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Abstract— The Soil Moisture Active Passive (SMAP) mis-
sion provides a global surface soil moisture (SM) product at
36-km resolution from its L-band radiometer. While the coarse
resolution is satisfactory to many applications, there are also
a lot of applications which would benefit from a higher reso-
lution SM product. The SMAP radiometer-based SM product
was downscaled to 1 km using Moderate Resolution Imaging
Spectroradiometer (MODIS) data and validated against airborne
data from the Passive Active L-band System instrument. The
downscaling approach uses MODIS land surface temperature
and normalized difference vegetation index to construct soil
evaporative efficiency, which is used to downscale the SMAP SM.
The algorithm was applied to one SMAP pixel during the
SMAP Validation Experiment 2015 (SMAPVEX15) in a semiarid
study area for validation of the approach. SMAPVEX15 offers
a unique data set for testing SM downscaling algorithms. The
results indicated reasonable skill (root-mean-square difference
of 0.053 m3/m3 for 1-km resolution and 0.037 m3/m3 for
3-km resolution) in resolving high-resolution SM features within
the coarse-scale pixel. The success benefits from the fact that
the surface temperature in this region is controlled by soil
evaporation, the topographical variation within the chosen pixel
area is relatively moderate, and the vegetation density is relatively
low over most parts of the pixel. The analysis showed that
the combination of the SMAP and MODIS data under these
conditions can result in a high-resolution SM product with an
accuracy suitable for many applications.

Index Terms— Land surface temperature (LST), Moderate
Resolution Imaging Spectroradiometer (MODIS), normalized
difference vegetation index (NDVI), Passive Active L-band
System (PALS), soil moisture (SM), Soil Moisture Active
Passive (SMAP).
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I. INTRODUCTION

SOIL moisture (SM) has a critical role in water and energy
balance processes at the interface between the land surface

and atmosphere. It determines the partitioning of the incoming
solar and atmospheric radiation into latent, sensible, and
ground heat fluxes, and the partitioning of the precipitation
into surface runoff and infiltration. It has an important
impact on agricultural and irrigation management practices,
food production, and the organization of natural ecosystems
and biodiversity. Low-frequency passive microwave remote
sensing has been established as the primary tool for global
retrieval of SM due to its sensitivity to subsurface SM and
relative insensitivity to vegetation [1]. The NASA Soil Mois-
ture Active Passive (SMAP) [3] and European Space Agency
Soil Moisture Ocean Salinity (SMOS) [2] missions utilize
L-band radiometers to map global SM every 2–3 days. Both
missions use instrument technologies that result in aperture
sizes that provide data with a spatial resolution of about
40 km [4], [5]. However, many applications would benefit
from significantly finer spatial resolution (see [6]). SMAP
also originally included an L-band synthetic aperture radar
at 1–3-km resolution, which was intended to downscale the
radiometer-based SM measurements to a 9-km resolution [7].
However, the radar failed after about three months of
operation. In this letter, an alternative downscaling approach
is applied to SMAP data.

Several approaches have been proposed for SM downscal-
ing. Some of them use fine-resolution microwave measure-
ments (see [8], [9]), and some use measurements at opti-
cal wavelengths (see [10]–[13]). These algorithms include
approaches where thermal infrared land surface tempera-
ture (LST) signatures are used as the main source of infor-
mation to disaggregate the coarse-resolution SM pixels into
finer ones. The algorithm applied in this letter to downscale
the coarse-resolution SMAP radiometer-based SM product
is based on the relationship between soil evaporative effi-
ciency (SEE) and SM [14]. In [15], an operational algorithm
for SMOS downscaling with Moderate Resolution Imaging
Spectroradiometer (MODIS) data using the SEE–SM relation-
ship was presented.

In order to assess the quality of the downscaled SM values,
reference SM observations are required. In situ measurement
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networks are typically used in SM validation. However, they
are not optimal for assessing the spatial patterns that the
downscaling approaches are set to resolve. Problems arise
from resolution cell representation, station-to-station biases,
and consistency of data records. A more robust approach
is to use a higher resolution remote-sensing instrument to
capture the spatial patterns. Airborne microwave radiometers
at L-band frequency can achieve much finer resolution than
that of their spaceborne counterparts. A field experiment
for SM validation of SMAP was conducted in Southern
Arizona in August 2015 called SMAP Validation Experi-
ment 2015 (SMAPVEX15). In this experiment, an airborne
L-band instrument Passive Active L-band Sensor (PALS) was
deployed to measure an area consisting of three SMAP pixels
on seven days. The SMAPVEX15 data set offers a uniquely
appropriate reference SM data set for testing the algorithm
for two reasons. First, the SM disaggregation methods utilizing
LST perform optimally when the surface temperature is mainly
controlled by soil evaporation. This is generally the case
in the SMAPVEX15 domain. Second, testing a downscaling
algorithm requires some spatial heterogeneity in the measured
SM fields. The experiment was designed to coincide with
the North American monsoon, which resulted in small-scale
convective precipitation events that created very heterogeneous
scenes in terms of SM [16].

Here, we present the results of SMAP SM product down-
scaling using MODIS data over the SMAPVEX15 domain and
validation with the PALS 1-km SM measurements.

II. DISAGGREGATION ALGORITHM

The higher resolution SM is estimated using the difference
between the high-resolution SEE and average SEE within
the coarser-scale pixel. This difference is multiplied by the
relationship of SM and SEE before adding to the SM retrieved
with SMAP

SM = SMSMAP + ∂SM

∂SEE
(SEE − 〈SEE〉C ) (1)

where SMSMAP is the SMAP SM for the pixel (coarse reso-
lution) [m3/m3]; ∂SM/∂SEE is the partial derivative of SM
evaluated with respect to SEE [m3/m3]; SEE denotes SEE at
the 1-km resolution [–]; and 〈SEE〉C is the spatially averaged
SEE [−], in which C stands for coarse scale. SEE is estimated
as follows:

SEE = Ts,max − Ts

Ts,max − Ts,min
(2)

where the soil skin temperature [K] is defined as

Ts = TMODIS − fv (Tv,min + Tv,max)/2

1 − fv
(3)

and the end members of soil (subscript s) and vegetation
(subscript v) temperature Ts,min, Ts,max, Tv,min, and Tv,max are
estimated as described in the following. TMODIS stands for
the altitude-corrected LST from MODIS [K], and fv is the
fractional vegetation cover [-] estimated as follows:

fv = NDVIMODIS − NDVIs

NDVIv − NDVIs
(4)

where NDVIMODIS is the normalized difference vegetation
index from MODIS [-], and NDVIs and NDVIv stand for
NDVI fraction for bare and full vegetation cover, respectively.
The altitude effect on the surface temperature is accounted
for within each pixel using a coefficient of 6 °C/km as given
in [17].

The end members of the temperature range are determined
within the coarse-scale pixel following the approach presented
in [17], accounting for the fact that the selected pixel in
the SMAPVEX15 domain has a generally low amount of
vegetation with fv < 0.5

Ts,min = min(TMODIS)

Tv,min = min(TMODIS)

Ts,max = max(TMODIS)

Tv,max = max (
TMODIS − Ts,max(1 − fv )

fv
). (5)

A critical part in the algorithm is the estimation of
∂SM/∂SEE. In this letter, the following approximation was
used:

∂SM/∂SEE = a
1

N

N∑

i=1

SMSMAP,i

〈SEE〉C,i
(6)

where N is the number of days and a is an experimental
tuning parameter; a = 0.5 was used in the subsequent analysis.
The partial derivative could have been resolved from linear
regression between SEE and SM if the time series had been
longer, but with the available time period, these results turned
out to be unreliable. This led to simpler approach used here.
The tuning parameter a was introduced to enable the investiga-
tion of the sensitivity of the SEE-based downscaling approach
to SM variation without the influence of the additional error
sources.

III. DATA

A. SMAPVEX15 and PALS Soil Moisture Data

The SMAPVEX15 field experiment was carried out
in Southern Arizona, USA, (31.7°N, 110.3°W) between
August 2 and 18, 2015 [16]. The objective of the experi-
ment was the validation of SMAP SM products, particularly
to obtain a data set for assessment of spatial downscaling
techniques. The campaign domain extended over three 36-km
SMAP pixels that were covered with the airborne PALS
instrument seven times. In situ SM measurements consisted
of a permanent network that was augmented with a temporary
network and manual sampling. The location and timing of the
experiment were chosen to capture spatially heterogeneous SM
conditions. In this region, the North American monsoon gen-
erates small-scale convective storms that can result in highly
variable SM [18]. The landscape of the region is characterized
by shrub and grass rangeland. The domain includes significant
variation in elevation with lowest points at about 1000 m above
mean sea level (MSL) and mountains reaching 2600 m above
MSL. This has a notable impact on the LST distribution, and
subsequent SM, across the domain. Fig. 1 shows the digital
elevation model (DEM) and NDVI on August 2, 2015 based
on MODIS. The analysis in this letter focuses on the SMAP
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Fig. 1. SMAPVEX15 experimental domain. (a) DEM. (b) NDVI on
August 2, 2015. The square denotes the S-km pixel used in the analysis
and contours show the areas with elevation higher than 1500 m.

pixel outlined in the figure with a square. Within this particular
pixel area, the elevation variation and amount of vegetation are
moderate. See [16] for more details about the experimental
domain.

The PALS instrument collects coincident (in time and place)
radar and radiometer measurements [19]. Both measurements
are obtained through the same antenna in a fast-switching
sequence. PALS has been used in several SM studies in
the past in various configurations (see [20]–[24]). During
SMAPVEX15, PALS was installed on a dc-3 aircraft. For
SMAPVEX15, the flights were made at an altitude of 2300 m
above ground. The instrument provides a footprint of 1100 m
(along scan) by 1500 m (radially) on the ground with an
effective resolution of about 1200 m (square root of the area
of the footprint ellipse). The PALS brightness temperature
observations were translated into SM as described in [16]. The
SM was assessed with respect to in situ measurements in the
Walnut Gulch Experimental Watershed (WGEW); the RMSD
was found to be 0.016 m3/m3 and the correlation 0.83.

B. SMAP Soil Moisture Data

The SMAP Level 2 SM Passive (L2SMP) product was
used. Details of the SMAP L2SMP algorithm are presented
in [25]. The baseline algorithm uses vertically polarized
brightness temperature and a single-channel algorithm [26].
The SM retrieval takes place on the SMAP 36-km EASE-2
grid. Because the grid samples the ground in intervals
of 36 km, SMAP developed an additional process for retrieving
the 36-km SM at 3-km intervals. This so-called validation
grid processing allows placing the 36-km retrieval pixels
optimally with respect to in situ stations to reduce uncertainties
arising from misalignment of the retrieval and the ground-
based reference data. A centered validation grid pixel was
defined over the WGEW. The analysis here focuses on the
6 A.M. overpasses, which is the nominal observation time
for SMAP, because it is expected that early morning surface
and vegetative thermal conditions are more consistent with the
isothermal assumptions made in the retrieval algorithm.

C. MODIS Data

The daily L3 MODIS/Terra LST and emissivity product on
the global 1-km grid (MOD11A1, Version 5) was used for
LST [27], and the 16-day L3 MODIS/Terra vegetation index
product on the global 500-m grid (MOD13A1, Version 5)
was used for NDVI [28]. The local overpass time for the
data acquisitions was around 10:30 A.M. The LST data were
resampled, and NDVI data aggregated onto a 1-km grid over
the domain. The quality flags of MOD11A1 were used to
screen out LST data of questionable quality for determining
the soil and vegetation end members (see Section II). Only
MODIS data with a quality flag that showed good quality were
used with one exception. It was allowed that the average emis-
sivity error was within 0.02 (as opposed to 0.01) because this
significantly increased the available data. The quality flagging
procedure resulted in the omission of the second (August 5)
and the last PALS flight day (August 18).

IV. RESULTS

The algorithm described in Section II was applied to the
SMAP and MODIS data on each PALS flight day over the
pixel highlighted in Fig. 1. The area was required to be at
least 50% cloud free, which was the case on the PALS flight
days. As mentioned earlier, the SMAP pixel was chosen so that
the downscaled area does not include large elevation changes,
which would cause artifacts even with the elevation compensa-
tion (due to illumination effects [29]). The pixel contains only
light to moderate vegetation, except for the narrow riparian
areas. Denser vegetation is found at higher altitudes in this
region. The low vegetation density simplified the retrieval
because it made the partitioning between vegetation and soil
temperature less critical.

Fig. 2 shows the downscaled SMAP SM with PALS SM.
The maps indicate that most of the SM patterns observed
with PALS are successfully replicated with the downscaling
process. In some cases, the magnitude of SM is notably
different while the patterns are still clearly identifiable (such
as on August 2). Some artifacts can be identified as well. For
example, on August 13 in the southeastern corner, the wet
areas do not correspond to PALS SM. This may be the result
of poor quality LST data because some of the quality flags are
raised around this area. The NDVI map in Fig. 1 shows the
riparian area in the middle of the pixel. The downscaled SM
on August 13 and 16 appear to have a systematic difference
in the SM between the east and west sides of the river, but
this does not correspond to the PALS SM. Different sides of
the river (with opposite elevation gradients) may experience
different temperature dynamics, which is the likely cause for
this effect.

Fig. 3 shows the scatterplots and metrics for the comparison
of the downscaled SMAP SM and the PALS SM. Fig. 3(a)
shows the result for 1-km resolution, and Fig. 3(b) shows the
results after averaging both the downscaled and PALS SM to
3-km resolution. In both cases, the mean difference is very
small (but nonzero). The unbiased root-mean-square differ-
ence (ubRMSD) decreases, and the Pearson correlation (R)
increases with averaging, which is expected. The performance
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Fig. 2. SMAP pixel area on the five PALS flight days. (First row) Altitude-corrected MODIS LST. (Second row) SEE. (Third row) Downscaled SMAP SM.
(Fourth row) PALS SM.

Fig. 3. Downscaled SMAP SM with respect to the PALS SM. (Left) 1-km
resolution. (Right) 3-km resolution. The dots represent all 1-km and 3-km
pixels within the coarse-scale grid cell on the five PALS flight days.

is comparable to that reported in the literature for similar
types of retrieval situations (see [15], [30], [31]). Notably,
the performance at the 3-km resolution meets the SMAP
performance requirement of 0.04 m3/m3 ubRMSD [32].

The uncertainty of the original SMAP SM contributes to
the uncertainty of the downscaled SM. In order to quantify the
effect of that uncertainty in this comparison, the aggregated
PALS SM within the pixel area was also downscaled using
the same algorithm. The results were close to those reported
in Fig. 3 (for 1 km, both RMSD and ubRMSD 0.052 m3/m3,
mean difference 0 m3/m3, and correlation 0.655; for 3 km,

both RMSD and ubRMSD 0.035 m3/m3, mean difference
0 m3/m3, and correlation 0.783). When compared to Fig. 3,
the main difference is the zero-mean difference. The ubRMSD
and correlation are also slightly better, but it can be concluded
that differences between PALS and SMAP SMs are not the
drivers in the error figures. This was also expected based on
the fact that [16] showed that the aggregated PALS SM was
very close to SMAP SM.

The main source of error in the algorithm is the SM–SEE
relationship. In addition, factors that could potentially degrade
the comparison results include differences in observation depth
and in observation time between the satellites. LST is very
sensitive to temperature at the surface of the soil or vegetation,
whereas L-band microwaves penetrate several centimeters into
the ground depending on the wetness conditions. As such,
when SMAP and PALS made their measurements early in the
morning, and MODIS at 10:30 A.M., not only the sensing
depth was different but also conditions may have changed,
especially in the top surface.

V. CONCLUSION

A downscaling analysis of the SMAP coarse-resolution
radiometer-based SM product using MODIS data was con-
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ducted for a semiarid rangeland site. The approach uses
LST- and NDVI-based SEE to downscale the SMAP
SM. The algorithm was applied over one pixel in the
SMAPVEX15 domain, and the downscaled SM was compared
with airborne-based high-resolution SM. The combination of
the small-scale variability of SM, soil evaporation controlling
the surface temperature, and availability of the airborne high-
resolution SM measurement offered a unique opportunity to
test this algorithm. The results showed that the algorithm,
adopted from the previous work presented in the literature,
demonstrated reasonable skill in resolving higher resolution
SM features within the coarse-scale pixel. The analysis of the
approach benefited from the features of the study domain: the
surface temperature is controlled by soil evaporation, the topo-
graphical variation within the pixel area is relatively moderate,
and the vegetation density is relatively low over most parts
of the pixel. (The latter two aspects also contribute to the
reliability of the SMAP SM product.) The analysis presented
shows that the combination of the SMAP and MODIS data
under these conditions can result in a high-resolution SM
product with an accuracy suitable for many applications.
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