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Abstract The Budyko hypothesis provides a first-order estimate of water partitioning into runoff (Q) and
evapotranspiration (E). Observations, however, often show significant departures from the Budyko curve;
moreover, past improvements to Budyko curve tend to lose predictive power when migrated between
regions or to small scales. Here to estimate departures from the Budyko curve, we use hydrologic signatures
extracted from Gravity Recovery And Climate Experiment (GRACE) terrestrial water storage anomalies. The
signatures include GRACE amplitude as a fraction of precipitation (A/P), interannual variability, and 1-month
lag autocorrelation. We created a group of linear models embodying two alternate hypotheses that depar-
tures can be predicted by (a) Taylor series expansion based on the deviation of physical characteristics (sea-
sonality, snow fraction, and vegetation index) from reference conditions and (b) surrogate indicators
covarying with E, e.g., A/P. These models are fitted using a mesoscale USA data set (HUC4) and then eval-
uated using world data sets and USA basins <1 3 105 km2. The model with A/P could reduce error by 50%
compared to Budyko itself. We found that seasonality and fraction of precipitation as snow account for a
major portion of the predictive power of A/P, while the remainder is attributed to unexplained basin charac-
teristics. When migrated to a global data set, type b models performed better than type a. This contrast in
transferability is argued to be due to data set limitations and catchment coevolution. The GRACE-based cor-
rection performs well for USA basins >1000 km2 and, according to comparison with other global data sets,
is suitable for data fusion purposes, with GRACE error as estimates of uncertainty.

1. Introduction

The Budyko hypothesis [Budyko, 1948; Arora, 2002; Gerrits et al., 2009; Wang and Tang, 2014] describes the
long-term partitioning of precipitation (P) between evapotranspiration (E) and runoff (Q), as a function of
the ratio between potential evapotranspiration (Ep) and P, also called the aridity index (Ep=P), i.e.,
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where E/P is termed the evaporation ratio, and f stands for the Budyko curve, for which many formulations
exist, e.g., the Turk-Pike equation [Pike, 1964; Yang et al., 2008] modified by Chen et al. [2013] with the addi-
tion of an abscissa-intercept term

f
Ep

P

� �
5 11

Ep

P
2u

� �22
" #21=2

; (2)

where u is the intercept added by Chen et al. [2013]. Recently, the Budyko curve has found wide applica-
tions as a reference condition [Istanbulluoglu et al., 2012; Berghuijs et al., 2014a; Carmona et al., 2014] or pro-
viding a framework for the understanding of hydrologic controls [Gentine et al., 2012] under climate change
[Berghuijs et al., 2014a; Yang et al., 2014; Zhang et al., 2015]. On a theoretical level, the Budyko curve initiated
an interesting hypothesis that various catchment characteristics coevolved with climate to manifest such a
simple water partitioning pattern [Troch et al., 2013; Li et al., 2014]. On a practical level, the Budyko curve
provides an independent first-order estimate of E for predictions in ungauged basins (PUB) [Hrachowitz
et al., 2013], without the use of any hydrologic models, which is useful for the evaluation of land surface
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hydrologic models [e.g., Xia et al., 2012; Oleson et al., 2013; Shen et al., 2013, 2014, 2016; Clark et al., 2015;
Fatichi et al., 2016].

However, recent studies have focused on noticeable deviations from the traditional theoretical Budyko
curve, i.e., there can often be a significant departure
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is the departure of actual evaporation ratio (E/P) from the Budyko-predicted value (for

long-term water balance, E can be well approximated by P2Q). First, attention was paid to climatic pattern, in
particular, the phase difference between E and precipitation in an arid region (aridity index> 1) [Chen et al.,
2013; Berghuijs et al., 2014b]. If precipitation and Ep peaks are ‘‘in-sync’’ throughout a year, nearly all precipita-
tion will become E and E=P will be close to 1; in contrast, if P concentrates in the winter when there is little Ep,
actual E will be significantly less than that of the uniform case. Besides climatic factors, researchers also exam-
ined influence of physical characteristics, especially vegetation control. Li et al. [2013] used the normalized dif-
ference vegetation index (NDVI) to parameterize Fu’s version of the Budyko equation [Fu, 1981; Zhang et al.,
2001] and found that vegetation control is more apparent for larger basins (>300,000 km2) but diminishes for
basins smaller than 50,000 km2. Xu et al. [2013] parameterized Fu’s equation at different scales with NDVI,
topography, latitude, longitude, and elevation. Their calibrated coefficients are also different for basins of dif-
ferent sizes. The performance degradation and the required changes in coefficients for small scales found in
the above studies need to be better understood. For prediction in ungauged basins, special attention is
needed for the generality of the method to avoid overfitting. A generalized formula that is portable across
scales and regions can also help advance process-level understanding of water partitioning.

Although remote sensing methods have made large strides recently, there is not yet direct measurement of
E. Satellite-based products for E, e.g., MOD16A2 [Mu et al., 2011] rely on assumptions and empirical formula-
tions. The GRACE mission [Tapley et al., 2004; Wahr, 2004] records terrestrial water storage anomalies
(TWSA, storage deviation from the long-term mean) for the world and has been shown to be useful for a
variety of applications including monitoring groundwater resources [Famiglietti et al., 2011; Scanlon et al.,
2012; D€oll et al., 2014; Huang et al., 2015], model calibration and testing [Lo et al., 2010; Niu et al., 2014],
flood forecasting [Reager et al., 2014] and drought monitoring [Long et al., 2014a]. Since storage is a com-
peting process of runoff and E, we expect TWSA to contain signals relevant to runoff and E. For example,
the amplitude of the TWSA (A, average peak height from the mean) as fraction of P is an indicator of the rel-
ative strengths of storage and release of the system (climate and catchment). Relevant to E, the use of
GRACE is ordinarily in a data assimilation/model calibration setting [e.g., Long et al., 2014b]. No effort, to the
authors’ best knowledge, examines how GRACE TWSA is related to E in a Budyko framework.

Hydrologic ‘‘signatures’’ [Vogel and Sankarasubramanian, 2003; Gupta et al., 2008; Yilmaz et al., 2008] are sta-
tistics extracted from hydrologic time series to highlight certain distinguishing behaviors of the hydrologic
systems. Streamflow-derived hydrologic signatures have been used in model calibration [Yilmaz et al.,
2008], parameter regionalization [Yadav et al., 2007], and catchments classification [Sawicz et al., 2014]. In
this paper, we attempt to answer the following questions: Does there exist a relationship between basin E
and GRACE signatures, such as A as a fraction of P, which is useful for improving estimates of water parti-
tioning, and, if so, what factors contribute to the A-E relationship? Is such a relationship general enough to
be portable across different regions? At what scale is the equation valid? In the following, we first describe
data sources, processing procedures, signatures and indicators computed, and the Analysis of Covariance
(ANCOVA) used to partition the predictive power of A/P to different factors. Then we introduce the linear
models for the departure term and their different underlying hypotheses. After that, we show the perform-
ance of the models across scales and regions and its control factors through variance partitioning. Finally, a
new long-term global average E data set with error estimates is introduced. This data set is a new
‘‘hydrologic-model-free’’ independent validation data sets useful in data fusion.

2. Methods

2.1. Data Sources and Processing Procedures
We employed three sets of basins (Figures B1 in Appendix B) in order to comprehensively examine model
portability and scale-dependence issues: (1) 179 Hydrologic Cataloging Unit 4-digit (HUC4) basins, which
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seamlessly cover the conterminous USA; (2) 605 basins from the global runoff data center (GRDC) that are
within 1042105 km2; and (3) 4627 US Geological Survey (USGS) gauged basins from the GAGES-II data set
[Falcone, 2011] which has been used to analyze climate change imprint on alluvial rivers [Slater and Singer,
2013] and hydraulic geometry [Shen et al., 2016]. We screened the data for temporal coverage (sites with
less than 90% for the period from 1 October 2002 to 31 December 2012 are removed) and spatial coverage
(sites with catchment areas bigger than the HUC4 they are located in are removed, because they are down-
stream gages in major rivers).

Figure 1. Hydrologic signatures and climatic index computed for the world using data from October 2002 to September 2010: (a) average
annual GRACE TWSA amplitude as a fraction of precipitation (A/P); (b) the interannual GRACE signal variability ratio c (dimensionless ratio
between between-year and within-year TWSA variability); and (c) the precipitation-temperature seasonality index following Woods [2009],
which is 21 for completely out of phase, 1 for completely in phase, and 0 for uncorrelated.
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The three sets of basins have different forcing data sources. For the HUC4 basins, hourly precipitation, tem-
perature, radiation, wind speeds, and humidity from the North American Land Data Assimilation System
(NLDAS) [Xia et al., 2012] were aggregated to the basins for the calculation of Ep using the Shuttleworth
equation (section 2.3). Monthly runoff was obtained from USGS website (http://waterwatch.usgs.gov/new/
index.php?id5romap3). This version of HUC4 runoff was computed by aggregating flow from data-
sufficient gages located within a HUC4. For the USGS GAGES-II basins, NLDAS climate forcing was distrib-
uted into the basin boundaries, similar to the HUC4 data set. Daily discharges from USGS websites were
downloaded from USGS website (http://waterdata.usgs.gov/nwis/) and aggregated to analysis time periods/
scales. We compared HUC4 data with intersecting MOPEX data sets [Duan et al., 2006] and the correspond-
ing P and Ep are similar (Figure B2).

For the GRDC basins, long-term annual average discharge was obtained from the GRDC data set (http://
www.bafg.de/GRDC/EN/Home/homepage_node.html). Precipitation was derived from two data sets. For
tropical and midlatitude regions (between latitudes 250� and 150�), we employed the precipitation prod-
uct from the Tropical Rainfall Measuring Mission (TRMM) [Huffman et al., 1997] (3B42V7 derived). For high-
latitude basins, we used precipitation forcing data from the Global Land Data Assimilation System (GLDAS)
version 2 [Rodell et al., 2004]. The version 2 GLDAS product is only available until the end of 2010. Other cli-
matic inputs are extracted from GLDAS for all basins.

Following Li et al. [2013], we obtained the 10 km resolution NDVI from Global Inventory Modeling and Map-
ping Studies (GIMMS) [Buermann, 2002]. We used the average NDVI for the period 1984–2006 in our analy-
sis. For E comparison, we used the PT-JPL product described in Fisher et al. [2008], hereafter termed EPJ. This
approach utilizes ecophysiological constraint functions to downscale Ep to actual E using remotely sensed
observations of land and atmosphere properties. The algorithm and product have been widely used and
independently validated extensively throughout the scientific literature, showing top performance across
multiple intercomparisons [e.g., Vinukollu et al., 2011; Chen et al., 2014; McCabe et al., 2015; Miralles et al.,
2015]. In addition, we also compared our E estimate with simulated E from GLDAS version 2 with the NOAH
land surface model [Ek et al., 2003].

Currently, three GRACE solutions [Swenson, 2014] are provided at monthly time intervals and 1-degree spa-
tial resolution for the world. GRACE TWSA mass grids level 3 version 5.0 data, processed using University of
Texas Center for Space Research (CSR) algorithm was downloaded from GRACE Tellus website [Swenson,
2012]. The GRACE product uses a destriping filter and a 300 km wide Gaussian filter as well to minimize
North-South stripes in the monthly maps. The scaling factor based on land surface models, proposed by
Swenson and Wahr [2006] and Landerer and Swenson [2012], was applied to the original gridded data to
restore signal losses due to surface mass variations at small spatial scales tend to be attenuated by the low-
pass filtering of GRACE spherical harmonics. GRACE TWSA data and hydrologic signatures are averaged by
area to the HUC4 and GRDC basins. For the USGS basins, since some of them are too small, they are
assigned the GRACE data from the HUC4 in which they are located.

2.2. Hydrologic Signatures Extracted From GRACE
We extracted three hydrologic signatures from GRACE monthly time series (October 2002 and September
2014), based on reasoning about the hydrologic systems and statistical significance: (1) the average annual
maximum TWSA amplitude (A) as a fraction of precipitation (A=P) (Figure 1a). This signature is chosen
because the fraction of precipitation stored reflects the competition between storage, runoff and ET. Water
stored through infiltration or snowpack accumulation is more likely to be released as runoff. Therefore, we
anticipate that higher A/P is correlated with lower E/P. More explanations are provided in section 2.4; (2) the
ratio of TWSA variance explained by interannual variability and intra-annual variability (c) (Figure 1b). c is
chosen because basins with higher interannual variability in storage (normalized to intra-annual variability)
tend to have smaller long-term average E/P compared more evenly distributed ones: in years with extraordi-
nary precipitation, there is a higher chance of water partitioned as storage and runoff as opposed to E. Inter-
annual variability was also found to be important for long-term water balance [Sivapalan et al., 2011; Li,
2014]; and (3) acfD, the 1 month lag, piecewise-detrended autocorrelation function of GRACE TWSA based
on D-month-long segments. acfD describes the smoothness of the monthly TWSA signal and reflects the
seasonal distribution pattern of storage. As with c, a higher concentration of storage in a few months will
likely result in smaller E/P compared to average conditions. Apart from climate pattern, longer memory in
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storage may indicate the ability of the system to hold water from runoff, hypothetically leading to higher E/
P compared to low-memory systems.

A is estimated by first applying a Fourier-transform to the GRACE time series, and then take the maximum
amplitude for frequencies between 0.8 and 1.2 cycles/yr. Previous research showed that most mega-basins in
the world have the highest peaks at annual periods [Reager and Famiglietti, 2013]. Although in that work the
Yule-Walker autoregressive method [Emery and Thomson, 2004] was used, we are only interested in the annual
amplitude and therefore a Fourier transform is sufficient. The band window of 0.8–1.2 is for numerical stability
of the method and slight changes of the window did not change our results. We can see hot spots of A/P in
areas near large rivers, e.g., Mississippi, lower Nile, and Amazon (Figure 1a). As described previously, in these
regions A/P is not reflective of land surface runoff and storage, but rather, seasonal river stage fluctuations, so
they are removed from model fitting. When working with HUC4 data set, since the Mississippi River induce large
seasonal mass changes and leakage errors which are unrelated to nearby land surface runoff/water storage
dynamics, the basins that contain the Mississippi River are removed from analysis. In the USA (a bigger map of
A/P for HUC4 basins is presented in Figure B1 in the Appendix), the high A/P regions are in the west, where pre-
cipitation is winter-dominant [Berghuijs et al., 2014b] and has a big phase difference with temperature.

In addition, we propose an interannual variability index, c (Figure 1b), which quantifies the ratio of between-year
variability and within-year variability in TWSA. If rw;i Sð Þ is the standard deviation of TWSA in i-th year (based on
monthly data), the average within-year standard deviation is rw 5 1

ny

Pny

i51 rw;i TWSAð Þ, where ny is the number
of years. The mean of each year’s TWSA is TWSAi , and rb is the standard deviation of TWSAi . We define c as

c5
rb

rw
: (4)

We calculated the indices using GRACE data from October 2002 to September 2014. Some data gaps in
GRACE has been filled using spline interpolation. We evaluated using data from 2002 to 2012 which has
fewer gaps. This was not found to have significant influence on our results.

acfD is the cross correlation of the GRACE data with itself with 1-month lag, after applying piecewise
detrending in every D months. Higher acfD indicates higher similarity between data points and their neigh-
bors and thus higher smoothness. Lower acfD curves have more abrupt changes. We first divided the time
series into multiple segments, each consisting of D months of data (in our analysis we used D 5 48). Without
piecewise detrending, nonstationary trends may interfere with the extraction of the autocorrelation func-
tion. It is well-known that different time periods can exhibit different trends in the GRACE data [see, e.g.,
Famiglietti et al., 2011; Voss et al., 2013]. Here to simplify the analysis, we only examined 1-lag acf with 48
months as the segment length for detrending. We tested 2-month lag and 3-month lag (data not shown
here), which did not provide much additional predictive power.

GRACE data are influenced by different sources of errors [Wahr et al., 2006]. Signal degradation due to mea-
surement noises are called measurement errors [Swenson and Wahr, 2006] and the contamination of signal by
nearby region (due to spectral truncation and filtering) is termed leakage errors (Figure B3). We employed
measurement and leakage errors estimated using the approach in Landerer and Swenson [2012] and provided
at http://grace.jpl.nasa.gov to calculate the combined error as the quadratic mean of the two errors. The errors
are used to determine regions where GRACE-based signatures have low reliability, which are overwritten by
interpolation. After our initial testing, we found that where the combined error is large (>74 mm, which is two
times the global mean combined error), the hydrologic signatures from GRACE is no longer usable. For world
data sets (GRDC and world-gridded products), regions with errors larger than 74 mm obtain their A/P via inter-
polation from other regions. In fact, few GRDC basins fall into this category. A/P for cells with major rivers such
as Amazon, lower Nile, and Mississippi are automatically interpolated from neighboring regions.

2.3. Climatic Indices
Ep was calculated using the Shuttleworth equation [Shuttleworth, 1993; Zhou et al., 2006; Li et al., 2013]

kEp5
D � Rn

D1cp
1

6:43cp

D1cp
3 110:5361uð Þ3 es2eað Þ

Cp
; (5)

where D is the rate of change of saturation specific humidity (kPa 8C21), cp is Psychrometric constant
(kPa �C21), Rn is net radiation (MJ m22 d21), k is the latent heat of vaporization (MJ kg21), u is wind speed
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(m s21), Cp is specific heat of evaporation (MJ kg21 �C21), es is saturation vapor pressure (kPa), ea is near-
surface air vapor pressure (kPa), and the unit of Ep from this equation is mm d21. The daily Ep was aggre-
gated to mm yr21 for the calculation of the aridity index.

We calculated the fraction of P as snow (S/P), which is known to be important for runoff [Berghuijs et al.,
2014a]. We also calculated a seasonality index (Figure 1c) that quantifies the phase difference between pre-
cipitation and temperature following previous work [Woods, 2009; Berghuijs et al., 2014b], who derived it
based on fitting data to the following equations which adopt sine curve assumptions [Milly, 1994; Potter
et al., 2005]:

P tð Þ5P 11Dpsin 2p t2sp
� �

=s
� �� 	

;

T tð Þ5T 1Dtsin 2p t2stð Þ=sð Þ;

n5Dp3sign Dtð Þ3cos 2p sp2st
� �

=s
� �

; (6)

where t is the time (months), sp and st are a phase shift for precipitation and temperature, respectively
(months), s is the duration of the seasonal cycle (12 months) and Dp and Dt are the dimensionless seasonal
amplitudes for precipitation and temperature, respectively.

In theory, the seasonality index varies within 21; 1½ � and is 21 for completely out-of phase Ep and P, 0 for
uniform precipitation with seasonal temperature and 1 for completely in phase Ep and P. However, in prac-
tice because some basins have very dry seasons, the fitted sine curves can have >1 amplitudes. Note that
while n is negatively correlated with the A/P map (e.g., the western USA has high A/P and most negative nÞ,
the correlation is not perfect (e.g., the northern central lowland has relatively large A/P and also relatively
large n).

2.4. The General Departure Model and Its Rationale
Our linear formula for the departure term is

d� xð Þ5d xð Þ1e5aT x; (7)

where d� is an approximation to d, x is a vector of independent physical or surrogate factors (except 1 is the
first element for the intercept term), or a mixture of both, a are the corresponding linear coefficients and e
is the error term.

Although equation (7) seems a simple linear regression model, it in fact embodies different hypotheses
with different predictors. Here we make the distinction between physical factors (n, c, S/P, and NDVI), which
are independent variables that vary in space, and surrogate factors (A/P, acf48, and c), which are dependent
variables potentially influenced by the former. When equation (7) involves only physical factors, it is an
approximation to the relationships between potentially causal factors and outcome (departure from
Budyko). Further, it can be interpreted as a first-order Taylor Series expansion of the perturbation from the
reference state (Budyko curve) due to changes in physical factors (Appendix A). However, when a surrogate
factor is involved in equation (7), there is no causal or controlling relationship: E/P does not change because
of changes in A/P. Thus, a Taylor Series expansion interpretation is inappropriate. Rather, the surrogate fac-
tors and E/P covary due to changes in some common factors, and equation (7) captures their covariation.
When we test the different models we are also testing different hypotheses, i.e., whether the departure
from Budyko is better modeled by the difference in a list of physical factors or covarying surrogate indices.
More mathematical discussion of the different hypotheses is provided in Appendix A.

There are multiple reasons behind choosing A=P. The most important one is the following observation: if
the climate is such that P and Ep reach peaks and lows at approximately the same time, e.g., in the US
central high plains, they are ‘‘in-phase.’’ For ‘‘in-phase’’ and water-limited basins, P immediately evaporates,
leaving very little water for storage and runoff and thus high E/P, but at the same time, the A=P ratio is also
small because little water can be stored. On the other hand, if P and Ep are ‘‘out-of-phase,’’ as in the case of
US southwest, P during winter times ‘‘evades’’ the peak of Ep and has the chance to be stored. The storage
of water in winter times leads to higher A/P, and at the same time a low E=P. Therefore, there should be
negative covariation between the d and A=P.
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There are also many other potential ‘‘negative-A/P-E/P-correlation-inducing’’ (NAECI) physical factors.
Whether a factor is NAECI depends on how, when it is varied, it shifts the competition between E, Q, and S.
NAECI factors, in general, should favor infiltration against evaporation, for example, high vertical soil hydrau-
lic conductivity in deep-water-table regions: more water infiltrate below plant-accessible zone, increasing
groundwater storage while reducing E. Conversely, if a region has low vertical conductivity, it inhibits
groundwater storage while enhancing E, still contributing to a negative A/P-E/P correlation. For another
example, consistently light rainfall and cloudy patterns can promote infiltration and inhibit E. Some other
processes may in fact cause positive A/P and E/P correlations. For example, high terrain slope potentially
boosts runoff while decreasing both storage and evaporation, thus causing a positive correlation between
the two. A factor’s influence on A/P-E/P correlation can also be complicated and climate-dependent. For
example, unusually high vegetation cover is an NAECI factor for an arid catchment as it boosts E and
reduces infiltration (and thus storage); however, for low-aridity, energy-limited basins, vegetation intercep-
tion primarily modulates runoff and storage, with little impact on E.

2.5. Partitioning of Variance
We used analysis of covariance (ANCOVA) to attribute the variability of d to various physical factors or surro-
gate indices. Compared to the Analysis of Variance (ANOVA), which is designed for categorical data,
ANCOVA builds linear models for continuous variables to attribute variance to predictors [Keppel and Wick-
ens, 2004]. When the data are unbalanced (uneven sampling of data in different parts of the viable ranges
of factors), as is the case with our data, there are three different ways of attributing the variance (sum of
squares, SS): type I (sequential), type II (main effects excluded), and type III (main and interaction effect
excluded) [Fox, 2008]. With type I, SS are attributed to the factors in the order of what is supplied, and only
residuals are attributed to the next factors. Thus, the earlier factors will claim part of the SS of subsequent,
correlated factors. For example, if two factors are perfectly correlated, the first factor in the sequence will be
attributed all the SS they can explain and the second will be attributed none. With type II SS, the main
effects of other factors are excluded so the only part of SS that can be solely attributed to one factor is
reported. As a result, type II SS is not influenced by the order of factors. Type III is similar to type II, but fur-
ther excluded interaction terms. Here we examined type I and type II to see how different variables overlap.
In our ANCOVA we examined a total of six factors: A/P, n, c, S/P, NDVI, and acf48, and this order is called order
1 (O1). In the second order (O2), A/P is placed as the last argument: n, c, S/P, NDVI, acf48; and A/P.

2.6. Multiscale, Multi–Data Set Validation of Alternative Models
Since an important goal of the proposed method is to estimate E for ungauged basins, how the formula
performs when coefficients are migrated between regions and across scales is of great importance. We
tested the performance of a total of 13 linear models (Table 1), each with a different combination of the
above-listed predictors, when their coefficients are estimated from the HUC4 data set and then migrated to
the GRDC and USGS basins. The root mean squared error (RMSE) of E/P was used as a measure of error of
the models

RMSE5

Pnb
j51 f Ep=P

� �
1d�2 P2Qð Þ=P

� �� 	2

nb

( )1=2

; (8)

where nb is the number of basins and d� is the model-predicted departure term. When validating the mod-
els using the USGS data set, we rank the basins in descending order by their areas. Based on this ranking
the basins were evenly divided into 28 area classes. A separate RMSE was calculated for each class. Each
plotted point is the average of two neighboring classes.

3. Results and Discussion

3.1. The GRACE-Assisted Departure Model
From the HUC4 data set, we note many basins, especially those with larger aridity index, deviate signifi-
cantly from the Budyko curve (Figure 2a). For some arid basins, the ratio of Budyko-predicted and actual
water partitioning, f Ep

P

� �
: P2Qð Þ

P , can be as large as 50–100%. As expected, these points are always accompa-
nied by large A/P, showing a strong influence from seasonality. For wetter basins, on the other hand, there
may be negative or positive departures, which may be small but could potentially lead to large errors in the
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estimation of E due to the large P. We can clearly see there is a negative covariation between d and A/P (Fig-
ure 2c), which is exploited by the predictive formula. After we subtract the corrector term, based solely on
A/P, the points now cluster much more closely to the Budyko curve (Figure 2b).

3.2. Factors Contributing to Budyko Departures and A/P-E/P Correlation
The ANCOVA results show that for the HUC4 data set, Precipitation seasonality (n) and S/P are important but
not the sole factors contributing to A/P and the departure. The sequential (type I) sum of squares (SS) attrib-
uted to A/P, when factors are laid out in O1, is more than 61% of the total SS, leaving only about �3% to n
(Figure 3). When they are laid in O2, in which A/P is placed last, both n and S/P explain much more variance
than in O1, but there is still around 14% of SS attributed to A/P that is unexplained by any other factor.
Therefore, a large fraction 61%214%

61% 577%
� �

of the explanatory power of A/P is attributed to correlation
with n and S/P. This pattern suggests that P-Ep phase shifts and snowpack accumulation are two major rea-
sons causing A/P in the USA. In previous sections we reason that when P and Ep are ‘‘out-of-phase,’’ rain-
water has more opportunity to infiltrate, rather than becoming E, so that E/P is small compared to Budyko
prediction while A/P is larger than average, giving rise to the negative correlation. S/P has a similar effect:
when a larger fraction of precipitation falls as snow, snowpack accumulation produces larger A/P, while the
snowmelt water becomes runoff or infiltration more easily compared to average conditions. In addition,
there is little independent explanatory power in n and S/P that cannot be replaced by A/P, as reflected in
type I SS in O1. This means A/P is an excellent surrogate index to represent their aggregate effects on long-
term water partitioning. On another note, the interannual storage variability index has little correlation with
A/P or n, as evidenced by the small change in its attributed SS from O1 to O2. When there is large interan-
nual variability in precipitation, rainfall in wet years can create much higher runoff than average years and
thus causes overall negative d.

There are myriad processes that interact in complex ways to influence A/P-E/P correlation and the departure
from Budyko, and they are not easily described by a small number of indices. However, at the scales of
basins in the US and the world, such effects seem to be muted, and we observe primarily a negative A/P-E/P
correlation, suggesting their influence on E is limited. Overall, A/P appears to be an effective way of captur-
ing the lumped effects of these myriad processes, while the residual effects are in the error terms.

Table 1. Tested Linear Models With Linear Weights Provideda

Model # Predictors

0 Budyko itself
1 (HUC4) 0:22421:884 A=P
1 (GRDC) 0:21921:293 A=P
2 (HUC4) 0:21621:824 A=P10:013 n
2 (GRDC) 0:22521:308 A=P20:017 n
3 (HUC4) 0:31621:871 A=P10:058 n20:128 c
3 (GRDC) 0:19521:301 A=P20:021 n10:044 c
4 (HUC4) 0:32721:691 A=P10:068 n20:142 c 20:182 S=P
4 (GRDC) 0:20021:061 A=P20:005 n10:056 c 20:262 S=P
5 (HUC4) 0:17021:351 A=P10:126 n20:127 c 10:054 S=P 10:306 NDVI
5 (GRDC) 0:12821:052 A=P20:004 n1 0:060 c20:147 S=P 10:161NDVI
6 (HUC4) 20:02321:350 A=P10:127 n20:123 c 10:052 S=P10:336 NDVI10:223 acf48

6 (GRDC) 20:50321:195 A=P10:010 n10:091 c 20:103 S=P10:147 NDVI10:782 acf48

7 (HUC4) 0:18021:776 A=P10:132 NDVI
7 (GRDC) 0:13421:143 A=P10:232 NDVI
8 (HUC4) 0:33022:098 A=P20:106 c
8 (GRDC) 0:19121:284 A=P10:039 c
9 (HUC4) 0:31322:101 A=P20:106 c10:021 acf48

9 (GRDC) 20:54221:407 A=P10:084 c10:905 acf48

10 (HUC4) 0:03110:155 n
10 (GRDC) 0:09210:000 n
11 (HUC4) 0:11610:198 n20:114 c
11 (GRDC) 0:05620:005 n10:053 c
12 (HUC4) 20:03410:251 n20:132 c20:031 S=P1 0:589 NDVI
12 (GRDC) 0:02910:018 n10:073 c20:297 S=P1 0:173 NDVI
13 (HUC4) 20:23110:252 n20:127 c20:033 S=P1 0:619 NDVI10:228 acf48

13 (GRDC) 20:40010:029 n10:095 c20:281 S=P1 0:165 NDVI10:522 acf48

aHUC4 means the model was fitted using HUC4 data. GRDC means the model was fitted using GRDC data. Model #9 was chosen to
produce a global-scale comparison with EPJ and EGLDAS.
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3.3. Global Validation and the
Relevance of Coevolution to Model
Choosing
The HUC4-fitted models with more
predictors and slightly better-accuracy
inputs decrease in performance when
migrated to GRDC, although most of
them are still better than the original
Budyko (Figure 4). In the 14 models
inspected (the 0th is Budyko itself),
models #1–6 have 1–6 predictors,
respectively, all of which include A/P.
Model #1 with A/P as the only predic-
tor contributes the most significant
error reduction, while additional pre-
dictors have limited impact. When
migrated to GRDC (GRDCM), model #1
still reduces the error significantly, and
this reduction is similar to that
achieved by directly fitting the model
to the GRDC data set (GRDCF). With
each additional predictor added (mod-
els #2–6), RMSE decreases slightly for
HUC4 and somewhat more notably for
GRDCF. However, RMSE increases with
the same models for GRDCM. When A/
P is absent (models #10–13), RMSE
increases significantly for both HUC4
and GRDC. RMSE(GRDCM) even
exceeds the Budyko model itself. From
Table 1, the coefficient for n in GRDC-
fitted model #10 is 0, suggesting sea-
sonality plays different roles in differ-
ent regions so that no consistent
pattern exists on a global scale. In

addition, for many models in Table 1, the coefficients for some other factors, e.g., c and S/P, could switch
signs between HUC4 and GRDC. This means their influences on E are region-specific. Model #13 is most
interesting: with all five predictors other than A/P, this model is able to bring RMSE(HUC4) down to a level
similar to model #1, but when migrated to GRDC, the error is even larger than original Budyko. We conclude
that the coefficients estimated for these physical parameters are not portable across regions, consistent
with previous research [Xu et al., 2013]. In contrast, A/P is an effective and crucial predictor whose coefficient
is transferrable between regions.

When migrating HUC4-fitted models to the USGS basins, the performance gradually degrades for smaller
basins (Figure 5). At the largest scale (203103 km2), R2 is 0.85 for model #1 (with A/P only) while it is just
0.69 for Budyko itself. At around 43102 km2, R2 decreases rapidly and for the original Budyko, it drops
below 0.3. In terms of RMSE for E/P, the gap between model #1 and Budyko curve remains similar across
scales, suggesting that the deterioration is not primarily due to overfitting or using GRACE signal from the
enclosing HUC4. Such decrease may be due to the scale limitation of the Budyko hypothesis itself, but may
also be partly attributed to the decrease in quality of climate input data. Our input data were obtained from
NLDAS with a 1/88 spatial resolution (approximately 100 km2 at 40�N and 144 km2 at 30�N), which corre-
sponds to the point when RMSE drops below 0.3.

Adding predictors to A/P does not noticeably improve performance for either GRDC or USGS. The overfitting
problem is mild with models containing A/P, but significant for those without it. We notice that the model

Figure 2. Using GRACE TWSA amplitude as a fraction of precipitation (A/P) to pre-
dict the departure (d) from the Budyko curve for the HUC4 data set. d5 P2Q

P 2f Ep

P

� �
where Q is observed discharge, Ep is potential evapotranspiration, and f Ep

P

� �
is the

Budyko formula. (a) Without correction, the HUC4 basins scatter around the Budyko
curve, some with significant departures. (b) After correcting using A/P, basins are
now much more closely clustered around the Budyko curve. (c) The negative corre-
lation between A/P versus d allows the improvement over Budyko.
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with A=P1c1S=P1acf 48 remains the
best model across all USGS basin
scales, while when migrated to GRDC
the overfitting is noticeable. We offer
three explanations for the overfitting
when migrating to GRDC: (1) catch-
ments in the world experience more
diverse climatic, geologic and human
modification conditions than the USA,
so the coefficients learned from HUC4
for the attributes other than A/P are
not general enough. This is most appa-
rent from the seasonality index, which
has a coefficient of nearly 0 in the
GRDC data set; (2) different data sets
(NLDAS versus GLDAS 1 TRMM) have
different biases in various regions; (3)
catchment coevolution invalidates a
linear correction model based on the
physical factors.

The coevolution theory may help explain contrasts between the overfitting of physical factors and the port-
ability of A/P-based models. The abiotic and biotic systems (e.g., vegetation, soil, topography, and land-
forms) coevolve and adapt to each other and climate conditions such as P-Ep phase differences [Gentine
et al., 2012; Wagener et al., 2013]. Troch et al. [2013] argued that catchment characteristics coevolve with cli-
mate to produce the manifested E pattern such as the Budyko curve. Assuming this theory has validity,
when climate changes, the system responds with a variety of intertwined and initial-value- and path-
dependent changes in different physical factors. We have limited capability in capturing changes in all these
factors. It is challenging to observe or too numerous to analyze robustly, when each factor only accounts
for a small part of the variability. For example, climate change may cause a change in n, and then coevolu-
tion induces changes in other factors such as soil and vegetation (leaf and root). While changes in leaf status

can be measured by NDVI and
captured in our linear model,
soil and root are much more dif-
ficult to measure. Linear correc-
tion models may fail to
generalize due to missing fac-
tors. However, A/P as a surro-
gate captures some of the
effects of all these responses
because A/P covaries with the
departure. Therefore, the exis-
tence of partial coevolution
might be the reason why the
surrogate model is favored over
linear models with physical fac-
tors. As a side note, the coevolu-
tion theory above leads to the
surmise that a departure from
Budyko indicates incomplete
coevolution, that is, if given suf-
ficiently long time, these basins
will eventually return to the
Budyko curve.

Figure 3. Variance decomposition to surrogate indicators and physical factors
using ANCOVA for HUC4 and GRDC data sets. The fraction of the horizontal bars
occupied by a factor indicates the variance explained by this factor. Type I Sum of
Squares (SS) is ‘‘sequential’’ so the order of factors influences the results, unlike
type II, which excludes main effects of other factors. The order in O1 is A/P, n, c, S/
P, NDVI, and acf48, while O2 is n, c, S/P, NDVI, acf48; and A/P. The joint symbol, \,
stands for the part of variance with attributed to more than one factors. As n and
S/P occupy small fractions in O1 but more noticeable in O2, we conclude that A/P
encompasses n and S/P, while the latter two constitute a large fraction, although
not all of the predictive power of A/P.

Figure 4. Errors of the models #0 through #13 (Table 1) when they are fitted to the HUC4
data (blue line) and their coefficients are migrated to the GRDC data set (GRDCM green
solid line), compared to when the models that are directly fitted to the GRDC data (GRDCF,
green dashed line). Colors of the markers indicate the number of predictors. Note HUC4
and GRDC RMSEs are on two different y axes. We note that as indicators are added in mod-
els 1–6, they slightly reduce errors in HUC4 but increase errors when parameters are
migrated to GRDC. In addition, while the model with A/P is transferrable from HUC4 to
GRDC, models without A/P performs poorly when migrated. The evaluation period is Octo-
ber 2002 to September 2010, because GRDC is only available before September 2010.
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3.4. Comparison With Other E Products
We use model #9 calibrated based on GRDC data, i.e., with A/P, interannual variability (c) and fraction of P as
snow (acf48) as predictors, to produce a world long-term annual E, termed EC (Figure 6a). Overall, EC had
slighter higher correlation coefficient than EPJ, while both perform much better than the original Budyko
estimates (Figure 7a). Toward the higher E ranges (in the Amazon basin), EPJ tends to overestimate E while
EC tends to underestimate E. The gridded product was compared with EPJ and EGLDAS (Figures 6b, 6c, 7b,
and 7c). We note that in many places in the world the differences are small, and the difference between EC

and the two data products are smaller than that between themselves (Figures 7b and 7c). Regions with
noticeable differences include the Amazon forest, Southern Brazil, central Africa, Southeast Asia, Northern
Australia and Japan. In some of these regions (central Amazon, central and central-south Africa), three data
sets all differ, but EC is between EGLDAS and EPJ, and it agrees with one more than the other. In some regions
(Southwest Amazon, Southeast Asia, Japan, and Northern Australia), EC is likely to be in error due to GRACE
error contamination. We discuss these differences in the following.

In most parts of the Amazon, EC is substantially (0–400 mm yr21) smaller than EPJ but somewhat larger (0–
250 mm yr21) than EGLDAS, except in the southwest. Judging from the limited GRDC comparisons (Figure 7a
toward to the high E range), true E in this region is likely in the middle between EC and EPJ, and EGLDAS is
likely the most biased potentially because of underestimating evaporation of canopy interception. Both EC

and EGLDAS can suffer from errors in precipitation which can be significant in this region [Zhou et al., 2012].
In addition, as shown previously, using NDVI as physical predictors did not help with this issue. It is possible
that the satellite-based sensing of NDVI and LAI are saturated in the Amazon, invalidating a linear correction
formula. In the southwest Amazon, EC is slightly less than both and is likely to be in error here. As we can
see from the GRACE error map (Figure A3a), the southwest Amazon has large leakage errors. In fact, it is
clear from Figures 7b and 7c that in regions with large combined GRACE errors, EC is likely to be biased.

In central and central-south Africa (immediately beneath the Sahara), EC is slightly less than EPJ yet it is
noticeably larger than EGLDAS. The agreement between EC and EPJ, the small GRACE error in this region and
the large difference from EGLDAS suggest that EGLDAS is in error here. In contrast, in Southeast Asia and North-
ern Australia, EC is bigger than both EPJ and EGLDAS. Even after the interpolation attempt, the error is still
large in this region. Given the large leakage error in this region, EC most likely has a large positive bias here.
EPJ data are missing for Japan, but EC is also unreliable here due to large measurement error.

4. Limitations and Future Work

As discussed above, in regions where GRACE errors are large (e.g., Southeast Asia and Japan), the correction
formula might be contaminated by errors. In the future, it should be possible to merge the GRACE-assisted

Figure 5. The scale-dependent performance of five models when HUC4-fitted models are migrated to the USGS GAGES-II basins. (a) RMSE
of evaporation ratio (blue line is covered by red); (b) R2 between observed versus predicted E. The correction formula with A/P are transfer-
rable to >1000 km2 basins while the one without A/P performed only slightly better than Budyko itself. The gradual degradation in per-
formance toward smaller scales with the GRACE-assisted models is similar to that of the Budyko itself, indicating the degradation is due to
either data limitation or inherent loss of accuracy of the Budyko equation for smaller basins, rather than due to the correction formula.
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product with others using data fusion techniques that weigh GRACE-corrected data using combined GRACE
errors. With advances in algorithms, we might be able to obtain improved GRACE estimates with lower
errors, or new algorithms to reduce the area of regions with large errors. Because all inputs are available on
a monthly time scale, it should be possible to produce annual E data set, instead of a long-term average.
However, extracting meaningful amplitude for each year requires additional work, which we leave for the
next stage.

Figure 6. (a) World annual average GRACE-corrected evapotranspiration, EC, for 2002–2006 based on Budyko and linear model with A/P,
interannual variability index (c) and S/P, after GRACE error limiting; (b) difference between EC and EPJ (white blanks are due to missing data
in EPJ); and (c) difference between EC and EGLDAS.
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5. Conclusions

Given the large number of E products available for the world and leakage/measurement errors facing
GRACE, our estimate is more useful in a data-fusion setting than being used as a standalone product.
However, the novelty of this work resides with the advances in understanding the relationship between
storage amplitude and E, using Budyko as a reference condition, the mechanisms influencing TWSA
amplitude, the hydrologic signatures from GRACE and the transferability of the models embodying dif-
ferent hypotheses. To our knowledge, the present work is the first one examining the physical signifi-
cance of TWSA amplitude as a fraction of precipitation (A/P) and its controls by seasonality and snow,
and the first one to link it to the departure from the Budyko curve. The surrogate indicator A/P is a
powerful and portable predictor for the departure from the Budyko curve. Migrating models from HUC4
to GRDC and USGS data sets, the models with A/P are more transferrable than those without it. We
argue the overfitting with physical-factor-based linear models may be due to partial coevolution of basin
characteristics with climate, which can be difficult to fully capture. Although GRACE has a coarse spatial
resolution, the methodology works well for basins above 1000 km2 in the USA, which is much smaller
than the GRACE footprint. The gradual degradation in performance toward smaller scales is not due to
the GRACE-based correction formula, but Budyko itself and data limitations. Compared to two different
global E products, in many regions in the world, our improved estimate (EC) is either similar to both,

Figure 7. (a) Comparing GRACE-corrected product (EC) with EPJ and Budyko itself in GRDC basins for October 2002 to September 2006 (EPJ is available only before September 2006).
Budyko has negative biases while EPJ has positive biases in high E regions. (b–c) Comparison of EC with EPJ and GLDAS evapotranspiration. The root-mean-squared-difference is 175 mm/
yr between EC and EPJ, 131 mm/yr between EC and EGLDAS, and 189 mm/yr between EPJ and EGLDAS. We note that red-colored points (large GRACE errors) tend to be the most distant to
the 1-to-1 line, indicating in these regions EC is unreliable due to GRACE error contamination.
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between the two, or agree with one more than the other. The errors with EC is related to GRACE mea-
surement and leakage errors. Southeast Asia, Southwest Amazon, Northern Australia, and Japan are
regions where EC most likely has large biases.

Appendix A: Different Interpretations of the Linear Regression Equation

When x is composed of only independent physical factors, equation (7) can be interpreted as having
made the following hypothesis: the Budyko formula describes the E of a standard reference basin, x , (x

Figure B1. (a) A/P for HUC4; (b) locations of USGS gages used in the study; (c) maps of GRDC basins [Global Runoff Data Center, 2011] used
in the study, with colors indicating the aridity index.

Water Resources Research 10.1002/2016WR018748

FANG ET AL. PREDICTING DEPARTURE FROM BUDYKO USING GRACE 5550



stands for the reference values of a
comprehensive set of physical factors,
e.g., vegetation cover, terrain slope,
phase shift between P and Ep, etc.),
surrounding which the actual E
changes smoothly as a function of the
physical factors. The reference basin
represents average conditions, which
may vary as a function of the aridity
index, of world catchments. The
smoothness assumption allows us to
approximate the deviation from the
reference state using a linear formula
of the change in the factors, i.e.,
employing Taylor Series expansion

d xð Þ5 E
P

2f
Ep

P

� �
5aT x2xð Þ1e: (A1)

When x are constants, they need
not be estimated independently,
but can be lumped into the one

constant in the linear regression, i.e., in terms of data fitting, equation (A1) is equivalent to
equation (7).

When x also contains surrogate indices, e.g., A/P and c, it has a different physical meaning. If, in addition
to influencing E/P, x also influence the surrogate indices, say A/P, we can write an equation similar to
equation (A1)

DA
P

5
A
P

2
A0

P
5bT x2xð Þ1e; (A2)

where A0 is a reference amplitude, at which the amplitude-based correction is 0. We can split x into two
components, x5x0 1xC , so the above equations can be rewritten as

d5aT
0 x02x0ð Þ1aT

C xC2xCð Þ1e; (A3a)

A
P

2
A0

P
5bT

0 x02x0ð Þ1bT
C xC2xCð Þ1e; (A3b)

where xC are major climate or basin characteristics that can be conveniently computed with available data
for ungauged basins, e.g., phase shift between P and Ep or fraction of precipitation as snow, fraction of pre-
cipitation falling as snow (S/P) or vegetation indices (NDVI). We have tested using the NDVI as an aridity-
dependent variable, i.e., fitting the mean NDVI to aridity value, but this did not improve our results. x0 is
central to our method: these are a set of factors that influence both d and DA=P and we can find an approx-
imate, effective ratio b between b0 and a0, i.e., b5a0=b0. As a result, DA=P can be used as a surrogate for
x0, and we can rewrite equation (A3a) as

d� xð Þ5b
DA

P
1 aT

C2bbT
C

� �
xC2xCð Þ: (A4)

This formula gives some flexibility in assigning a factor into either x0 or xC . Although a fixed ratio b5a0=b0

seems a strong assumption, in reality, many factors exert weak controls, or they have strong controls
but with limited variability, and we can lump them into an effective parameter to be represented by
DA=P. At the extreme, we can merge all of xE and xC into x0. Equation (A4) becomes d Ep

P ; x
� �

5b DA
P 1e.

When we test equation (A4), the prediction of d turns into a linear regression problem between DA
P and

d so again it is equivalent to equation (7) for parameter estimation purpose.

Figure B2. Comparisons of annual average fluxes between HUC4 and MOPEX
basins for the period January 2002 to December 2013.
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Appendix B: Supporting Figures for Variables Discussed

The boundaries of HUC4 and GRDC datasets, long-term average aridity index and A/P for HUC4 are pre-
sented in Figure B1. To bridge the communities that use MOPEX and NLDAS datasets, we show their com-
parisons in Figure B2. Finally, Figure B3 presents GRACE leakage and measurement errors. From this figure,
we notice that Northwestern coast of North America, Andes, South Asia, Japan, Indonesia, Madagascar and
Northern Australia are all regions with relatively large GRACE errors.
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