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Abstract. This research investigates ecological responses to drought by developing a con-
ceptual framework of vegetation response and investigating how multiple measures of drought
can improve regional drought monitoring. We apply this approach to a case study of a recent
drought in Guanacaste, Costa Rica. First, we assess drought severity with the Standard Precipi-
tation Index (SPI) based on a 64-yr precipitation record derived from a combination of Global
Precipitation Climatology Center data and satellite observations from Tropical Rainfall Mea-
suring Mission and Global Precipitation Measurement. Then, we examine spatial patterns of
precipitation, vegetation greenness, evapotranspiration (ET), potential evapotranspiration
(PET), and evaporative stress index (ESI) during the drought years of 2013, 2014, and 2015 rela-
tive to a baseline period (2002–2012). We compute wet season (May–October) anomalies for
precipitation at 0.25° spatial resolution, normalized difference vegetation index (NDVI) at 30-m
spatial resolution, and ET, PETand ESI derived with the Priestley-Taylor Jet Propulsion Labo-
ratory (PT-JPL) model at 1-km spatial resolution. We assess patterns of landscape response
across years and land cover types including three kinds of forest (deciduous, old growth, and
secondary), grassland, and cropland. Results show that rainfall in Guanacaste reached an all-
time low in 2015 over a 64-yr record (wet season SPI = �3.46), resulting in NDVI declines.
However, ETand ESI did not show significant anomalies relative to a baseline, drought-free per-
iod. Forests in the region exhibited lower water stress compared to grasslands and had smaller
declines, and even some increases, in NDVI and ET during the drought period. This work high-
lights the value of using multiple measures to assess ecosystem responses to drought. It also sug-
gests that agricultural land management has an opportunity to integrate these findings by
emulating some of the characteristics of drought-resilient ecosystems in managed systems.

Key words: agricultural land management; Costa Rica; drought response; ecosystem sensitivity;
evapotranspiration; Guanacaste; remote sensing; vegetation index.

INTRODUCTION

Background and motivation

Precipitation deficits are usually the first measure of
drought and often have immediate impacts on the land-
scape, causing increased vegetation stress. In particular,
arid biomes tend to respond to drought at short time
scales, likely due to the plant species of arid regions hav-
ing evolved to rapidly adapt to changing water availabil-
ity (Vicente-Serrano et al. 2013). Humid biomes also
respond to drought at short time scales, but in this case
the physiological mechanisms likely differ from those in
arid biomes, as plants usually have a poor adaptability

to water shortage. It is common to use precipitation-
based drought measures alone, with an assumption,
often implicit, that observed decreases in rainfall have
proportional increases in vegetation stress during the
same time period as the drought (S€onmez et al. 2005,
Patel et al. 2007).
This study develops a conceptual framework of

drought characterization depicting multiple possible
vegetation responses to precipitation deficits so that dif-
ferences among drought response in vegetation are expli-
cit (Fig. 1). Within the conceptual framework, Scenario
A shows a situation in which vegetation is highly sensi-
tive to drought and exhibits stress immediately following
the decrease in precipitation. However, precipitation def-
icits do not necessarily cause immediate increases in veg-
etation stress. Therefore, in Scenario B, the landscape
experiences a lag after a precipitation deficit before vege-
tation stress increases. Vicente-Serrano et al. (2013), for
instance, found that semiarid and subhumid biomes
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respond to drought at long time scales, probably because
plants are able to withstand water deficits, but they lack
the rapid response of arid biomes to drought. In Sce-
nario C, no changes in vegetation stress can be attribu-
ted to the drought, which often arises when the intensity
or duration of drought are low relative to other droughts
in the region. The magnitude of drought that character-
ized the 1930s in Nebraska, for example, was enough to
disturb fine-grained farm soils and the crops growing on
them, but did not impact naturally vegetated areas
(Muhs 1998, Mangan et al. 2004). In some cases, at least
in the short term, vegetation greening can occur, indicat-
ing a decrease in vegetation stress. Scenario D represents
this case. For example, Saleska et al. (2007) showed a
large-scale photosynthetic green-up in intact evergreen
forests of the Amazon in response to a short, intense
drought in 2005.
The reliability and usefulness of meteorological

drought indices solely based on precipitation measure-
ments are limited by spatial distribution, quality of data
and ability to reflect only one component of the surface
hydrologic cycle (Anderson et al. 2011). Precipitation-
based assessments of drought frequently miss an oppor-
tunity to evaluate the impact rainfall deficits have on
the landscape, which varies spatially and temporally,
depending on water availability, atmospheric demand,
and vegetation resilience (Penuelas et al. 2004). Evapo-
transpiration (ET) data can complement precipitation-
based drought assessment. They capture non-precipita-
tion-based moisture inputs to the land surface system,
such as irrigation, that may alter drought impacts or
rates of water consumption across a landscape (Senay
et al. 2007, Otkin et al. 2013). Empirical indices mea-
suring anomalies in vegetation condition (e.g., the nor-
malized difference vegetation index, NDVI) are useful

for monitoring drought response over large areas
(Peters et al. 2002) but may provide ambiguous results
when other factors such as air temperature and advec-
tion affect plant functioning (Kustas et al. 2011). Pre-
cipitation and vegetation-based drought indicators also
miss the role of evaporative demand in driving plant
stress and drought impacts, which potential ET (PET)
captures (Tsakiris et al. 2007, Vicente-Serrano et al.
2013).
Anderson et al. (2011) assess the impacts of drought

utilizing the evaporative stress index (ESI), which quan-
tifies the ratio of ET to PET. Normalization by PET
serves to isolate the ET signal component responding to
soil moisture variability from variations due to the radia-
tion load. Spatial and temporal correlation analyses sug-
gest that the ESI performs similarly to short-term (up to
6 months) precipitation-based indices but can be pro-
duced at finer spatial resolution and without requiring
any precipitation data.
This research uses a case study in Guanacaste, Costa

Rica, to assess drought severity in the context of the
conceptual drought assessment framework by measuring
regional patterns in precipitation and characterizing
drought impact on vegetation stress with NDVI and ESI
(ET/PET). We derived the ET and PET products using
the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL)
model (Fisher et al. 2008) in order to effectively capture
both agricultural and non-agricultural landscapes. Map-
ping evapotranspiration at high resolution with internal-
ized calibration (METRIC) developed by Allen et al.
(2005) and the Atmosphere-Land Exchange Inverse
(ALEXI) model developed by Anderson et al. (2007)
were designed to measure ET for primarily agriculture
applications. The PT-JPL model, on the other hand,
was developed for a wide range of natural ecosystems.

FIG. 1. The conceptual framework for drought assessment depicts drought duration on the x-axis and drought impacts in terms
of vegetative stress on the y-axis. Vegetation stress can be measured both in terms of normalized difference vegetation index (NDVI)
and evaporative stress index (ESI; evapotranspiration [ET]/potential evapotranspiration [PET]). The framework assumes a constant
precipitation deficit across the time period covered. Scenario A captures a drought response where vegetation stress increases imme-
diately as a result of the precipitation deficit. However, other possible drought responses in vegetation include (B) experiencing a lag
to a precipitation deficit before increasing stress, (C) not experiencing any changes in stress, or (D) decreasing vegetation stress.
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PT-JPL translates Priestley-Taylor estimates of PET
(Priestley and Taylor, 1972) into rates of ET through
applying biophysical constraints to PET. Rather than
relying on soil moisture, stomatal resistance and wind
speed data, which are unavailable in most parts of the
world (De Bruin and Stricker 2000), PT-JPL assesses
plant physiological limitations of transpiration, intercep-
tion, and soil evaporation constraints using NDVI, soil
adjusted vegetation index (SAVI), relative humidity, and
fractional vegetation cover estimates.

Study aims and hypotheses

The aim of this study was to investigate how multiple
measures of vegetation response, including remote sens-
ing-based vegetation indices and evapotranspiration
data, vary across time and space, with a particular focus
on the way the variables complement one another to
provide a holistic approach to drought assessment. One
of the hypotheses explored in this study is that drought
impacts on the landscape do not always arise immedi-
ately after a precipitation deficit (Scenario A of the con-
ceptual framework for drought assessment); rather, they
tend to often have lagged impacts (Scenario B), no
detectable impacts (Scenario C), or even increases in veg-
etation stress (Scenario D).
Anomalies in NDVI can indicate changes of plant

health over time by detecting the change in the amount
of photosynthetic vegetation present in a landscape (Pet-
torelli et al. 2005). Meanwhile, ET anomalies represent
changes in a biophysical plant process of carbon and
water exchange, which relates to atmospheric demand,
soil moisture conditions and plant stress (Fisher et al.
2011). ESI provides a measure of ET that explicitly nor-
malizes for PET. For this reason, while ET, ESI, and
NDVI each provide different information related to veg-
etation health, we expect them to yield similar results in
the drought detection analysis of Guanacaste. This is so
because when vegetation is stressed by a lack of water,
the results appear in both the photosynthetic vegetation
(as measured by NDVI) and the capacity of ET that veg-
etation is able to maintain given a specific PET quantity
(as measured by ESI; Karnieli et al. 2010, DeJong et al.
2012). However, the timing of these responses can often
be decoupled, with changes in ET and ESI often being
earlier drought warning signs compared to NDVI
(Anderson et al. 2011).
Another hypothesis that builds on the conceptual

framework for drought assessment is that the drought-
propagated vegetation stress (as measured by NDVI,
ET, and ESI) varies significantly within the landscape.
This suggests that certain habitat types are more drought
resilient than others, as local edaphic properties affect
tropical forest structure and function (Quesada and
Lloyd 2016). Hofhansl et al. (2014) reached a similar
conclusion by analyzing climate sensitivity of tropical
forest aboveground net primary production in Costa
Rica. They conclude that the impact of climate

anomalies on tropical forest productivity is strongly
related to local site characteristics including local topog-
raphy and disturbance history. Local conditions will
therefore likely prevent uniform responses of tropical
lowland forests to projected global changes.
We expect to see an oscillating pattern of positive cor-

relation to negative correlation between the raw precipi-
tation time series and the measures of vegetation stress
(NDVI, ET, and ESI). Specifically, we hypothesize that
at the beginning of the wet season, the drought response
indicators of NDVI, ET, and ESI will have a negative
correlation with precipitation. Then, up to a couple
months after the wet season, we expect a positive corre-
lation with precipitation. In the dry season, we expect
the same pattern but in reverse. We expect this because,
in the spring and early summer for instance, precipita-
tion begins increasing but the vegetation may not yet
have had time to respond to the increase in water avail-
ability. Thus, vegetation stress remains high for a couple
months, particularly for NDVI, which has shown to be a
slower-moving response than ET and ESI (Anderson
et al. 2011). After a few months of rainfall, vegetation
stress will likely decrease.
We also hypothesize that the precipitation anomalies

(monthly climatologies) will have lagging impacts on
NDVI, ET, and ESI anomalies. Given the magnitude of
the precipitation anomalies in the recent drought years
of 2013, 2014, and 2015 along with the sub-humid cli-
mate of Guanacaste, we expect increases in vegetation
stress, with a lag of up to 1 yr after the end of the
drought (Vicente-Serrano et al. 2013). If the negative
lags have significant correlations between precipitation
anomalies and NDVI, ET, and ESI anomalies, then Sce-
nario B provides the best fit to characterize the drought
response observed in Guanacaste. If, on the other hand,
the lags do not have significant correlations between pre-
cipitation anomalies and NDVI, ET, and ESI anomalies,
then Scenario C or D provide the best drought charac-
terization of Guanacaste.
The wet season in Guanacaste takes place during the

summer, which has the highest amount of incoming solar
radiation. Despite the increase in cloud cover associated
with precipitation (which blocks some solar radiation),
we hypothesize that PET and precipitation will have a
positive relationship for lags close to 0 (�2) because we
expect the net radiation in the wet summer months to still
be larger than the net radiation in the dry winter months.
We hypothesize that PETwill also have a cyclical positive
to negative correlation pattern as described for the cross-
correlations of NDVI, ET, and ESI.

METHODS

Study area

Guanacaste is a province in northwestern Costa Rica
bordering the Pacific and covers an area of 10,141 km2.
Guanacaste has a tropical savanna climate within the
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K€oppen-Geiger climate classification system. The pro-
vince experiences pronounced wet and dry seasonality,
with almost all of the 1,691 mm of annual precipitation
falling during the wet season, which spans from late
May to November (Table 1). The first maximum of
precipitation is followed by a dry period of two to
three weeks in July, usually referred to as the midsum-
mer drought (Maga~na et al. 1999). The mean maximum
temperature is 31.85°C in the wet season and 34°C in the
dry season. The mean minimum temperature is 23°C in
the wet season and 21.8°C in the dry season. The moun-
tainous region in the east of Guanacaste typically experi-
ences lower temperatures than the rest of the province
due to its high elevation. The region has an average air
humidity of 82.2% in the wet season and 67.8% humidity
in the dry season. Guanacaste is located in the dry corri-
dor in Central America, an area that accounts for one-
third of the total land in Central America. The region is
especially susceptible to the atmospheric effects of El
Ni~no Southern Oscillation (ENSO) events (UNOCHA
2014). The 2015 ENSO conditions aggravated the onset
of the most recent drought in the dry corridor, resulting
in a further decrease in precipitation (UNOCHA 2016).
Forest, including deciduous forest, mature forest, and

secondary forest, occupies the largest spatial extent com-
pared to the other land cover categories of grassland and
agriculture (Fig. 2). The southwestern part of the pro-
vince is mostly deciduous forest, with fragments of
mature forest, secondary forest, and agriculture. Mature
forests are clustered in the northeast and secondary for-
ests are clustered in the southeast. Agricultural areas are
primarily in the central region of the province with smal-
ler clusters in the northern tip and the southwest. Grass-
land is scattered throughout the province. Mature forests
are primarily located in the northeastern area of Gua-
nacaste. Meanwhile, the largest patch of secondary forests
is in the southeastern region. Agriculture areas are pri-
marily in the central region of the province as well as in a
cluster to the north and a more dispersed group of
patches in the south. Grassland is scattered throughout
the province as is secondary forest. The largest patch of
mature forests is in the eastern part of Guanacaste.
Deciduous forest occupies the largest region in the south.
The source of the land cover data is the Sistema

Nacional de �Areas de Conservaci�on (SINAC) Unidad

de Monitoreo Forestal, partially funded by the Costa
Rica Fondo de Financiamiento Forestal (National For-
estry Financing Fund, FONAFIFO) and the German
Corporation for International Cooperation (GIZ). The
data are based on the classification of Rapideye images
with five spectral bands and a spatial resolution of
5 9 5 m, with an overall accuracy of the combined for-
est and non-forest classes ~89% (SINAC 2013). The
images were taken from June 2011 to 2012. For more
information about the land cover classification data,
please see the SINAC documentation of the creation of
the land cover data set (SINAC, 2013). We used the data
produced by the basin-info network from the Temp-
isque-Bebedero river basin (which covers the majority of
the agricultural areas of Guanacaste) to provide infor-
mation on agriculture because the 2013 data from
SINAC did not provide agricultural land cover informa-
tion (data available online).5

Spatial anomalies of drought indicators

The overall methodology of this analysis consists of
three different yet complementary approaches to charac-
terizing the drought in Guanacaste (Fig. 3).

Standard precipitation index (SPI).—The first drought
assessment approach characterizes the severity of the
2015 drought in Guanacaste using the standard precipi-
tation index (SPI), formulated by McKee et al. (1993).
SPI is the number of standard deviations by which the
observed value of precipitation lies above or below the
long-term mean, for a normally distributed random vari-
able. The SPI computation with a 6-month time step
represents seasonal precipitation anomalies correspond-
ing to the wet season and the dry season. For the first
part of the historic record from 1951 to 2000, this study
uses precipitation data from the Global Precipitation
Climatology Centre (GPCC) gridded at a 0.5° latitude/
longitude resolution (for more details about the creation
of the gridded monthly precipitation data and quality
control, see Beck et al. 2005). For the remainder of the
time period of interest from 2002 to 2015, this study uses

TABLE 1. Mean temperatures and precipitation in Guanacaste Province, Costa Rica.

Parameter Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual mean

Max. temp (°C) 33 35 35 36 34 32 32 32 31 31 31 31 33
Min. temp (°C) 21 21 22 23 26 23 23 23 22 22 22 22 24
Precip (mm) 16 10 13 37 184 257 190 225 322 290 117 30 1,691
Days with rain 2 0 0 3 15 24 17 19 28 26 12 4 13
Humidity (%) 66 64 61 63 74 84 80 82 86 87 81 72 75

Notes: The Costa Rica National Weather Services provided this data. In the “Precip” row, the values listed under each month are
a climatology and correspond to the average of the sum of that month’s total rainfall between 1951 and 2015. In the “Annual mean”
column of this row, the value listed is the accumulated rainfall averaged over the same time period used to derive monthly averages
(1951–2015). All values are means. Precip, precipitation; temp, temperature; max, maximum; min, minimum.

5 http://www.basin-info.net/river-basins/tempisque-basin-br-
costa-rica

Article e01834; page 4 SAVANNAH S. COOLEY ET AL.
Ecological Applications

Vol. 29, No. 2



a monthly 0.25° resolution precipitation data set called
the Multi-Satellite Precipitation Analysis Version 7
(TMPA-3B43V7), which combines the Tropical Rainfall
Measuring Mission (TRMM) with the Global Precipita-
tion Measurement (GPM) mission and other meteoro-
logical data. For both the GPCC precipitation product
and the TMPA-3B43V7 product, a mean precipitation

value was computed across the study area to derive
mean monthly observations from 1951 through 2015 for
input to the SPI computation.

Precipitation.—The low spatial resolution of the gridded
GPCC precipitation data required the sole use of the
0.25° the TMPA-3B43V7 product that combines

N

Guanacaste, Costa Rica

Projection: 
Web Mercator 
Date: 
28 June 2018

Agriculture
Deciduous forest
Grassland
Mature forest
Secondary forest

70 km0 km

Land Cover Type 

FIG. 2. Land cover map of Guanacaste. The five land cover classes include agriculture, deciduous forest, grassland, mature for-
est, and secondary forest. When the subcategories are aggregated together, forest covers the largest spatial extent in Guanacaste
compared to agriculture and grassland. Deciduous forest is mostly in the southwest of the province. Mature forests are clustered in
the northeast and secondary forests are clustered in the southeast. Agricultural areas are primarily in the central region of the pro-
vince with smaller clusters in the northern tip and the southwest. Grassland is scattered throughout the province.
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TRMM and GPM data for computing spatially explicit
wet season precipitation anomalies. First, we disaggre-
gated the data from 0.25° resolution to 1-km pixel reso-
lution with a bilinear interpolation method and cropped
the data to the boundary of Guanacaste. We converted
data to monthly totals. This yielded monthly precipita-
tion averages at 1-km spatial resolution in units of mil-
limeters per month. We took the mean value for each
pixel in the time series for May through October from
2002 to 2012 to derive the wet season baseline for precip-
itation. We produced season-specific anomalies by sub-
tracting the baseline from the mean wet season values
from the values during the wet seasons of each drought
year (2013, 2014, and 2015).

Normalized difference vegetation index (NDVI).—We
derived NDVI from Landsat 7 Surface Reflectance
images spanning from 1 January 2002 to 27 December
2015, and accessed all data products from Google Earth
Engine for the finer 30-m resolution vegetation drought
response analysis. Google Earth Engine computed the
Landsat 7 NDVI product from atmospherically cor-
rected surface reflectance images and provided the pro-
duct in a 16-d global composite with a spatial resolution
of 30 m. To mask cloud cover and associated shadows,
we applied a composite of the cloud mask, a band within

the Landsat surface reflectance product. We computed
the baseline and anomalies for NDVI with the same pro-
cess as described in the previous sub-section on precipi-
tation.

Evapotranspiration (ET), potential ET (PET), and evap-
orative stress index (ESI).—Computing the set of
anomalies for ET, PET, and ESI involves analysis of the
output from the PT-JPL model. PT-JPL uses an energy
balance approach to calculate how much water loss is
required to keep the soil and vegetation at the observed
temperatures given known net radiation (Fisher et al.
2008). Five model inputs are required: net radiation
(from the Breathing Earth System Simulator [BESS]
model; see Ryu et al. 2011), NDVI, soil adjusted vegeta-
tion index (SAVI), daily maximum air temperature, and
atmospheric water vapor pressure. PT-JPL is partitioned
into canopy transpiration (ETc), soil evaporation (ETs),
and interception evaporation (ETi). Total evapotranspi-
ration, ET, is the sum of ETc + ETs + ETi. Canopy
transpiration is the amount of water vapor lost to the
atmosphere through plant tissues. Soil evaporation is the
direct evaporation of water from the near surface soil.
Interception evaporation is the evaporation of water that
is intercepted by precipitation or fog, or deposited as
dew and stored on the surface of plants. For each

GPCC

1951 2015 
precipitation

Landsat 7

Baseline and 
anomalies

2000 2015 
NDVI

NDVI 
anomalies

ET, PET, ESI 
anomalies

Standard 
precipitation index

ANOVARapidEye 5 m 
land cover data

MODIS NCEP

Baseline and 
anomalies

2002 2015 
ET, PET, ESI

Baseline and 
anomalies

TRMM + GPM

2000 2015 
precipitation

SPI

Precipitation 
anomalies

Randomization 
analysis of variance

Time series 
decomposition

Time series 
analysis

Cross 
correlation

FIG. 3. Methodology used in this study. The multiple approaches to drought assessment used in the research methodology
include computing standard precipitation index (SPI) as well as spatial anomalies in the drought years of 2013, 2014, and 2015 of
precipitation, NDVI, ET, PET, and ESI for the wet season (May through October) in Guanacaste. The input data used to derive
ET, PET, and ESI are from moderate resolution imaging spectroradiometer (MODIS) and National Centers for Environmental Pre-
diction (NCEP) Reanalysis II. This study also computes a randomization analysis of variance (ANOVA) to test differences in
drought response across land cover type, year, and season. The time series analyses include the seasonal and trend decomposition
procedure (STL) and the time series cross-correlations; both of which integrate precipitation, NDVI, ET, PET, and ESI monthly
means as well as monthly climatologies. GPCC, Global Precipitation Climatology Center; TRMM, Tropical Rainfall Measuring
Mission; GPM, Global Precipitation Measurement Mission.
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component flux, PT-JPL reduces PET to actual ET
based on relative surface wetness, green canopy fraction,
plant temperature constraint, plant moisture constraint,
and soil moisture constraint. This implementation of
PT-JPL calculates latent energy in W/m2, producing an
ET product with 1-km pixel cells. The primary input to
PT-JPL is moderate resolution imaging spectroradiome-
ter (MODIS) daily observations at ~10:30 from the Terra
satellite, including the NDVI and land surface tempera-
ture data products. These data products were retrieved
from two distributed active archive centers (DAACs),
managed by United States Geological Survey and
NASA Earth Resources Observation and Science
(EROS) Center: (1) Land Processes DAAC (LP DAAC),
Sioux Falls, South Dakota, USA and (2) the Level-1 and
Atmosphere Archive and Distribution System (LAADS
DAAC), Greenbelt, Maryland (data available online).6,7

When MODIS observations were not available, the algo-
rithm retrieves data from National Centers for Environ-
mental Prediction to gap-fill. The methodology for
deriving the baseline and anomalies for ET, PET, and
ESI matches those used for NDVI and precipitation,
with a baseline from 2002 to 2012 and drought years of
2013, 2014, and 2015.

Randomization analysis of variance

Mean seasonal NDVI, ET, PET, and ESI raster
images were tested for significant differences across land
cover types using a one-way, type 1, fixed-effects ran-
domization analysis of variance (ANOVA). The land
cover classes include agriculture, grassland, deciduous
forest, mature forest and secondary forest (Fig. 2). This
analysis uses the Tukey post hoc test (Tukey 1949) to
quantify differences within the group of land cover vari-
ables and to determine their statistical significance. Note
that the Tukey test was developed specifically to account
for multiple comparisons and thus a correction for mul-
tiple testing is not needed.
The spatial and temporal autocorrelation of the pixels

could violate ANOVA assumptions of random sampling
and independence. To address this, we randomly selected
1,000 pixels for each land cover category and included
only those in the ANOVA, thus reducing the possibility
of autocorrelation (Ad�er 2008). After randomization, we
tested the assumptions of normality and homoscedastic-
ity. Neither of these assumptions were met by the vari-
ables (ESI, ET, PET, and NDVI), indicating that the
data are not normally distributed nor are they
homoscedastic (rejected Shapiro-Wilk test null hypothe-
sis of normality [P < 0.0001] and rejected the Bartlett
test null hypothesis of homoscedasticity [P < 0.0001]).
However, we concluded that ANOVA is robust enough
to these violations to produce usable results (Ad�er 2008).

Time series analysis

Time series decomposition.—The time series decomposi-
tion analysis in this study follows the seasonal and trend
decomposition procedure (STL) developed by Cleveland
et al. (1990). STL decomposes a series into trend, sea-
sonal and remainder components using a locally
weighted least squares approach known as LOESS
(LOcally wEighted regreSsion Smoother). As a dynamic
factor analysis, stationarity of data is not required for
STL (Zuur et al. 2003). Therefore, stationarity was not
tested until the autocorrelation and partial autocorrela-
tion analysis in the next section.
The seasonal component of an STL decomposition is

found by local polynomial regression smoothing of the
monthly mean values in the time series. At point x, for
instance, the fit is made using points in a neighborhood of
x, weighted by their distance from x. This analysis sets the
size of the neighborhood by including 75% of the points,
and weighted these points with tricubic weighting (propor-
tional to (1 � (dist/maxdist)3)3; where dist is the distance
between the current point and x and maxdist is the maxi-
mum distance between x and all other points in the defined
neighborhood. After computing the seasonal values, they
were removed from the data, and the remainder was
smoothed to find the trend. The overall level was removed
from the seasonal component and added to the trend com-
ponent. This process was iterated twice. The remainder
component is the residuals from the seasonal plus trend fit.
The source code of the algorithm is available online.8

This study used an additive rather than a multiplica-
tive time series decomposition model for all of the input
variables because no changes in the magnitude of the
effects of seasonality were observed in the time series of
precipitation, NDVI, ET, PET, or ESI.

Autocorrelation and partial autocorrelation.—We investi-
gated whether there is autocorrelation in the precipitation,
NDVI, ET, PET, and ESI time series anomalies by comput-
ing autocorrelation and partial autocorrelation coefficients.
We computed a monthly climatology by first averaging
monthly values for the baseline period of 2002–2012. To
derive monthly anomalies, we subtracted the averaged base-
line monthly values from the corresponding monthly
means of the drought years of 2013, 2014, and 2015.
The autocorrelation function gives the correlation of a

time series with its own lagged values and does not con-
trol for the values at all shorter lags of the time series. It
contrasts with the partial autocorrelation function,
which does control for all shorter lags. In other words,
the partial autocorrelation is the amount of correlation
between a variable and a lag of itself that is not
explained by correlations at all lower order lags. The
algorithms used to calculate autocorrelation and partial
autocorrelation coefficients both fit autoregressive

6 https://lpdaac.usgs.gov/data_access/
7 https://ladsweb.modaps.eosdis.nasa.gov/

8 https://github.com/SurajGupta/r-source/blob/master/src/
library/stats/R/stl.R
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models of successively higher orders up a maximum lag
of 10log(N/m) where N is the number of observations
and m the number of series.
We tested for “wide-sense” stationarity (i.e., testing

whether the mean and autocovariance vary with respect to
time) in the precipitation, NDVI, ET, PET, and ESI time
series anomalies using the augmented Dickey-Fuller test
and the KPSS test for level stationarity. Both tests agreed
that each time series data set was stationary under a
threshold of a = 0.05 with the exception of the precipita-
tion anomalies time series, which the augmented Dickey-
Fuller test suggested was stationary (P < 0.01) but the
KPSS test suggested that the data were not stationary
(reject the null hypothesis of stationarity with P = 0.0124).
Once we differenced the precipitation anomalies time ser-
ies by 1 lag, we tested the resulting time series, which was
now one month shorter than it was originally, and found
that the time series was now stationary. (KPSS null
hypothesis of stationarity accepted with P > 0.1).

Time series cross-correlation.—To assess the magnitude
and significance of temporally lagged relationships
between precipitation and the drought response vari-
ables of NDVI, ET, and ESI, we used time series cross-
correlation analysis. Cross-correlation is a measure of
similarity of two series as a function of the displacement
of one relative to the other. This analysis enables us to
answer the question: Does a change in precipitation
transfer to NDVI, ET, or ESI time series several periods
later? If so, at which lag is the correlation between two
time series strongest?

Uncertainty characterization of remote sensing products

Validation of precipitation and ET data is most often
based on comparing data from single gauging stations
with remote sensing pixels. Duan and Bastiaanssen
(2013) discuss how this approach suffers from the “scale
mismatch issue,” which arises in the assumption that a
single gauging station can be representative of the pre-
cipitation of a larger area (Almazroui 2011, Heidinger
et al. 2012). Many studies address this scale mismatch
by conducting a validation of remote sensing pixels that
contain multiple measurement towers and use the mean
value as the ground truth for each pixel (Nicholson et al.
2003, Dinku et al. 2007, Chokngamwong and Chiu
2008, Yong et al. 2010). A novel approach for pixel-to-
point comparisons proposed by Rammig et al. (2018)
determines the statistical properties of “within-pixel”
variability and observational errors, and uses this infor-
mation to correct for their effect when large-scale area
averages (pixels) are compared to small-scale point esti-
mates. First, this approach characterizes the global vari-
ability of the point data set with the global variance and
mean. Then it calculates “within-pixel variability” by
analyzing within-pixel covariance, which is equivalent to
the sum of variance caused by small-scale variability and
observation error in a semivariogram. Global variability

is reduced by within-pixel variability to produce a cor-
rected variability measure. Finally, mean and variance of
pixels are compared to corrected point mean and vari-
ance with statistical measures including mean bias, pat-
tern amplitude, and similarity of pattern.
The network of weather stations from the Costa Rica

Instituto Meteorologico Nacional comprises about 13
towers, only 3 of which cover the entirety of the time per-
iod of this study. Conducting a validation with only 3
towers would suffer from scale mismatch issues, which
could not be addressed by the Rammig et al. (2018)
approach due to small sample size. We decided to adopt
an error estimate from other validation studies of the
TMPA-3B43V7 product that had access to a denser net-
work of weather stations.

Precipitation.—Dinku et al. (2007) conducted an exten-
sive evaluation of 10 different satellite rainfall products
using a dense station network over a complex topogra-
phy in the Ethiopian highlands. Evaluation was for two
groups of products. The first group, which TMPA-3B43
falls into, had low spatial (2.5) and temporal (monthly)
resolution. In addition to TMPA-3B43, this group in-
cluded the National Oceanographic and Atmospheric
Administration Climate Prediction Center (NOAA-
CPC) merged analysis (CMAP) as well as the Global
Precipitation Climatology Project (GPCP) multi-satellite
and satellite-gauge products. CMAP and TMPA-3B43
performed the best, with a bias < 10% and an root-
mean-square error (RMSE) of about 25%. The overall
performance of TMPA-3B43 is very good, particularly
considering the complex topography of the test region.
These results are consistent with results found for West
Africa (Nicholson et al. 2003, Ali et al. 2005).
The CHELSA (climatologies at high resolution for the

earth’s land surface areas) precipitation algorithm incor-
porates orographic predictors including wind fields, valley
exposition, and boundary layer height, with a subsequent
bias correction. The resulting data consist of a monthly
temperature and precipitation climatology for the years
1979–2013, which does not span the entirety of this study
period. Nonetheless, we leverage the Karger et al. (2017)
validation to further inform associated error estimate of
the TMPA-3B43V7 product used in this analysis. Karger
et al. (2017) compare the data derived from the CHELSA
algorithm with other standard gridded products including
TMPA-3B43, CRU, WorldClim, CHPclim, GPCC, and
ERA-Interim and station data from the Global Historical
Climate Network. For the spatial comparison, all prod-
ucts evaluated, with the exception of ERA-Interim,
showed similar amounts and patterns of biases when
compared to validation data. In Costa Rica specifically,
the bias ratio was about 1.2, indicating overestimation of
precipitation compared to the in situ data.

Evapotranspiration.—Fisher et al. (2009) examined the
controls on evapotranspiration in tropical vegetation at
21 pan-tropical eddy covariance sites, conducted an
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evaluation of 13 evapotranspiration models at these
sites, and assessed the ability to scale up model estimates
of evapotranspiration for the test region of Amazonia.
The radiation-based evapotranspiration models per-
formed best overall for three reasons: (1) the vegetation
was largely decoupled from atmospheric turbulent trans-
fer, especially at the wetter sites; (2) the resistance-based
models were hindered by difficulty in consistently char-
acterizing canopy and stomatal resistance in the highly
diverse vegetation; and (3) the temperature-based mod-
els inadequately captured the variability in tropical evap-
otranspiration.
Across all 21 eddy covariance sites, PT-JPL performed

better than all of the other process-based models evalu-
ated (RMSE = 22.8 W/m2 and R2 = 0.91). The only
model that performed better than PT-JPL was the neural
network model (RMSE = 20.6 W/m2 and R2 = 0.91)
because it was empirically fitted to the point data. The
neural network model provided a useful comparison
with the more mechanistic models tested. However,
when applied to the test region of Amazonia, it resulted
in unrealistic values outside of the tower footprint due
to its empiricism to the individual sites. PT-JPL, on the
other hand, is scalable beyond the eddy flux footprint
because it is driven primarily by large-scale parameters
including radiation, temperature, and humidity.
Ershadi et al. (2014) examined a number of models

including SEBS, PT- JPL, the advection-aridity model
of Brutsaert and Stricker (1979) and a single-source Pen-
man-Monteith (PM) model (Monteith 1965), and vali-
dated them against a set of twenty flux towers
distributed across a range of biome types. Considering
overall results, the study found that PT-JPL was the best
performing model, followed by SEBS, PM, and advec-
tion-aridity. Expanding on the results from tower-scale
validations, McCabe et al. (2016) assessed four com-
monly used evaporation models against data from
tower-based eddy covariance observations as well as
large-scale globally gridded data distributed across a
range of biomes and climate zones. Using surface flux
observations from 45 globally distributed eddy covari-
ance stations as independent metrics of performance, the
tower-based analysis indicated that PT-JPL provided the
highest overall statistical performance (R2 = 0.72;
RMSE = 61 W/m2).
Results also indicated that the global gridded data

tended to reduce the performance for all of the studied
models when compared to the tower data, likely a
response to scale mismatch and issues related to forcing
quality. In the gridded global validation, PT-JPL per-
formed consistently well relative to the other models that
have more complex structures and parameterization
configurations, with an increase in RMSE of 22 W/m2.
One possible reason for this response that McCabe et al.
(2016) suggested relates to the constraint functions of
PT-JPL serving a wide range of hydro-meteorological
conditions, encompassing energy-limited (e.g., boreal
climate) to water-limited (e.g., dry climate) to

energy-abundant and water-abundant (e.g., tropical cli-
mate) conditions.
Given that the data used in this study were computed

with gridded remote sensing products, we apply the error
estimates from the gridded validation over the tropics
from McCabe et al. (2016) to the PT-JPL ET and PET
data used here, with RMSE = 83 W/m2 and R2 = 0.48.

Potential evapotranspiration.—Maes et al. (2018) com-
pare the performance of the 15 most common methods
for computing PET. The study used eddy covariance
measurements from 107 sites of the 10 FLUXNET2015
database, covering 11 different biomes, to parameterize
and compare these methods and uncover their relative
performance. For each site, Maes et al. (2018) extracted
the days for which ecosystems are unstressed based on
both an energy balance approach and on a soil water
content approach. The validation of the 15 PET estima-
tion methods used the unstressed days as the ground
truth to reference.
The results indicate that a simple radiation-driven

method calibrated per biome consistently performed
best, with an unbiased RMSE of 0.56 mm/d and a bias
of �0.02 mm/d against in situ measurements of
unstressed evaporation. The Priestley and Taylor
method that did not calibrate per biome performed
slightly worse. Yet it performed substantially and consis-
tently better than more complex Penman, Penman-Mon-
teith-based, or temperature-based approaches with an
overall unbiased RMSE of 0.75 mm/d and bias of
1.14 mm/d. Focusing in on the results for biomes found
in Guanacaste, including deciduous broadleaf forest,
mixed forest, and woody savanna, the accuracy slightly
decreases compared to the overall accuracy measures of
uncalibrated Priestly and Taylor PET estimates: unbi-
ased RMSE of 0.76 mm/d and bias of 1.27 mm/d).

RESULTS

Spatial anomalies of precipitation and NDVI

The entire region of Guanacaste experienced negative
anomalies of precipitation in the wet seasons of 2013,
2014, and 2015 (Fig. 4). Drought severity intensified
over these three years, with 2015 experiencing the most
negative precipitation anomalies, reaching about
�175 mm in the eastern region of the province and
about �125 mm in the coastal, western region. Corre-
spondingly, NDVI tended to be below average during
the wet seasons of 2013, 2014, and 2015, with 2014 see-
ing the largest decreases (Fig. 4). However, in the south-
western portion of Guanacaste, NDVI anomalies were
negligible or even slightly positive despite low rainfall.
Analysis of a 64-yr precipitation record containing

averaged GPCC and MPA-3B43V7 products yielded a
wet season SPI of 2015 of �3.46, the lowest 6-month
SPI in the historic record. This followed wet season SPI
of �2.80 in 2014 and �1.14 in 2013. Other recent
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drought events took place in 2006–2007 and 2009–2010
(Fig. 5). Furthermore, Guanacaste has seen an increase
in the magnitude of precipitation extremes in recent
years. The standard deviation of SPI between 1951 and
1999 is 0.73. In contrast, the standard deviation in the
time period of 2000 to 2015 is 1.52, which is more than
twice the standard deviation observed from 1951 to
1999.

Spatial anomalies of evapotranspiration (ET), potential
ET (PET), and evaporative stress index (ESI)

PET tended to be elevated during the 2013 to 2015
drought periods, particularly in the southern portions
of Guanacaste (Fig. 4). This is likely due to warmer
near-surface air temperature driven by increased net
radiation. However, the central region saw little change

or even a decrease in PET. PET anomalies were largest
in 2015, the year with the most severe precipitation
shortages. ET anomalies closely tracked those of PET,
with areas of elevated PET seeing elevated ET and areas
of below average PET seeing below average ET. How-
ever, the evaporative stress index still shows indications
of elevated water stress (lower ESI), particularly in the
central portion of Guanacaste and generally corre-
sponding to areas that had negative anomalies in
NDVI. Even in these areas, ESI anomalies indicate only
weak water stress (average values remaining close to
1.0) during the wet season in spite of severe precipita-
tion shortages. Furthermore, the southernmost portion
of Guanacaste had some areas showing reduced water
stress (elevated ESI) during these periods, correspond-
ing to areas with negligible or even slightly positive
NDVI anomalies.

FIG. 4. Wet season anomalies of five hydrologic and drought indicators, including precipitation, NDVI, ET, PET, and ESI
across three years of record (2013–2015) compared to the baseline (2002–2012). The year of 2015 stands out with the lowest nega-
tive mean wet season precipitation anomalies compared to the other drought years of 2015, 2014, and 2013. However, vegetation
stress as measured by NDVI, ET, and ESI anomalies is not highest in 2015 compared to the other two drought years.
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FIG. 5. The smoothed (de-seasonalized), low-frequency trend component of the time series decomposition of monthly precipi-
tation, NDVI, ET, PET, and ESI time series spanning 2002–2015. The de-seasonalized trend component has the same units as the
original data series. Even though 2015 has the steepest decrease in precipitation trend compared to the other drought years, that
year shows higher NDVI, ET, and ESI values than 2014, suggesting that vegetation stress may have decreased from 2014 to 2015.
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Time series analysis

Time series decomposition.—The seasonality of the pre-
cipitation time series shows a dip that takes place in the
middle of the wet season during July and August
(Appendix S1: Fig. 1). This pattern characterizes the
midsummer drought phenomenon, which occurs
throughout Central America (Maldonado et al. 2016).
The seasonal curve of precipitation shows the midsum-
mer drought followed by a larger spike of precipitation
in the second part of the wet season, ending in late Octo-
ber or early November. ET and PET show midsummer
dips as well. The seasonal ESI series shows the maxi-
mum spike in the beginning of the wet season while the
highest point in NDVI occurs in the later part of the wet
season. Nonetheless, the signal of the midsummer
drought is still picked up within each of the time series.
Removing seasonality from the time series yields a low-

frequency, de-seasonalized trend component of precipita-
tion (Fig. 5). The trend shows a sharp decline in 2009
followed by a sharp increase in 2010. Between 2001 and
2015, a gradually declining trend emerges, culminating in

an all-time low at the end of 2015. Averaged together over
all of Guanacaste, the indicators of vegetation stress
(NDVI, ET, ESI) show very little change in trend
throughout the most recent drought period of 2013, 2014,
and 2015. In particular, even though 2015 has the steepest
decrease in precipitation trend compared to the other
drought years, that year shows higher NDVI, ET, and
ESI values than 2014, suggesting that vegetation stress
may have decreased from 2014 to 2015.

Autocorrelation and partial autocorrelation.—The wet
season months (May through October) have the highest
NDVI, ET, and ESI values, indicating lower vegetation
stress during this time of the year (Appendix S1: Fig. 2).
The wet season months also typically have the greatest
variability in values, suggesting that it is more difficult to
characterize these months compared to the dry season.
An exception to this arises in the ESI time series, which
shows more variability in the dry season. We might
expect, therefore, that autocorrelations of smaller lags
will not be as large or significant as fourth-, fifth-, sixth-,
or seventh-order lags.
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The anomalies of the precipitation time series have the
largest significant autocorrelation compared to the other
time series anomalies, with the first lag having a correla-
tion of about �0.4 (Appendix S1: Fig. 3). The 13th lag is
also above the 95% confidence interval, with a correla-
tion of about 0.2. ESI has a positive and significant cor-
relation with the 15th lag of 0.16. Similarly, the 15th lag
of ET is also one of the highest in the time series, with a
correlation of similar magnitude but slightly below the
95% confidence interval. The first lag barely passes the
95% confidence interval, with a value of about 0.16.
The impact of controlling for the previous lags in the

time series as illustrated in the partial autocorrelation
results (Appendix S1: Fig. 4) is not very large. For pre-
cipitation, the first, second, and third lags are significant
and each have a correlation <�0.25. The 12th lag
becomes significant and is also negatively correlated,
though smaller in magnitude compared to the first, sec-
ond, and third lags. None of the lags in NDVI, ET, PET,
and ESI anomalies plots are notably large or significant,
with the first lag having a consistently relatively large
value compared to the others in the time series for each
variable, but only the first lag of ET passes the 95% con-
fidence interval.

Time series cross-correlation.—Results point to the pos-
sible temporal decoupling between precipitation deficits
and the impacts of vegetation stress as measured by
NDVI, ET, and ESI. For instance, precipitation is lowest
in 2015 but NDVI and ESI are lowest in 2014 (Figs. 4
and 5). ET and PET (and thus ESI) are assessed with the
PT-JPL model, which could indicate that the lack of neg-
ative anomalies in 2015 in ET arose from increased
incoming solar radiation as opposed to a response to
reduced precipitation. Deciduous forests do not show a
response to the drought period, at least not within the
time period of this study. Therefore, drought impacts on
the landscape in Guanacaste likely comprise temporally
lagged responses to the precipitation deficit, suggesting
that the drought response in Guanacaste does not fit
into Scenario A (immediate increase in vegetation stress)
of the conceptual framework for drought assessment.
Instead, the drought response might more closely resem-
ble Scenario B (lagged response), in which drought
effects of 2013, for instance, propagate several months
or even multiple years later in 2014 and 2015. If statisti-
cally significant cross-correlations occur, then this indi-
cates that the full effects of the 2015 drought may not
impact the vegetation on the landscape until several

TABLE 2. The one-way randomization ANOVA model output testing for differences in drought response (including normalized
difference vegetation index [NDVI], evapotranspiration [ET], potential evapotranspiration [PET], and the evaporative stress
index [ESI]) across land cover types for the wet season and the dry season.

Land cover types SS df F P Effect size

NDVI
Wet season
Land cover 10.90 4 214.3 <0.0001 0.148
Residuals 62.36 4,906

Dry season
Land cover 17.54 4 433.3 <0.0001 0.2576
Residuals 50.54 4995

PET
Wet season
Land cover 520,164 4 147.8 <0.0001 0.1058
Residuals 4,395,135 4995

Dry season
Land cover 405,454 4 126.2 <0.0001 0.0917
Residuals 4,012,020 4995

ET
Wet season
Land cover 113,310 4 54.37 <0.0001 0.0417
Residuals 2,602,586 4995

Dry season
Land cover 100,485 4 44.87 <0.0001 0.0347
Residuals 2,794,616 4991

ESI
Wet season
Land cover 0.015 4 3.626 0.0059 0.003
Residuals 5.105 4995

Dry season
Land cover 0.024 4 5.007 <0.0001 0.0039
Residuals 5.984 4992

Notes: Each observation is a pixel randomly selected from the study area such that 1,000 pixels were selected per land cover class.
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months or years later. To test this, we conducted a cross-
correlation analysis between precipitation and NDVI,
ET, PET, and ESI anomalies, where significantly corre-
lated lags of precipitation in vegetation stress indicators
would suggest a lagged response to precipitation anoma-
lies. If none of the lags from the cross-correlation analy-
sis are significant, then Scenario C (no response) would
best characterize the regional drought response.
The cross-correlations between raw precipitation and

NDVI, ET, PET, and ESI all clearly reflect the seasonal
pattern of each series and support the hypotheses stated
above (Appendix S1: Fig. 5). The statistically significant
correlations for NDVI, ET, and ESI start with positive
correlations at lags 0 through �2 and negative correla-
tions at lags �7 through �10, followed by positive and
still statistically significant three-month lags for the pre-
vious year, followed by negative statistically significant
three-month lags, etc. The cyclical positive correlations
support the assessment that the peak period for low veg-
etation stress (high NDVI, ET, and ESI) occurs around
two months after the start of the wet season and high
vegetation stress is expected around two months after
the start of the dry season. The cyclical negative correla-
tions support the hypothesis that there are two periods
each year in which changes in precipitation have not
caught up with changes in vegetation.
Results indicate that PET leads precipitation by a cou-

ple months in the wet season (lag 1 is the peak correla-
tion) as well as the dry season (lag 7 is the lowest

correlation). This could arise because, as suggested in
the hypothesis, in the end of spring and beginning of
summer, temperatures rise but precipitation has not
peaked, meaning that there is less cloud cover, allowing
for optimum solar radiation. As the wet season pro-
gresses, there are slightly higher temperatures but also
larger amounts of precipitation, particularly the second
precipitation peak, which typically occurs in September.
Similarly, in the beginning of the dry season, there are
still some high temperatures with lower cloud cover.
However, as temperatures drop, net radiation also drops,
even with almost no cloud cover.
For the anomalies time series cross-correlations (which

controls for the baseline by subtracting monthly mean
values between 2002 and 2012 from each corresponding
month of the time series), we hypothesized a similar set of
relationships as those described for the raw data, with the
exception of having more noise in the results as well as
potentially longer lag periods. When strictly looking at
anomalies, we still expected to see positive correlations
between precipitation anomalies and NDVI, ET, and ESI
anomalies. Increases in precipitation are associated with
lagged increases in NDVI, ET, and ESI several lags later
and decreases in precipitation are associated with lagged
decreases in NDVI, ET, and ESI several lags later.
The cross-correlations between precipitation anoma-

lies and NDVI anomalies follow a seasonal pattern
described in the hypothesis, though this pattern is less
distinct as the cyclical pattern in the raw cross-

TABLE 3. Results from the Tukey post hoc test showing the pairwise differences and significance of the ANOVA terms across land
cover types for NDVI, ET, PET, and ESI in (a) the wet season and (b) the dry season.

Difference

Land cover types NDVI PET ET ESI

a) Wet season, 2015
Deciduous forest–agriculture 0.1198† 22.4067† 13.8222† �0.0052**
Grassland–agriculture 0.0541† 6.2635† 4.5521† �0.0022
Mature forest–agriculture 0.1294† �8.6794† 1.7958 �0.0012
Secondary forest–agriculture 0.0982† 2.9223 5.1925† �0.0021
Grassland–deciduous forest �0.0657† �16.1432† �9.2701† 0.0020
Mature forest–deciduous forest 0.0095 �31.0861† �12.0264† 0.0029
Secondary forest–deciduous forest �0.0215† �19.4843† �8.6297† 0.0031
Mature forest–grassland 0.0753† �14.9429† �2.7562 0.0010
Secondary forest–grassland 0.0441† �3.3411 0.6404 0.0002
Secondary forest–mature forest �0.0311† 11.6017† 3.3967*** �0.0008

b) Dry season, 2015
Deciduous forest–agriculture 0.0723† 27.4692† 16.7231† 0.0460†
Grassland–agriculture 0.0391† 13.9988† 9.6195† 0.0660
Mature forest–agriculture 0.1644† 10.4471† 7.3860† 0.0384
Secondary forest–agriculture 0.1228† 12.0975† 6.9269† 0.0201
Grassland–deciduous forest �0.0332† �13.4703† �7.1035† 0.0276
Mature forest–deciduous forest 0.0921† �17.0221† �9.3371† 0.0076†
Secondary forest–deciduous forest 0.0505† �15.3716† �9.7961† 0.1063†
Mature forest–grassland 0.1253† �3.5517 �2.2335 0.0118
Secondary forest–grassland 0.0837† �1.9012 �2.6925 �0.0024
Secondary forest–mature forest �0.0416† 1.6504 �0.4590 0.0152

**P < 0.01; ***P < 0.001; †P < 0.0001.
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correlation results (compare Appendix S1: Fig. 4 with
Fig. 7). The cross-correlations for NDVI were mostly
negative close for lags close to 0, positive from lags �8
to �12, negative from �14 to �18, positive from �23 to
�26, negative from �33 to �38, and positive from �43
to �46, with typically one lag within each range passing
the 95% confidence interval. A similar pattern but with
less regularity and fewer cases of significance arises in
the ET time series. This finding supports our hypothesis
that increases in vegetation stress as measured by
decreases NDVI and ET is detected around the initial
months with increases in precipitation. And, vice versa,
decreases in vegetation stress around the beginning
months with decreases in precipitation in the dry season.
ESI, in contrast, has positive correlations for lags

close to zero (although they are not quite significant)
and negative correlations for lags between �4 and �7. A
possible reason why we did not see ESI cross-correla-
tions match NDVI and ET could be because vegetation
in Guanacaste typically is able to match changes in
atmospheric demand regardless of changes in precipita-
tion. The similar cross-correlation graphs of ET and
PET support this possibility. Lags in the plot of PET and
precipitation have significant negative correlations for
lags from 0 to �3 and positive (but not quite significant)
correlations for lags �8 through �11, which supports
our initial hypothesis of lagged impacts of seasonality.

Randomization analysis of variance (ANOVA)

In both the wet season and the dry season of 2015,
grasslands and agriculture generally experienced statisti-
cally significantly lower ET and NDVI compared to for-
est land cover classes, particularly deciduous forest type
(Table 2, Table 3, Fig. 6). ESI was close to 1.0 during
the wet and dry season (typically between 0.85 and 0.95)
during 2015, indicating a general lack of water stress.
Differences in ESI values were very small and not statis-
tically significant across any combination of land cover
categories, with the exception of deciduous forest and
agriculture: agriculture had significantly higher ESI
compared to deciduous forests, especially in the dry sea-
son (compare Table 3a with Table 3b). This result could
be explained by the availability of irrigation to most agri-
cultural fields in Guanacaste.

DISCUSSION

Drought assessment in Guanacaste

Meteorological drought events (SPI < �1.0) occurred
in 2013, 2014, and 2015, with 2015 seeing the most
extreme shortage in a 64-yr historical record. Precipitation
shortfalls were most pronounced in the eastern portion of
Guanacaste, but extended across the entire region (Fig. 4).
It is therefore surprising that ET was impacted with only
subtle reductions during the drought years, and even
increasing in the entirety of southwestern Guanacaste

during the 2015 wet season. Similarly, the evaporative
stress index (ESI) showed only modest increases in ecosys-
tem water stress during any of the drought years. Reduc-
tions in ESI are at most 0.03 and more often are about
0.015, which shows a reduction in ET relative to PET of
only 1.5%. In terms of magnitude, this result is almost
negligible. Therefore, during the drought years, the major-
ity of Guanacaste showed either small changes or no
changes in vegetation stress as measured by ESI, which
indicates that vegetation drought response in the province
as measured by ESI most closely follows Scenario C in the
conceptual framework of drought assessment, at least in
the short term. On the other hand, NDVI showed overall
decreases in all three drought years in most of Gua-
nacaste. This most closely resembles a Scenario A
response.
Precipitation deficits often occur simultaneously with

high solar radiation, high temperature, and low air humid-
ity, all of which drive increases in PET (Shah and Paulsen,
2003, Vicente-Serrano et al. 2013). The results from this
analysis mostly show the same relationship: the year with
the largest decrease in precipitation also experienced the
largest increase in PET over the entire province (even
though the largest increase in PET occurred in the region
with the smallest decrease in precipitation for that year).
In contrast, decreases in rainfall are often associated with
decreases in ET, because when plants are water stressed,
they try to conserve water by closing their stomata, caus-
ing the transpiration component of ET to decrease
(Anderson et al. 2007, Fisher et al. 2011). The characteris-
tic decrease in ET as a result of negative precipitation
anomalies did not occur in Guanacaste; in fact, ET actu-
ally tracked the large increases in PET in the southwestern
region. It is possible that even if plants decrease their con-
ductance to water vapor as a response to the 2015 drought
(i.e., decrease the transpiration component of ET), the
evaporation component of ET increased enough to com-
pensate for the decrease in transpiration allowing for ET
to keep up with the increases in PET.
One explanation for why ET and ESI did not decrease

throughout Guanacaste as much as might be expected is
the region’s sub-humid climate with abundant precipita-
tion. This may have buffered plants from the full effects
of the large precipitation deficits. The region has an aver-
age annual rainfall of about 1,691 mm, with about
82.2% air humidity in the wet season and 67.8% air
humidity in the dry season. Even with several months of
precipitation shortages averaging 150 mm in 2015, there
is still about 1,000 mm of rainfall over the year, and it
may have been enough to keep up with evaporative
demand throughout the drought years.
Another possible reason for the modest decreases in ET

and ESI involves the availability of other sources of water.
The lack of notable decreases in ET and ESI anomalies in
the agricultural areas likely occurred due to an increase in
irrigation: unlike other areas in the dry corridor, Costa
Rica has access to infrastructure and funding that allow
water to divert from the wet, Atlantic region to agricultural
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fields on the dry, Northwestern Pacific region of Gua-
nacaste (Jim�enez et al., 2001). Furthermore, vegetation
may have access to shallow groundwater in the region. This
could explain why vegetation, particularly in grassland and
forest ecosystems in southeastern Guanacaste, may have
been able to continue to match ET with atmospheric
demand (PET) even with the large increases in PET the
during 2015 in the southwestern portion of Guanacaste.
The southwestern part of Guanacaste experienced the

smallest decrease in precipitation compared to the other
areas of the province in 2015, with the difference in
anomalies from east to west equal to about 50 mm.
These wetter conditions in the southwestern region may
have enabled plants to continue to meet elevated evapo-
rative demand with increased transpiration. However,
given that the wet season anomaly was still about
125 mm per month below the baseline in the southwest-
ern part of Guanacaste, it is possible that the drought-
resilient characteristics of the primarily deciduous forest
ecosystem in that region (Fig. 2) also contributed to the
region’s ability to maintain NDVI values as well as
increase ET to match PET. Trees tend to have deeper
roots than grasses growing in grassland ecosystems, pro-
viding greater access to water in the subsurface. The veg-
etation in the forested region continued to meet
atmospheric demand, suggesting that the forest may be
drought resilient enough to withstand the impacts of the
most severe drought conditions in the past 64-yr record,
at least in the short term. This response is somewhat
similar to that of Amazon forests responding to short-
term drought in 2005 (Saleska et al. 2007), whereby for-
ests exhibited a green-up in spite of drought. Saleska
et al. (2007) attribute the observed green-up to increased
availability of sunlight due to decreased cloudiness. This
could be one explanation for the pattern mirrored by the
results of this study, where NDVI declines during the
drought years but not for the mostly deciduous forest
land cover type in the southwest of the province.
The lack of change in the spatial anomalies of NDVI

and ESI suggests that no major changes in vegetation
stress occurred in the southwestern part of Guanacaste,
resembling Scenario C in the drought assessment frame-
work. However, for most of Guanacaste, the NDVI
anomalies depict Scenario B (increase in vegetation stress)
in the conceptual framework while ESI depicts Scenario C
(no increase or decrease in vegetation stress). The differ-
ence in conceptual scenarios for indices of NDVI and ESI
highlights the decoupled responses of the respective indices.
However, the decoupling observed here differs from find-
ings of other studies: as an early warning sign of drought,
ESI often declines before NDVI because plants typically
close their stomata and conserve water before any detect-
able changes in greenness occur (Anderson et al. 2011).
The two possible explanations provided as to why ESI

did not decrease as much as expected in most of Gua-
nacaste point to the sub-humid climate in Guanacaste
and to other sources of water availability. However, if
those two phenomenon were responsible for the lack of

drought impacts as measured by ESI, then it is likely that
NDVI would also show a similar lack of response as ESI.
If vegetation was able to match atmospheric demand,
then NDVI would not be expected to decrease. Similarly,
if there was shallow groundwater available, then this
would also be reflected in NDVI. But instead NDVI
anomalies were strong and negative in most of the study
area across all drought years. The large differences in
assessments about vegetative drought response conveyed
by NDVI and PT-JPL-derived ESI anomalies could
prompt further investigation of PT-JPL in terms of how
well it captures regional changes in drought response.
Fisher et al. (2008) validated PT-JPL across a wide range
of climates and plant functional types with success
(RMS = 16 mm/month or 28% for 16 eddy covariance
tower sites across two years). Nonetheless, it is possible
that PT-JPL did not effectively capture the regionally
specific variation and nuances in the relationship between
ET and PET. For instance, PT-JPL uses a greenness mea-
sure (NDVI) to constrain PET and derive ET estimates.
While strong empirical correlations between NDVI and
vegetation biomass generally exist across broad gradients,
greenness lacks localized information on vegetation struc-
ture and function, both of which play important roles in
determining regional vegetative ET response to drought
conditions (Houborg et al. 2015).

Implications for land management practices and
environmental decision making

An implication of this research is that land managers
have an opportunity to steward resources in a way that
reflects the understanding that their decisions can
improve (1) the efficiency of current “business as usual”
irrigation practices and (2) the underlying land steward-
ship strategy so that it is more drought resilient.
The 1-km data used in this study fit a regional analysis

of drought but are too coarse for agricultural irrigation
applications. Obtaining high-resolution estimates of ET
represents a cost-effective way to detect intra-field vari-
ability of plant stress, which can help agriculturalists
apply precise irrigation methods based on crop require-
ments (Melton et al., 2012). Under the crop coefficient
FAO-56 approach (Allen et al. 1998), which depends on
measuring plant ET capacity, ET data can help to identify
the quantity and timing of water additions needed to
avoid stress as operations aim to optimize limited water
resources. Such localized studies require finer spatial and
temporal resolution ET data than those used in this study.
The data must be accessible and have global coverage to
enable adoption from ecologically and economically
diverse stakeholders (Reid and Oki 2014). Many of these
stakeholders otherwise could not afford the financial and
time costs associated with in situ data collection but
would benefit from using the data to optimize water use.
With the launch of NASA’s ECOsystem Spaceborne
Thermal Radiometer Experiment on Space Station
(ECOSTRESS) in June 2018, ECOSTRESS provides ET

Article e01834; page 16 SAVANNAH S. COOLEY ET AL.
Ecological Applications

Vol. 29, No. 2



at 70-m pixel resolution approximately every four days,
which will help resolve spatial and temporal gaps in the
current approaches to studying vegetation stress using
Landsat (low temporal resolution) and MODIS (low spa-
tial resolution) data. At such spatial scales, opportunities
arise for providing ET-based irrigation recommendations
as well as identification of drought-resilient crop varieties
(Tuberosa and Salvi 2006).
In addition to making business as usual agricultural

irrigation and crop variety selection more efficient, a
potentially more promising implication of this research
that we hope future studies explore involves supporting
a shift in the fundamental agricultural land management

practices such that they become more drought resilient.
This shift is particularly urgent in the context of
increased intensity, frequency and duration of extreme
drought conditions predicted to result from increased
greenhouse gas emissions. Determining which natural
and managed ecosystems are most vulnerable to vegeta-
tion stress, and their time scales, can support forecasting
of drought effects and subsequent decision making
around land and water resource management. For Gua-
nacaste in particular, Kuzdas et al. (2015) assert the
need for “transformational change” in water governance,
indicating that increases in efficiency alone are not suffi-
cient for creating sustainable and drought resilient water
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use in Guanacaste. More fundamental and systemic
changes in natural resource stewardship are necessary.
Lower ET values in grasslands and agriculture com-

pared to deciduous forest might result from lower soil
moisture retention, a less regulated microclimate, and
shallower root systems with less extensive access to deep
water. It is difficult to predict how ET and NDVI would
change if PET increased uniformly in every part of Gua-
nacaste the way it did in the southwestern region. One
possibility is that only the forested region would be able
to meet the increase of PETwith a proportional increase
in ET. In particular, the ecosystem that would likely suf-
fer the most in terms of plant stress would be grassland
due to the lack of root depth for accessing moisture dee-
per than the shallowest root zone as well as a less regu-
lated microclimate (Lin 2007). In the agricultural
regions of Guanacaste, most of which have access to irri-
gation, ET would likely be able to rise the same amount
as PET. In the absence of irrigation, however, the con-
ventional monocrop agriculture systems of the province
may have experienced plant stress resembling grasslands
in Guanacaste. The recent drought in the Dry Corridor
caused countries that lack irrigation to fall victim to
water shortage and crop failure, which in turn decreased
food security, jeopardized safety, and threatened liveli-
hoods (United Nations Office for the Coordination of
Humanitarian Affairs 2014, 2016).
The drought response of deciduous forest ecosystems

in Guanacaste consistently showed significantly lower
vegetation stress across NDVI, ET, and ESI compared
to grassland, at least in the short term. Therefore, one
approach for agriculture to become more drought-resis-
tant involves transitioning from large monocrop fields,
which are similar to grasslands in terms of structure, into
systems that emulate forest ecosystems, which have
drought-resilient characteristics such as increased biodi-
versity, more mild microclimates and deeper roots com-
pared to grassland (Lin 2007, Tscharntke et al. 2011).
Shade-grown coffee represents one example of

drought-resilient agricultural land management. The
study conducted by Lin (2010) examines the ability of
shade trees to maintain water availability for coffee in a
shade agroecosystem in Southern Mexico. Soil evapora-
tion and evaporative demand for crop transpiration were
compared in coffee systems under different levels of shade
canopy during both the wet season and dry season
between July 2004 and June 2005. With 60–80% shade
cover, daily soil evaporation rates significantly decreased
by 41% compared to the low shade site (10–30% shade).
Furthermore, coffee transpiration demand was strongly
affected by shade cover as shade cover impacts microcli-
mate factors including light, temperature, and air satura-
tion vapor pressure deficit. Shade cover above 30%
showed significant reductions of 32% in evaporative
demand when compared to the low shade site. Linn
(2010) concludes that the presence of shade cover in agro-
forestry systems is capable of reducing overall evaporative
demand from soil evaporation and transpiration,

therefore offering a higher level of crop protection for
farmers with agricultural vulnerability to reduced water
resources.
Additional benefits associated with shade trees in agro-

forestry include enhancement of functional biodiversity,
carbon sequestration, soil fertility, as well as weed and
biological pest control (Tscharntke et al. 2011). Higher
pest densities can result from physiological stress in
unshaded cropland. Risk-averse farmers avoid long-term
vulnerability of their agroforestry systems by keeping
shade as an insurance against insect pest outbreaks. Fur-
thermore, shade-grown coffee systems provide habitat for
birds and other animals that prey on pests in the coffee
plantations. This greatly reduces the need for pesticide
spraying. Decreased or complete elimination of pesticide
application creates a positive feedback loop in which
improved water quality and ecosystem health protects
functional agrobiodiversity such as antagonists of pests
and diseases, as well as pollinating bees, which further
enhances coffee yield and reduces the need for fertilizer
application (Tscharntke et al. 2011).

CONCLUSION

This study found that vegetation in some parts of
Guanacaste was modestly stressed by severe precipita-
tion shortages in 2013, 2014, and 2015. Most of the
region had negative anomalies in NDVI, but anomalies
in evapotranspiration and evaporative stress index
(ET/PET) were surprisingly small. We found almost no
vegetation stress in the southwestern forested region of
Guanacaste, which may have resulted from smaller pre-
cipitation shortfalls coupled with forest ecosystem char-
acteristics such as a more regulated microclimate and
more deeply rooted vegetation. Overall, this study illus-
trates how incorporating ET into a drought assessment
can provide information that complements other vegeta-
tion metrics such as NDVI. Possible implications of this
research and future applications of ET data for agricul-
tural land management and environmental decision-
making include guiding irrigation practices and crop
variety selection to become more efficient. These impli-
cations improve “business as usual” practices, meaning
that they reduce the impact of unsustainable practices
such as excessive fertilizer runoff (Tscharntke et al.
2011) and over withdrawal of groundwater (Famiglietti
et al. 2011, Chen et al. 2014, Iqbal et al. 2016). Another
possible implication of this research points to the oppor-
tunity to reevaluate conventional agricultural land man-
agement practices in pursuit of stewarding managed
landscapes such that they are sustainable and drought
resilient by design. We explore this with an example that
compares the benefits associated with shade-grown
coffee vs. conventionally grown coffee. As finer spatial
resolution ET data become increasingly available, appli-
cations of ET information can continue to help identify
drought-resilient ecosystems. The more we learn from
these natural systems, the greater potential we have for
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reimagining what it takes to create drought resilience
within managed agricultural systems.
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