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Abstract
Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent
impacts on land carbon sink interannual variability have been used as a basis for investigating
carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the
tropical carbon budget to climate change. Past studies have presented opposing views about
whether temperature or precipitation is the primary factor driving the response of the land
carbon sink to ENSO. Here, we show that the dominant driver varies with ENSO phase. Whereas
tropical temperature explains sink dynamics following El Niño conditions (rTG,P¼ 0.59, p< 0.01),
the post La Niña sink is driven largely by tropical precipitation (rPG,T¼−0.46, p¼ 0.04). This
finding points to an ENSO-phase-dependent interplay between water availability and temperature
in controlling the carbon uptake response to climate variations in tropical ecosystems. We further
find that none of a suite of ten contemporary terrestrial biosphere models captures these ENSO-
phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the
future of the global land carbon sink.
© 2017 IOP Publishing Ltd
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Introduction

Any decrease in the global land carbon sink acts to
exacerbate future climate change, but the actual
impact of climate change on carbon dynamics remains
highly uncertain (Ciais et al 2014, Cox et al 2000,
Friedlingstein et al 2006, Friedlingstein et al 2014).
Climate variability associated with the El Niño-
Southern Oscillation (ENSO) and the consequent
impacts on land carbon sink interannual variability
have been used to investigate carbon cycle responses to
climate variability, and to inform the sensitivity of the
tropical carbon budget to climate change (Cox et al
2000, Cox et al 2013, Gurney et al 2012, Wenzel et al
2014). Past studies have argued that temperature
drives ENSO impacts on carbon dynamics (Braswell
et al 1997, Clark et al 2003, Cox et al 2013, Jung et al
2017, Kindermann et al 1996, Wang et al 2013, Wang
et al 2014) and that the relationship to precipitation is
relatively weak (Clark et al 2003, Wang et al 2013,
Wang et al 2014). For instance, recent studies show
that the correlation between the interannual variation
of the atmospheric CO2 growth rate (AGR, deter-
mined by long-term atmospheric CO2 measurements
and driven mainly by global land sink) and tempera-
ture is substantially higher (r ranges from 0.5 to 0.7
depending on the estimating methods) than that
between AGR and precipitation (r< 0.2) (Wang et al
2013, Wang et al 2014). The strong temperature
response was found to be largely driven by tropical
ecosystems (Cox et al 2013, Wang et al 2013, Wang
et al 2014). Building on this conclusion, studies have
further developed a simple emergent constraint on the
climate response of the global land sink by using the
observation-based sensitivity of the global land carbon
sink to interannual tropical temperature variations
(Cox et al 2013, Friedlingstein et al 2006). Other
studies, and especially modeling studies, have instead
pointed to precipitation and moisture availability as
key drivers (Qian et al 2011, Tian et al 1998, Zeng et al
2005). In addition, tropical droughts (including major
droughts in the Amazon) have also been shown to
drive the interannual variability of the global land sink
(Gatti et al 2014, Hilker et al 2014). These opposing
views lead to fundamentally different interpretations
of how climate change and the associated changes in
temperature, precipitation, and ENSO dynamics will
impact the global land carbon sink. Furthermore, a
recent study (Wang et al 2014) found that the
temperature sensitivity of tropical ecosystem has
increased over the last five decades, and may be
modulated by the moisture conditions, implying that
interactions between heat and moisture may be
important.

Here, we examine how different climate modes, as
exemplified by the phase of the El Niño-Southern
Oscillation, and their corresponding prevailing climate
conditions affect the sensitivity of the global land
carbon sink to temperature and precipitation. To do
2

so, we analyze the response of the global land sink to
temperature and precipitation following contrasting
phases of ENSO. Because heat and moisture con-
ditions differ across ENSO phases, the analysis
provides a test case for studying the influence of
contrasting climate conditions. Our method is
primarily diagnostic, with the aim being to observe
responses across different prevailing climate condi-
tions. Although we present high-level hypotheses
about driving mechanisms, this study is not intended
to replace the need for further attribution studies to
deepen process-based understanding. We further use
this approach as a new benchmark to evaluate the
ability of ten state-of-the-art mechanistic models of
terrestrial carbon fluxes to represent the observed
sensitivities to climate variations.
Data and Method

Tropical ecosystems have been shown to be the main
driver of the land carbon sink response to ENSO (Cox
et al 2013, Wang et al 2013, Wang et al 2014, Zeng et al
2005). Hence, we focus here on the correlations
between annual atmospheric growth rate of CO2

(AGR) and tropical (30°S to 30°N) land mean annual
temperature (TMAT) and precipitation (TMAP), for
the years 1959–2010, to identify key features of the
ENSO response. The time series of AGR, TMAT and
TMAP are detrended before used for the correlation
analyses. Normalized detrended time series of these
three variables are shown in figure S1 (stacks.iop.org/
ERL/12/064007/mmedia) to illustrate interannual-
scale variations. To explore the influence of ENSO
on the relationship between the terrestrial carbon sink
and environmental drivers, we categorize years as El
Niño or La Niña based on the Niño 3.4 index from
NOAA’s Climate Prediction Center (CPC), and
analyze correlations to drivers for years immediately
following El Niño/La Niña years as well as for all years.
In doing so, we examine contrasts in response between
post El Niño versus post La Niña conditions. We also
analyze the correlations based on global land sink as
simulated by an ensemble of terrestrial biosphere
models participating in the Multi-scale Synthesis and
Terrestrial Model Intercomparison Project, MsTMIP
(Huntzinger et al 2013, Wei et al 2014b), in order to
assess model capabilities in capturing the ENSO-
dependence of responses.
Atmospheric CO2 growth rate (AGR)
We use the annual atmospheric CO2 growth rate to
explore the impact of ENSO, consistently with
previous studies (Cox et al 2013, Wang et al 2013,
Wang et al 2014, Wenzel et al 2014). Specifically, we
use AGR provided to Global Carbon Project (GCP)
(Le Quéré et al 2015) by the US National Oceanic and
Atmospheric Administration Earth System Research
Laboratory (NOAA/ESRL). NOAA/ESRL estimates
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the growth rate of CO2 for a given calendar year as the
difference in concentration between the average of
the most recent November–February months and the
same four-month average of the previous year
(Ballantyne et al 2012). Their 1959–1980 AGR is
based on Mauna Loa and South Pole stations as
observed by the CO2 Program at Scripps Institution of
Oceanography (SIO), while their 1980–2012 global
averages are estimated from multiple stations by
NOAA/ESRL (Ballantyne et al 2012). We further
detrended this AGR time series to obtain the
interannual signals in global carbon budget (figure
S1). The use of November to February for estimating
the AGR response to ENSO is preferable for separating
the impacts of different ENSO events to using other
months closer to the middle of the year (e.g. May, June
etc) because ENSO events typically peak during the
winter season.

We test whether our results are sensitive to the
specific definition of AGR described above by
calculating alternate detrended AGR time series using
atmospheric CO2 data collected at Mauna Loa
(NOAA/ESRL) (Ballantyne et al 2012) and at South
Pole (SIO) (Keeling et al 2005), and basing the
calculation on single-month differences of consecutive
Januaries and Februaries. We find that conclusions
are robust to the specific definition of AGR used in the
analysis (see Results and Discussion).

ENSO index and ENSO event classification
We mainly use ERSSTv4 seasonal Niño 3.4 index from
the NOAA Climate Prediction Center (CPC) to
represent the intensity of ENSO phenomena. Such
index is chosen because it is most responsive to
tropical temperature and precipitation. This index is
estimated as the 3-month running average of monthly
Niño 3.4 index anomalies using 1981–2010 as the base
time period. El Niño (La Niña) events are defined as
this CPC Niño 3.4 index greater (smaller) than 0.5
(−0.5) for at least five consecutive overlapping seasons,
i.e. at least five consecutive 3-monthly running mean
of Niño 3.4 index above (below) 0.5 (−0.5) (Kousky
and Higgins, 2007, Larkin and Harrison, 2005).

As AGR in a current year starts to be significantly
correlated with Niño 3.4 index as early as the second
half of its prior year (see Results and Discussion), we
further define ENSO year as a year with at least 3
seasons centered in the second half of the year being in
an El Niño (La Niña) event and the year immediately
after this El Niño (La Niña) year as post El Niño (La
Niña) year. We consider 1991 and 1992 as neither post
El Niño nor post La Niña years due to the significantly
different dynamics following the Pinatubo eruption
(Cox et al 2013, Wang et al 2013); however, we find
that excluding these two years in that analysis does not
impact results. We also find that the classification of
ENSO events/years is largely consistent if using other
ENSO indices (e.g. Multivariate ENSO Index, MEI,
from NOAA/ESRL/PSD) (Wolter and Timlin, 1993,
3

Wolter and Timlin, 1998). When any inconsistency
occurs, i.e. a year identified as ENSO year by one
index, but not by the other index (four such years were
found), we tend to be more inclusive and define those
years as ENSO years. For example, while 1992 and
1993 are not identified as El Niño years based Niño 3.4,
they are defined so using MEI index and thus
considered as El Niño years. Overall, among the 52
examined years, we identify 19 El Niño and 21 La Niña
years and the partial correlations discussed in the
analysis are based on the years immediately following
these El Niño and La Niña years (as labelled on
figure S1). Finally, the response of AGR to ENSO and
our main results are not affected by the choice of
ENSO index (e.g. MEI, see Results and Discussion).

Climatic drivers (TMAT and TMAP)
We use monthly precipitation and surface air
temperature data at 0.5° resolution from the Climatic
Research Unit-National Centers for Environmental
Prediction (CRU-NCEP) (Huntzinger et al 2013, Wei
et al 2014a, Wei et al 2014b). Those gridded monthly
data are aggregated temporally from January to
December to gridded annual data for a given calendar
year. Annual mean tropical surface air temperature
and precipitation time series are aggregated over land
surface area between latitudes 30°N and 30°S to
Tropical Mean Annual Temperature (TMAT) and
Tropical Mean Annual Precipitation (TMAP). The
time series of TMAT and TMAP are detrended for
signals at the interannual scale (figure S1). This
approach is comparable to those used in earlier studies
(Cox et al 2013, Wang et al 2013, Wang et al 2014,
Wenzel et al 2014). We choose the CRU-NCEP data set
not only because it has been applied in a number of
earlier studies on ENSO responses of global land
carbon cycle (Piao et al 2014, Wang et al 2013, Wang
et al 2014), but also because this dataset is used as
driver data input for all the MsTMIP terrestrial
biosphere models analyzed in this study (Huntzinger
et al 2013, Wei et al 2014b). We also test alternate
datasets (e.g. precipitation data from the Global
Precipitation Climatology Centre, GPCC (Schneider
et al 2015, Schneider et al 2013), temperature data
from NCEP Reanalysis data provided by the NOAA/
OAR/ESRL PSD (http://www.esrl.noaa.gov/psd/) giv-
en the previously noted differences in reanalysis
products (Trenberth et al 2015), and find our
conclusions to be robust to the choice of precipitation
and temperature dataset.

Terrestrial biosphere models
We use monthly carbon fluxes (including Net
Ecosystem Exchange—NEE, Gross Primary Produc-
tion—GPP and total Ecosystem Respiration—TRE)
during 1959–2010 as simulated from ten global
terrestrial biosphere models (TBMs) participating
the MsTMIP project (Huntzinger et al 2013, Wei et al
2014b). Those models (table S1) are driven by a

http://www.esrl.noaa.gov/psd/
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Figure 1. The response of the annual atmospheric growth rate of CO2 (AGR) to tropical mean annual temperature (TMAT) and
precipitation (TMAP) differs by ENSO phase, and models do not capture this response under any ENSO conditions. Filled circles
represent partial correlations between detrended anomalies of AGR and TMAT, and between detrended anomalies of AGR and TMAP.
Whiskers represent uncertainties of correlations. Ellipses represents the one-standard deviation envelope for the distribution specified
by the mean and covariance of the same partial correlations estimated using detrended annual tropical NEE as simulated by ten
terrestrial biosphere models in place of AGR. Empty diamonds represent the mean correlations across these models, while full
diamonds represent partial correlations derived using the ensemble average NEE across all models. In all cases, correlations are
calculated over the period 1959–2010, with black representing all years, red indicating post El Niño, and blue indicating post La Niña.
The pink, blue and grey shaded areas delineate the range for significant partial correlations (p< 0.05) for post El Niño (∣r∣> 0.46),
post La Niña ((∣r∣> 0.44) and all year (∣r∣> 0.28) cases using a two-tailed test.
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standard protocol, including environmental drivers in
climate, atmospheric CO2, biome map, nitrogen
deposition, soil conditions, land use change and
phenology (Wei et al 2014b). Those gridded monthly
carbon fluxes are first aggregated temporally to
gridded annual carbon fluxes. Annual mean global
carbon budget time series are aggregated spatially
from the gridded annual carbon fluxes over all land
surface area, while annual mean tropical carbon
budget time series are aggregated spatially over all land
surface area between 30° N and 30°S (Huntzinger et al
2014). The model output analyzed here is taken from
the Version 1 release of the MsTMIP data (Huntzinger
et al 2014, Huntzinger et al 2013). This dataset
includes 15 models, 10 of which are used here. The
CLASS-CTEM-N and TRIPLEX-GHG models are
excluded due to the quality control issues. The SiB3
model is excluded to avoid possible issues in the
continuity of its simulated annual global/tropical NEE
time series, because it features unrealistic massive
pulses of carbon release in January of 1959. The TEM
model is excluded because it shows no response to
ENSO, while the SiBCASA model is excluded because
of its unrealistically large GPP, biomass stocks, and
CO2 fertilization effect. The 10 models used here are
also those used in other recent analyses based on
MsTMIP data (Schwalm et al 2015, Tian et al 2015).
4

Statistical analysis
We estimate the partial correlation between AGR and
TMAT while controlling for variability in TMAP
(rTG,P) as well as the partial correlation between AGR
and TMAPwhile controlling for TMAT (rPG,T) (Brown
and Hendrix, 2014, Johnson and Wichern, 2007,
Kutner et al 2004). We then convert those partial
correlations to t test statistics and estimate their
corresponding p values using a t distribution (Kutner
et al 2004, Stockburger, 2001). The uncertainty ranges
of those partial correlations (shown as whiskers in
figure 1) are the 16th and 84th percentiles of the
distribution (equivalent to one standard deviation
confidence interval in the case of a symmetric
distribution), estimated using Fisher’s r -to- z transfor-
mation(Fisher, 1915, 1921, JohnsonandWichern, 2007,
Kutner et al 2004). To test the statistical significance of
the difference between two correlation coefficients, we
use the Fisher r -to- z transformation (Fisher, 1915,
1921) to obtain the corresponding p values.

The response of AGR to TMAT and of AGR to
TMAP are estimated using multiple linear regression of
AGR against TMAT and TMAP, and we denote the
corresponding regression coefficients as bTG,P and
bPG,T respectively. Their associated uncertainty ranges
are estimated as one standard deviation confidence
interval of the regression coefficients (Kutner et al2004).
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Figure 2. The timing of the correlation between AGR and the Niño 3.4 index mirrors that of TMAT post El Niño and of TMAP post
La Niña. Subplots show the correlation coefficient between the Niño 3.4 index for a given month and detrended anomalies of AGR
(black), TMAT (magenta), and TMAP (green, here reversed sign is plotted to reflect the negative correlation between TMAP and
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correlations are significant. The shaded area presents the same information as the black lines, but substituting detrended annual
tropical NEE for that of AGR, and showing an envelope across ten terrestrial biosphere models used in the analysis.
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Results and Discussion

The partial correlations between AGR and TMATand
between AGR and TMAP indicate that the response of
the AGR to ENSO varies by ENSO phase (figure 1).
The AGR post El Niño is significantly and positively
correlated to TMAT (rTG,P¼ 0.59, p< 0.01). This
response is similar to the average responses across all
years identified both in this study (rTG,P¼ 0.54,
p< 0.01) and in earlier studies (Cox et al 2013, Wang
et al 2013,Wang et al 2014). Post La Niña, however, the
coupling between TMAT and AGR disappears
(rTG,P¼−0.02, p¼ 0.95). The post La Niña response
of AGR to TMAT (bTG,P¼−0.1 ± 0.8 PgC yr−1 K−1) is
not significantly different from zero and is significantly
lower than for post El Niño (bTG,P¼ 3.1 ± 1.1 PgC yr−1

K−1) and for all years (bTG,P¼ 2.6 ± 0.5 PgC yr−1 K−1).
Note that the result across all years obtained here is
consistent with previous estimates (Cox et al 2013,
Wenzel et al 2014) if we account for the fact that these
earlier studies used tropical land as well as ocean
temperatures, yielding a higher regression coefficient
(bTG,P¼ 4.1 ± 0.7 PgC yr−1 K−1). On the other hand,
a negative correlation between AGR and TMAP that
is weak across all years (rPG,T¼−0.03, p¼ 0.81,
bPG,T¼− 0.01 ± 0.03 PgC yr−1 (cm yr−1)−1) and post
El Niño (rPG,T¼−0.29, p¼ 0.24, bPG,T¼− 0.05 ±
0.04 PgC yr−1 (cm yr−1)−1), becomes stronger
and statistically significant (rPG,T¼−0.46, p¼ 0.04,
bPG,T¼−0.11 ± 0.05 PgC yr−1 (cm yr−1)−1) post La
Niña.

This analysis implies substantial differences in
carbon dynamics driving AGR interannual variability
5

dependent on ENSO phase. The post El Niño partial
correlation between AGR and TMAT is significantly
stronger than that post La Niña (p¼ 0.02), suggesting
a robust shift in the response to temperature.
Meanwhile, the significant partial correlation between
AGR and TMAP post La Niña indicates that focusing
on the AGR response across all ENSO conditions
obscures the role of precipitation. These findings are
robust to the alternate approaches for calculating the
AGR (see Data and Method, figure S2).

An analysis of the variability of fossil fuel
emissions, land use and land cover change, oceanic
uptake, and fire emissions indicates that the response
of AGR to TMAT and TMAP is likely driven by
terrestrial ecosystems (supplementary text 1). A lack of
significant correlations between AGR and tempera-
ture/precipitation in extra-tropical regions also further
confirms the key role of tropical ecosystems (supple-
mentary text 1). Additional sensitivity analyses also
suggest that the observed responses of AGR to TMAT
and TMAP are not driven by extreme events
(supplementary text 2).

The timing of the AGR response to ENSO further
supports the dependence of the tropical land carbon
flux response on the phase of ENSO. The AGR for a
given post El Niño year is significantly correlated to the
Niño 3.4 index as far back as September of the
preceding year, while a significant correlation only
appears in January in post La Niña conditions (figure 2
(a-b), black). This ENSO response of AGR reflects
both the response of TMAT/TMAP to ENSO (figure 2
(a-b)), magenta and green) and the response of AGR
to TMAT and TMAP (figure 1). The timing of these
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AGR correlations with the Niño 3.4 index is consistent
with the timing of the correlations between TMAT/
TMAP and Niño 3.4, where TMAT post El Niño is
significantly correlated to Niño 3.4 as far back as
September of the previous year (figure 2(a), magenta)
while TMAP post La Niña is correlated to Niño 3.4
back starting in January (figure 2(b), green). More
broadly, the timing of the correlation between AGR
and the Niño 3.4 index (figure 2(a-b), black) closely
tracks that of temperature following El Niño
conditions (figure 2(a), magenta), and precipitation
following La Niña conditions (figure 2(b), green). This
result is again consistent with temperature playing a
strong role in driving the carbon flux response
following El Niño conditions, and precipitation being
important in determining the response following
La Niña conditions. Similar to what is seen in figure 1,
the aggregated response across all years masks the role
of precipitation post La Niña, with the AGR response
mirroring that of TMAT only (figure 2(c)). These
findings are also robust to the choice of a different
ENSO index (MEI) (see Data and Method, figure S3).

We also estimate the partial correlations between
AGR and local temperature, and between AGR and
local precipitation, to identify regions that are likely to
be driving the observed global relationships. Given
that AGR represents a global average, however, this
heuristic approach can only be interpreted qualita-
tively. We find that the significant positive correlation
between AGR and local temperature post El Niño
occurs across all the major ecosystems (Flexas et al
2014) in the tropics, including forests, grasslands, and
semi-arid regions (figure 3 and S4). Conversely, TMAT
is not related to AGR in any biome post La Niña
(figure S4). The areas with much stronger local
temperature correlations post El Niño relative to post
La Niña generally overlap with regions showing high
temperature anomalies post El Niño (figure 3 and S5).

We hypothesize that the differing temperature
responses of AGR across ENSO phase are due to the
impact of differences in prevalent temperature and
moisture conditions on Gross Primary Production
(GPP). The hot and dry conditions following El Niño
(figure S5(a), (c)) result in a soil moisture deficit and
lead to greater water stress (Jung et al 2010, Miralles
et al 2014). Under strong water stress, GPP tends to
decline with increases in temperature, as observed for
6

a variety of ecosystems (Flexas et al 2014, Nobel et al
1978, Osonubi and Davies, 1980, Tenhunen et al
1985). This is in line with earlier studies showing that
soil moisture conditions can control the response of
terrestrial ecosystems to temperature fluctuations
(Wang et al 2014). The cooler and wetter conditions
following La Niña (figure S5(b), (d)), on the other
hand, represent more favorable conditions for GPP in
many tropical ecosystems (Miralles et al 2014, Poulter
et al 2014). With reduced water stress and cooler
temperatures, the impact of temperature on vapor
pressure deficit is reduced, and thus tropical ecosystem
GPP is likely to decrease with decreasing temperature,
leading to little temperature influence on net carbon
uptake.

Although a recent study (Anderegg et al 2015) has
suggested that total respiration dominates the inter-
annual variability in the tropical land sink, we argue
that respiration responses to temperature are unlikely
to explain the different correlations between AGR and
temperature across ENSO phases. Respiration is
typically positively correlated with temperature, but
the temperature sensitivity of respiration has been
found to be affected by temperature and soil moisture.
Under hotter and dryer conditions, the apparent
temperature sensitivity of respiration is expected to be
weaker (Moyano et al 2012, Song et al 2014).
Therefore, respiration cannot explain the stronger
correlation between AGR and TMAT post El Niño
(when conditions are dryer and hotter) relative to that
post La Niña (when conditions are wetter and cooler),
as shown in figure 1. Respiration also cannot explain
the increases in the sensitivity of AGR identified over
the last five decades (Wang et al 2014).

The significant correlation between AGR and
TMAP post La Niña, but not post El Niño (figure 1), is
counter-intuitive at first because ecosystems are more
strongly water-limited post El Niño. Under such
conditions, precipitation variability would be expected
to lead to variability in carbon uptake. Following El
Niño conditions, however, our results imply that the
water stress experienced by tropical ecosystemsmay be
so severe that incremental changes in precipitation will
not elicit a net response. This implies that while GPP
and respiration may both increase with increased
precipitation (Meir et al 2008, Nemani et al 2003,
Wang et al 2013), the GPP response does not
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Figure 4. Negative correlations between AGR and annual mean local precipitation are more widespread and stronger post La Niña,
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substantially exceed that of respiration. The weak
precipitation post El Niño may reflect buffering
mechanisms, such as plant physiological adjustment to
water stress, soil water storage, vegetation structural
constraints, which have been shown to reduce the
impact of precipitation on net primary productivity
(NPP) of grasslands and tropical forests under
dry conditions (Doughty et al 2015, Knapp and
Smith, 2001).

Following La Niña conditions, conversely, certain
regions in the tropics are still likely to be water limited,
but less severely than Post El Niño, leading to a
stronger response of GPP than respiration and hence a
significant response of net vegetation growth. The
stronger precipitation correlation post La Niña is in
line with literature that show that, in the most dynamic
biomes, biome-level pattern of aboveground NPP
responds more strongly to precipitation during wet
than dry years (Doughty et al 2015). In the analysis
presented here, the correlation to precipitation post La
Niña is stronger over many areas, including tropical
forests in the central Amazon and in Southeast Asia, in
semi-arid ecosystems in South Africa and Australia,
and in grasslands in South Asia (figure 4). On a biome
level, the strongest post La Niña correlation between
AGR and precipitation occurs for tropical forests
(figure S4), which experience higher precipitation
relative to other tropical regions. Looking at long-
term-average precipitation in more detail, we find
that the post La Niña correlation between AGR and
annual total precipitation is strongest for regions with
a long-term-average precipitation in the range of 2000
to 3000 mm yr−1 (r¼−0.60, p¼ 0.007), and regions
that fall into this range are mainly tropical forests in
the Amazon and Southeast Asia.

Although recent studies have suggested that semi-
arid ecosystems dominate the trend and variability of
the land carbon sink (Ahlström et al 2015, Poulter et al
7

2014), no significant correlation between AGR and
precipitation is found on biome level under either
ENSO phase (figure S4), suggesting that some regions
of relatively strong negative correlation may be getting
averaged out by other regions with positive correla-
tion. We also explore whether the longer duration of
La Niña relative to El Niño conditions could account
for the observed correlation with TMAP, but this is not
the case (supplementary text 3). Rather, our results
suggest that the wetter conditions post La Niña
represent preferable growth conditions and thus lead
to substantial additional net terrestrial carbon uptake
in tropical ecosystems, especially those with relatively
high average precipitation.

Overall, the asymmetrical ENSO response of the
global land sink suggests that the hotter and drier
climate post El Niño leads to stronger water stress and
conditions that are less conducive to carbon uptake. As
a result, GPP tends to decrease with higher temper-
atures while the GPP negative response to lower
precipitation is comparable to that of respiration.
Under La Niña conditions, on the other hand, GPP
increases with cooler temperature, and the positive
sensitivity of GPP to higher precipitation is greater
than that of respiration. Together, these behaviors lead
to the asymmetric response of AGR to TMAT and
TMAP observed across ENSO phases. Our findings
imply that simply extrapolating the average historical
sensitivity of global land sink to temperature and
precipitation is insufficient to understand the impacts
of climate change on the global land sink, as this
misses the impact of climate modes and prevalent
climate conditions on temperature and precipitation
sensitivities.

To examine if state-of-the-art terrestrial biosphere
models (TBMs) capture the observed relationship
between AGR and TMAT/TMAP, we apply the same
analytical framework to 10 models participating in
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MsTMIP (table S1) (Huntzinger et al 2013, Wei et al
2014b). The analysis parallels that described above for
AGR, but uses modeled tropical net ecosystem
exchange (NEE) of CO2 instead. Here, positive NEE
is defined as CO2 release to the atmosphere.

We find that none of the individual TBM nor the
ensemble mean model capture the phase-dependent
response of the land biosphere to ENSO (figure 1, S6).
For all models, the correlations of tropical NEE to
TMAT and TMAP remain largely unchanged across
ENSO phases. The fact that the models do not capture
the lack of correlation between AGR and TMAT post
La Niña suggests that models do not capture the
comparable responses in GPP and respiration to
temperature under wetter and cooler conditions. In
addition, we find that all TBMs erroneously predict a
significant correlation with TMAP across ENSO
conditions (figure 1, S6), which may explain why
previous model-based studies emphasized precipita-
tion as an important driver of carbon sink interannual
variability (Qian et al 2011, Tian et al 1998, Zeng et al
2005). We find that overestimates of the sensitivity to
precipitation occur across all biomes and across
regions spanning the full range of long-term-average
precipitations. Earlier site-level studies have suggested
that models overestimate the response of GPP to
precipitation (Piao et al 2013), consistent with the
results presented here. We find that the strong
association with precipitation is also evident when
looking at tropical GPP, at terrestrial ecosystem
respiration, or at global NEE (figure S7(a-b)).

Taken together, the persistent stronger correlations
in modeled NEE with both TMAT and TMAP than
those derived from AGR observations also lead to an
incorrect timing in the response of modeled tropical
NEE to ENSO. Following El Niño conditions, the
response of modeled NEE to the Niño 3.4 index is
delayed relative to the AGR response (figure 2(a)).
Following La Niña conditions, conversely, the re-
sponse of modeled NEE to the Niño 3.4 index occurs
earlier than observed in the AGR response (figure 2
(b)). In both phases, the range of modeled tropical
NEE responses to ENSO falls between the observed
TMAT and TMAP responses to ENSO, rather than
tracking the response of TMAT/TMAP during post El
Niño/La Niña conditions, as observed from the AGR.
Analogous analyses of global, rather than tropical,
NEE show the same result.

Furthermore, although including nitrogen dy-
namics in TBMs has been thought to improve the
models’ representation of carbon cycle responses to
temperature (Piao et al 2013), it does not improve
model performance in representing correlations with
climatic drivers or ENSO for the suite of TBMs
examined here (figure S7(c) and S8).

The consistency in the observed biases across all
models is especially striking given the vast differences
in model structure across the ensemble (Huntzinger
et al 2013). It also precludes the possibility of easily
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teasing out potential mechanisms based on differences
in model structure. Instead, it suggests that inter-
actions between water availability and heat are
generally not captured in state-of-the-art terrestrial
biosphere simulators.

The inability of models to represent how the
sensitivity of the global land carbon sink to tempera-
ture and precipitation is impacted by prevalent climate
conditions points to a key uncertainty in our
understanding of climate impacts on the future of
the global land carbon sink (Cox et al 2013, Wang et al
2013, Wang et al 2014, Wenzel et al 2014). One
potential issue is that existing models may not capture
the impact of water availability and stress on the
temperature response of tropical ecosystems. With
current tropical temperatures already close to the
optimal photosynthetic temperature (Clark et al 2003,
Corlett, 2011, Doughty and Goulden, 2008), the
response of tropical ecosystems to climate change may
be highly sensitive to the impact of water stress on the
temperature response of GPP. In addition, consistent
model overestimation of the precipitation impact
suggests that models may misrepresent processes
related to how precipitation affects moisture availabil-
ity, how tropical ecosystems respond to moisture
availability, or how water stress impacts this response.
Furthermore, because models do not capture the
ENSO phase dependency in the response of the
tropical carbon cycle to temperature and precipitation,
they are unlikely to correctly simulate the influence of
future climate variability on the global land carbon
sink.

Overall, our findings provide new insights into the
roles of, and the interactions between, temperature
and precipitation in controlling the global terrestrial
carbon sink, and therefore into the future response of
the global carbon cycle to climate variability and
change. Specifically, we find that the coupling between
AGR and both tropical temperature and precipitation
varies strongly with prevalent climate conditions, as
exemplified by ENSO phase, which has substantial
implications for projecting the future land carbon
balance. The average linear relationship between AGR
and temperature across all ENSO conditions has been
used to constrain the sensitivity of tropical land carbon
uptake to climate change (Cox et al 2013, Wenzel et al
2014). Results shown here suggest that this approach
may be misguided and likely leads to an overestimate
of tropical land carbon responses to temperature
during post La Niña years, when AGR is insensitive to
temperature.

In addition, as climate continues to change in the
future, tropical ecosystems may experience a climate
shift that will affect their responses to climate
variations. For example, if the tropical lands are to
be drier and warmer (i.e. more El Niño-like), a
stronger mean temperature response of the global land
carbon sink is expected than under current estimates.
This possibility highlights the importance of studies
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exploring the joint impacts of heat and water
availability on tropical ecosystems, impacts that have
rarely been examined (Busch, 2015). We argue that
contemporary models need to correctly include
mechanisms related to such joint impacts to enable
the simulation of the response of tropical ecosystems
to climatic drivers as influenced by differences in
prevailing climate conditions, and hence to capture the
impact of future climate change on the global land
carbon sink.
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