XK

k¼1

gðys;t jhkÞ �wk

" #
ð24Þ

where
P
ðs;tÞ is the summation of ET observations at points s, and ys;t

refers to target data at location s and time t. The BMA method will
estimate the weights wk and parameter vectors hk through maxi-
mizing the log likelihood function l (Duan and Phillips, 2010).

Before the BMA implementation, a simple linear regression was
used to remove the bias in each model, and both of ET observations



542 Y. Chen et al. / Journal of Hydrology 528 (2015) 537–549
and simulations were pre-processed using the Box–Cox transfor-
mation prior to the BMA procedure to make them close to the
Gaussian distribution (Duan et al., 2007; Vrugt and Robinson,
2007; Sloughter et al., 2010; Madadgar and Moradkhani, 2014).

3.3. Water balance equation

ET estimates were validated over the regional scale based on
the regional water balance equation. ET can be estimated by the
total precipitation, P, the runoff, R, and the change of water storage,
DS (Verstraeten et al., 2008):

ET ¼ P � R� DS ð25Þ

Over large areas, the DS was often neglected at the annual time
scale so that ET can be estimated from the observation of the pre-
cipitation and runoff (Hobbins et al., 2004; Teuling et al., 2009;
Mueller et al., 2011). Therefore, the precipitation and runoff were
used to calculate ET on the watershed scale.

3.4. Statistical analysis

A linear model was used to analyze regional trends in ET
(zt = bxt + y0, Zhang et al., 2009; Chen et al., 2014), where t is the
time, b is the slope and y0 is the intercept of the regression line.
SE(b) is the standard deviation of b. When |b/SE(b)| < 1.0, the trend
is weak; when 1.0 6 |b/SE(b)| 6 t0.05 (t0.05 is the 5% critical value of
Student’s t-distribution), the trend is moderate; and when
|b/SE(b)| P t0.05, the trend is statistically significant and strong.
These categories were further stratified into six classes according
to the slopes of the statistical trends: positive weak, positive
moderate, positive strong, negative weak, negative moderate, and
negative strong.

Four metrics were used to evaluate model performance. The
coefficient of determination (R2) represents how much the model
can explain the variations in the observations. The root mean
square error (RMSE) quantifies the difference between simulations
and observations. The Kling–Gupta efficiency (KGE) was used to
assess the model performance comprehensively (Gupta et al.,
2009). The KGE is calculated as:

KGE ¼ 1� ED ð26Þ

ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � 1Þ2 þ ða� 1Þ2 þ ðb� 1Þ2

q
ð27Þ

a ¼ rs=ro ð28Þ

b ¼ ls=lo ð29Þ

where ED is the Euclidian distance from the ideal point, r is the cor-
relation coefficient between the simulations and the observations,
lo and ro are the mean and standard deviation of the observations,
ls and rs are the mean and standard deviation of the simulations, a
is a measure of the relative variability in the simulated and
observed values, and b is the ratio of the mean values of simulations
and observations. Without any simulation errors, the values of the
three components are, r ¼ 1, a ¼ 1, and b ¼ 1. In this condition,
KGE value is 1.

3.5. Model selection

Two ensemble strategies were compared in this study: an
ensemble with all models (BMA_All) and an ensemble with the
selected models (BMA_Best). There are 247 different combinations
(the full array of C2

8 þ C3
8 þ C4

8 þ C5
8 þ C6

8 þ C7
8 þ C8

8) of eight models
on the premise that there are at least two models participating
the ensemble in each strategy. The models were selected according
to the KGE values which comprehensively included the informa-
tion of the bias, RMSE and R2. The best strategy named as
BMA_Best which had the highest KGE value at the calibration EC
sites. In this study, BMA-Best is not the combination of the best
individual models. This study aims to improve the accuracy of ET
estimates, therefore BMA-Best is the combination of several mod-
els and achieves the best ET estimates according to KGE value. The
weights of all eight ET models were determined by randomly
selecting half of the measurements and other half of the measure-
ments were used to validate the BMA model. The weights and
models in the BMA_Best were used to merge ensemble at the val-
idation sites and calculate the regional ET over China.

3.6. Box–Cox transformation

Before we applied BMA, a Box–Cox transformation was first
used on both the ensemble members and observations. The
Box–Cox transformation is given as follows:

Lt ¼
yk

t � 1
k

; ðk–0Þ

Lt ¼ logðytÞ; ðk ¼ 0Þ
ð30Þ

where yt is the original variable, Lt is the transformed variable, k is
the Box–Cox coefficient. We derive a common optimal estimate of k
for all ensemble members and the observations (Duan et al., 2007).
4. Results

4.1. Model validation

The performances of all 8 models were examined at 23 EC sites.
At a given site, the worst model was recorded as ‘one’ according to
the bias values and KGE values, and the best model was given
‘twelve’ points (Fig. 2). It should be noted that some models have
the middle performance over all 23 EC sites, such as Reg1. On
the contrary, other models showed a high performance at some
sites but a poor performance at other sites. For example,
PM-MOD16 has the largest bias at 6 EC sites and has the smallest
bias at 4 EC sites (All of these sites are CRO sites). PT-JPL has the
largest KGE on 7 sites (Two MF sites, two GRA sites, two CRO sites
and one EBF site) and has the smallest KGE on 6 sites (Six different
vegetation types). The ensemble methods ranked better than single
models almost on all sites. The KGE of BMA_Best arranged at first
three on almost half sites. These results highlighted the necessity
of using the BMA method to estimate ET.

The empirical models showed the negative KGE values at sev-
eral sites (i.e. CN-Mau, CN-Qya and CN-Tyc). There were less than
one-year measurements at the three sites and which have been
separated for training and validating models. Only a small quantity
of measurements was used to training empirical models, and few
of information was included into the models. Therefore, the poor
model performance was found at these sites.

The comparison of BMA ET estimates (ETe) and observed ET
(ETo) at the EC sites showed that the BMA method performed bet-
ter than all individual models (Fig. 3). However, ensemble with all
models (BMA_All) was not the best strategy compared with
ensemble by selected models (BMA_Best). The model performance
was examined on all possible combinations of multiple models and
found that an ensemble with four models (Reg2, PT-JPL, RRS-PM,
and PM-MOD16), primarily physically-based, showed the best
model performance (Fig. 3). Although the R2 value for the
BMA_Best was lower (Fig. 3b) and the bias value of BMA_Best
was higher (Fig. 3c) than some single-methods in the ensemble,
no single-method was better than BMA_Best on both R2 and bias
value. In addition, the RMSE of ensemble at most EC sites were



Fig. 2. The performance rank of ET models at 23 EC sites according to bias (a) and KGE (b). The site ID indicates 23 EC sites (see Table 1). The color bar indicates the record, and
the one and twelve represent the worst and best model performance, respectively. The numbers on the left sides of color bar indicate the average score of model performance.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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much lower than single-methods in ensemble (Fig. 3c). Overall, the
BMA_Best has the best performance considering both of R2 value,
bias, and RMSE comprehensively. The RMSE of BMA_Best is
decreased 4% compared with the lowest RMSE single model. The
KGE values (increased by 4% compared with the highest KGE single
model) indicated that the BMA ensemble method improved the
accuracy of ET estimates (Fig. 3a). The BMA results were compared
with the simple mean and Bates–Granger methods (Bates and
Granger, 1969). The results showed that BMA had a better result.
The frequency distributions of the predictive errors also showed
that two BMA estimates substantially improved the estimation
accuracy (Fig. 4). For example, BMA_All estimates increased the
percentage of errors around zero and decreased large positive
and negative errors.

The BMA_Best has a good performance at both the calibration
and validation EC sites (Fig. 5). The BMA_Best can explain 80%
and 75% of the observed variations of ET at the calibration and val-
idation sites, respectively (Fig. 5), and the KGE and RMSE are 0.85
and 0.60 mm/day at the validation sites. The results showed that
the BMA_Best strategy can capture the ET variance and has a good
model performance.

Two ensemble experiments with different strategies showed
that the ensemble performance was influenced by the selected
models (Fig. 6). In the first experiment, five empirical models
(ANN, SVM, RT, Reg1, and Reg2) were merged by BMA method
and then the process-based models (RRS-PM, PM-MOD16, and
PT-JPL, see Fig. 6a) were added. In the second experiment, the three
process-based models were merged by BMA method and then the
empirical models were added (Fig. 6b). The results showed signif-
icant differences between groups in these two experiments. The
performance of the BMA method had a significant improve with
the increasing amount of process-based models and had a signifi-
cant decline with the increasing amount of empirical models in
the ensemble strategy.

The comparison of the water balance principle estimates and
BMA estimates over the eleven river basin scales was shown in
Fig. 7. On average, the BMA_Best ET estimates explained 86% of
variations of annual ET over the eleven watersheds, and the
RMSE is 169 mm/year. According to the R2 and RMSE, the spatial
results calculated from the BMA method were reliable through
the verification of a water balance approach.

4.2. Spatial and temporal patterns of ET

The spatial ET calculated from the BMA_Best strategy indicated
the increasing ET from northwest to southeast China (Fig. 8a) and
the averaged ET over all of China is 625 ± 10 mm/year. The annual
mean ET was found to be lowest in cold and arid regions, interme-
diate at temperate regions, and highest over the humid tropics
(<23.43�N) and sub-tropics (23.5–40�N). Large areas showed that
strongly increasing ET accounted for approximately 40% of China
(Fig. 8b). In particular, 61% of the area in China showed positive
ET trend and only 39% of China in the northwest showed negative
trends. Average ET had different spatial distribution and trend



Fig. 3. Comparison of simulations of 8 models and ensemble methods at 23 EC sites. (a) KGE and the weights for BMA_All and BMA_Best (Pie charts), (b) R2, (c) bias and (d)
RMSE.

Fig. 4. The frequency distributions of the model errors of BMA_Best (Merge
selected models) and BMA_All (Merge all models). The grey shades indicate the
range of the eight models used in the BMA method (the difference between
maximum and minimum values of eight models).
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pattern compared with the single models. It was less than PT-JPL in
the northern China and larger than RRS-PM and PM-MOD16 in the
southern China (Chen et al., 2014). Large model differences
occurred in southwest China and Northeast China showed small
model differences in annual mean ET (Fig. 8c).

The ensemble ET had a significant increase in China from 1982
to 2009 with the trends of 0.4 mm/year (Fig. 9b). Please note that
the El Niño years were not considered when analyzing the ET
trend. The eight models have large range for annual mean ET of
China and the BMA_ET is the range of the eight single models
(Fig. 9a). The long-term change of the ensemble ET was consistent
with some single models such as SVM, Reg1, Reg2 and RRS-PM.
They all showed significant increase in ET (Chen et al., 2014).
Moreover, ET increased sharply in the El Niño years (i.e. 1990
and 1998).
5. Discussion

The BMA method successfully improved the ET estimate
accuracy with increased KGE compared to the single models by



Fig. 5. The 8-day observed evapotranspiration ETo at EC sites versus the predicted ET from the ensemble ETe. The solid line is the 1:1 line and the short dashed lines are the
regression lines.

Fig. 6. The comparison of Bayesian Model Averaging (BMA) method performance for various models combinations. (a) Indicates the comparison based on five empirical
models (ANN, SVM, RT, Reg1, and Reg2), and (b) based on three processes-based models (RRS-PM, PM-MOD16, and PT-JPL). The numbers in the x-axis refers to the numbers of
ET models for BMA ensemble. The letters above the bars indicate the significance of the differences between different BMA ET models combinations. The numbers above each
bar indicate the numbers of the BMA ensemble combinations with the same ET model numbers. For example, the number ‘‘3’’ above the second bar in Fig. 6a means there are
3 BMA ensemble combinations of that have 6 ET models.

Fig. 7. Comparison of the ET estimated by BMA (ETe) and ET calculated by the water
balance approach (ETWB) over the 11 river basins. Open dots represent annual mean
ET for each site-year.
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8–23%. The results of this article indicate that the performance of
member models strongly impacts the accuracy of the ensemble
estimates. Other lines of studies support the conclusion that model
performance of ensembles relies on the accuracy of the individual
members (Hansen and Salamon, 1990). Fig. 6 showed that the poor
models will decrease the accuracy of BMA estimates, therefore
numerous studies only selected several models with the high per-
formance for multiple model ensemble simulations (Wichard,
2006; Wang and Overland, 2012).
The performance of the ensemble estimates was not only eval-
uated at EC sites but also on the spatial scale based on the water
balance principle. Eleven river basins with different sizes were
used in this study. The results show a good performance over the
most of river basins, but the discrepancies between predicted ET
by BMA method (ETe) and estimated ET by water balance equation
(ETwb) still occurred mainly over the several basins especially with
large watershed area (i.e. Da tong) (Fig. 7). Uncertainty of ET esti-
mates by BMA method probably is one of the important reasons.
Moreover, the accuracy of interpolated precipitation dataset also
plays an important role for estimating regional ET based on the
water balance equations. Previous study highlighted that the cur-
rent interpolated precipitation datasets show the low performance,
and which will impact the evaluation of regional water balance
(Yuan et al., 2014; Fu et al., 2015).

The BMA estimate of annual mean ET over China was
625 ± 10 mm/year, which was comparable to other estimates, such
as LandFlux-EVAL ET and MERRA ET. For the eight models in this
study, the estimated mean annual ET ranged from 500 to
851 mm/year (Fig. 10). Based on the various ET models, other stud-
ies reported 797 mm/year (Liu et al., 2008), 443 mm/year (Zhou
et al., 2009), and 500 mm/year (Li et al., 2014a). This study calcu-
lated China’s average ET of the LandFlux-EVAL synthesis ET. It
included four kinds of merged synthesis products: single ET cate-
gories only (LandFlux-EVAL Diagnostic), land surface models ET
(LandFlux-EVAL LSM), reanalyses ET (LandFlux-EVAL Reanalyses)
and from all the three categories (LandFlux-EVAL synthesis All
ET) (Mueller et al., 2013). China’s average ET from four kinds of
LandFlux-EVAL ensemble methods changed from 406 mm/year to



Fig. 8. The spatial distribution of ET estimates derived by BMA. (a) Mean annual ET from 1982 to 2009; (b) Long-term ET trend from 1982 to 2009; (c) Difference of maximum
and minimum ET estimates among eight models. The rectangle #1 indicates the Tibetan Plateau area, and the rectangle #2 indicates Tianshan Region.

Fig. 9. The interannual variability of the ET simulations of the ensemble (black
dots) and the range of the eight models (grey shadows) from 1982 to 2009. The
range indicates the difference of the maximum and minimum ET estimates among
the eight models. The open circles in (b) indicate the El Niño years.
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572 mm/year. The annual mean ET was larger than LandFlux-EVAL
ensemble methods and mostly closed to the LandFlux-EVAL
reanalyses ET which contained the MERRA reanalysis in the
ensemble (Mueller et al., 2011). The BMA ensemble results were
similar to the MERRA ET. This may be because this study used
the MERRA datasets as the input data.

The long-term variance trend of ET agreed with the results of
other estimates (Cong et al., 2008; Zhou et al., 2009). For example,
Cong et al. (2008) found that the evaporation has increased since
1980 and Zhou et al. (2009) found that China’s annual average ET
nationwide increased during the 1990s. Fig. 9 clearly demonstrated
the largest ET estimates at two El Niño years, 1990 and 1998. El
Niño caused heavy rainfall in southern China and the flood in
1998 (Lau and Weng, 2001). The water supply during El Niño
was more than that in other years. This contributed to the larger
ET estimates during El Niño. Other lines of studies also supported
this conclusion on the higher ET over regional scales at El Niño
years (Simpson et al., 1993; Dai et al., 1997; Dai and Wigley,
2000; Jung et al., 2010).

The pattern of ET (Fig. 9) at the regional scale is similar to the
precipitation pattern in other studies (Qian and Lin, 2005). This is
because the change in precipitation played a key role in the change
of the estimated ET for most parts of China (Gao et al., 2007). The
increasing ET trend in the southern of Tibetan Plateau and
Tianshan region may be caused by the increasing melting of snow
and glaciers (Xu et al., 2008; Li et al., 2011). The large area in the
Tibetan Plateau showed the decreased ET trend. The plain of



Fig. 10. The mean annual averaged ET for the different models and methods. MERRA is the reanalysis ET product of Modern Era Retrospective–Analysis for Research and
Applications (MERRA) (Bosilovich, 2008). The LandFlux-EVAL synthesis ET included four kinds of merged synthesis products. They were created from single ET categories only
(diagnostic ET data sets (LandFlux-EVAL Diagnostic), land surface models (LSMs) ET (LandFlux-EVAL LSM) and reanalyses ET (LandFlux-EVAL Reanalyses)), and from all three
categories (LandFlux-EVAL synthesis All ET) (Mueller et al., 2013).
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North China has decreasing precipitation (Menon et al., 2002) and
increasing ET because of the increasing temperature and radiation
(Chen et al., 2014).

Satellite-based data is one of the important inputs of ET models
in this study. There are no attempts to improve the quality of the
satellite-based data, therefore, any noises of satellite-based data
would have been transferred to ET estimates. For example,
MODIS NDVI was produced by Terra surface reflectance after cor-
recting for the impacts of cloud contamination, aerosols, and ozone
absorption. NDVI noises and errors are inevitable at the flux tower
footprint scale, and which will contribute proportionally to ET
prediction.

An accurate ET estimation, especially at regional scales, is criti-
cal for improving water and land resource management, weather
and climate forecasts, drought detection and assessment, predic-
tions of agricultural productivity, and regional hydrological appli-
cations. Remote sensing is a useful tool for these studies which
need the data over heterogeneous surfaces. In this study, BMA
method was used to merge the satellite-based models to get ET
productions in China. The Bayesian ET estimates are very useful
for future studies to characterize the water availability of terres-
trial ecosystems, the assessment of climate change impacts, and
to provide guidance to the agriculture in China.
6. Conclusions

BMA outperforms the best participating single models of the
eight models. Two ensemble strategies were used: BMA_All and
BMA_Best. The validation results showed that the BMA estimates
are closer to the observations than each models individually.
BMA_Best strategy performed better than BMA_All at most EC
sites. The regional ET calculated from the BMA_Best strategy
showed an increasing ET from northwest to southeast China. The
results showed an increasing ET trend in most of China from
1982 to 2009. The mean annual ET over terrestrial ecosystem in
China is 625 ± 10 mm/year. The regional water balance analysis
showed that the regional calculations of ensemble ET were reliable.
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