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Competing effects of soil fertility 
and toxicity on tropical greening
Joshua B. fisher  1*, Naga  V. perakalapudi2, Benjamin L. turner  3, David S. Schimel1 & 
Daniela F. Cusack3,4

Tropical forests are expected to green up with increasing atmospheric CO2 concentrations, but 
primary productivity may be limited by soil nutrient availability. However, rarely have canopy-scale 
measurements been assessed against soil measurements in the tropics. Here, we sought to assess 
remotely sensed canopy greenness against steep soil nutrient gradients across 50 1-ha mature forest 
plots in Panama. Contrary to expectations, increases in in situ extractable soil phosphorus (P) and base 
cations (K, Mg) corresponded to declines in remotely sensed mean annual canopy greenness (r2 = 0.77–
0.85; p < 0.1), controlling for precipitation. The reason for this inverse relationship appears to be that 
litterfall also increased with increasing soil P and cation availability (r2 = 0.88–0.98; p < 0.1), resulting in 
a decline in greenness with increasing annual litterfall (r2 = 0.94; p < 0.1). As such, greater soil nutrient 
availability corresponded to greater leaf turnover, resulting in decreased greenness. However, these 
decreases in greenness with increasing soil P and cations were countered by increases in greenness 
with increasing soil nitrogen (N) (r2 = 0.14; p < 0.1), which had no significant relationship with litterfall, 
likely reflecting a direct effect of soil N on leaf chlorophyll content, but not on litterfall rates. In addition, 
greenness increased with extractable soil aluminum (Al) (r2 = 0.97; p < 0.1), but Al had no significant 
relationship with litterfall, suggesting a physiological adaptation of plants to high levels of toxic metals. 
Thus, spatial gradients in canopy greenness are not necessarily positive indicators of soil nutrient 
scarcity. Using a novel remote sensing index of canopy greenness limitation, we assessed how observed 
greenness compares with potential greenness. We found a strong relationship with soil N only (r2 = 0.65; 
p < 0.1), suggesting that tropical canopy greenness in Panama is predominantly limited by soil N, even 
if plant productivity (e.g., litterfall) responds to rock-derived nutrients. Moreover, greenness limitation 
was also significantly correlated with fine root biomass and soil carbon stocks (r2 = 0.62–0.71; p < 0.1), 
suggesting a feedback from soil N to canopy greenness to soil carbon storage. Overall, these data point 
to the potential utility of a remote sensing product for assessing belowground properties in tropical 
ecosystems.

Tropical forests are the ‘lungs’ of our planet, absorbing and storing the largest carbon stocks of all terrestrial 
ecosystems1–4. They are also the source of among the largest uncertainties to projections of Earth’s climate, due 
to their poorly understood responses to changes in CO2, climate, land use, and nutrient cycling5–9. Numerous 
modeling studies have suggested that tropical forest productivity is increasing5,6, and present day observational 
indicators from space suggest that the tropics are greening likely due to CO2 fertilization, in the face of increasing 
pressure from droughts and disturbance10–16.

Despite the apparent greening of the tropics, it is well-known that there is widespread nutrient limitation to 
net primary productivity17–23. The extent, nature, and impacts of soil nutrient availability are debated, however. 
Some studies show strong tropical forest responses to phosphorus (P)24–30, others to nitrogen (N)31–33, some indi-
cate strong influence of multiple macro-nutrients on tropical forest processes17,22,34–36, and others suggest that 
micronutrients and/or base cations drive key ecosystem carbon processes37–43. These studies have also linked soil 
nutrients to a wide range of different tropical forest carbon cycle responses, including litterfall rates, basal growth, 
root production, and soil decomposition, for example, with responses varying by tree age and size20,24,30,37,44,45.
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The reason for such different results is that tropical ecosystems are both extremely diverse and challenging to 
work in, such that ground data at specific points cannot adequately capture the dynamics of variation across the 
biome as a whole1,21,30,46. Remote sensing data, on the other hand, have the potential to scale across landscapes, 
but lack insight from ground-scale controls over canopy properties1,9. Moreover, studies of remote sensing obser-
vations and those of in situ soil measurements have been done largely in isolation of one another. As such, there 
exists a critical gap in our understanding of how soil properties manifest in canopy-scale properties across trop-
ical landscapes.

We are currently in a golden age of satellite remote sensing of terrestrial vegetation. Decades of work with 
Landsat, AVHRR, and MODIS have yielded a wealth of data and insights across multiple properties from albedo 
and surface temperature to greenness, as well as a host of higher-order datasets for productivity, evapotranspi-
ration, nutrient limitation, and mycorrhizal association, for example19,47–51. Although the potential is large for 
ecosystem assessment of soil nutrient linkages to canopy properties with these data, these remote sensing data 
products have not been partnered with a similarly large-scale soils database from the tropics.

One of the most comprehensive tropical soils datasets to date has been collected over a decade by the 
Smithsonian Tropical Research Institute (STRI) across 50 1-ha plots in lowland tropical forest sites across the 
Isthmus of Panama, covering a wide range in geology, climate, and biodiversity43,52–54. The strong diversity of 
environmental conditions across the study area makes observed trends broadly applicable to much larger geo-
graphical ranges, and the relatively large-scale of the plots makes this dataset compatible with remote sensing 
attributes. Particularly characteristic to these sites is that, although they fall along a distinct precipitation gradient, 
the diverse geology drives variability in soil nutrients such that they are only weakly or not at all correlated with 
precipitation, making this dataset uniquely suited for disentangling effects of precipitation from soil properties. 
The STRI dataset is an ideal source with which to combine terrestrial vegetation remote sensing products to assess 
below- and above-ground coupling, and soil nutrient controls on canopy-scale properties.

The objective of this study was to assess remotely sensed canopy properties, particularly gradients of green-
ness and derived products, across a large-scale tropical gradient in soil nutrient availability and other chemical 
properties. We tested predictions that soil nutrients and soil carbon stocks would be positively related to canopy 
properties related to productivity, such as greenness. Such relationships would reflect the control of soil nutrients 
over plant productivity, and subsequent control of plants over carbon inputs to ecosystems. The overall approach 
was to enable identification of potential couplings between belowground and aboveground measurements, dis-
entangling effects of precipitation from soil properties.

Methods
Field measurements. All plots were in lowland tropical forests (elevation 10–410 m above sea level) and 
included old growth primary and mature secondary forests across a precipitation gradient in Panama55. The cli-
mate is tropical monsoon, with a mean annual temperature of 26 °C and mean monthly temperature variation of 
<1 °C during the year52,55,56. The wetter Caribbean coast receives 4000 mm y−1 MAP and has a shorter dry season 
(~115 days) compared with the drier Pacific coast, which receives 1750 mm y−1 MAP and has a longer dry season 
(~150 days). Meteorological data were measured at each site. Radiation is inversely proportional to precipita-
tion;57–59 and, given low temperature variability, we assessed each site for precipitation normalization.

Soils were collected during the 8-month wet season as described in Turner, et al.60. Soil properties, litterfall, 
and aboveground biomass were measured using standard protocols, as previously reported30,43,52–55. In brief, total 
soil C, N, P, resin-extractable P, extractable base cations, pH, soil texture, root biomass, and bulk density were 
measured to 1 m depth in 1-ha plots at each site (Supplementary Fig. 1) sampling both across the spatial variation 
within plots, and in soil pits (1.8 m deep) outside the edge of each plot.

The soils developed on a range of geological substrates54,55,61,62, including volcanic (basalt, andesite, agglom-
erate, rhyolitic tuff) and marine sedimentary (limestone, calcareous sandstone, siltstone, mudstone) lithologies. 
As a result, soils have marked variation in fertility53,54 and soil order, including Inceptisols, Mollisols, Alfisols, 
Ultisols, and Oxisols. Soil nutrients such as P spanned high and low fertility across multiple soil types. Statistics 
are shown here by soil order across plots except for N, P, Ca, and Zn.

Aboveground dry biomass (AGB) for all trees >10 cm in diameter at breast height (DBH) was estimated 
in each of the plots using allometric equations. Methodological details and examination of errors have been 
published63, with the most recent DBH decadal census used for this paper30. Litterfall biomass was collected at a 
subset of 8 sites biweekly for one year as described in Cusack, et al.43. All soils, AGB, and litterfall data are pub-
lished as an online supplementary file in Cusack, et al.43. There were no significant differences among plots for 
aboveground biomass, canopy cover, species composition, and successional stage (all mature trees).

Remote sensing. We processed and analyzed data from 10 instruments on 8 different satellites, yielding a 
total of >70 different data products (Supplementary Fig. 1). The instruments and satellites included: Enhanced 
Thematic Mapper Plus (ETM+), Operational Land Imager (OLI), and Thermal Infrared Sensor (TIRS) on 
Landsat 7 and 8; MODerate resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua; radar and radi-
ometer on Soil Moisture Active Passive (SMAP); three high-resolution spectrometers on the Orbiting Carbon 
Observatory 2 (OCO-2); Geoscience Laser Altimeter System (GLAS) on Ice, Cloud, and land Elevation Satellite 
(ICESat); and, Hyperion on Earth Observing-1 (EO-1). Data were processed for an annual summary statistic for 
the most recent year (2016), except where otherwise available (e.g., ICESat, 2005).

Landsat 7 and 8: ETM+, OLI, TIRS. ETM+, OLI, and TIRS on Landsat 7 and 8 recorded measurements in 11 
spectral bands (0.43–12.51 μm). We processed and analyzed data products for Normalized Difference Vegetation 
Index (NDVI), Enhanced Vegetation Index (EVI), Albedo, and Land Surface Temperature (LST)64. We acquired 
the data from the United States Geological Survey (USGS) Earth Resources Observation and Science (EROS) 
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Science Processing Architecture (ESPA) for both Landsat 7 (LE07, L1TP) and Landsat 8 (LE08, L1TP). Data were 
screened and masked for clouds based on the provided metadata and quality flags. Albedo for Landsat 7 was 
calculated through Top of Atmosphere (ToA) from bands 1, 3, 4, 5, and 7; and, for Landsat 8 from bands 2, 4, 5, 6, 
and 7 following Liang65. LST for Landsat 7 was calculated through surface reflectance from band 6; and, for 
Landsat 8 from band 10. Surface reflectance was converted to LST following: = +λL M Q AL cal L, where Lλ is ToA 
spectral radiance (W m−2 srad−1 μm−1), ML is a band-specific multiplicative rescaling factor from the metadata, 
AL is a band-specific additive rescaling factor from the metadata, and Qcal is quantized and calibrated standard 
product pixel value66. ToA brightness temperature (T, K) is: =

+
λ( )

T K

log 1K
L

2

1
, where K1 and K2 are band-specific 

thermal conversion constants from the metadata. All Landsat products were available at 16-day time steps and 
30 m spatial resolution.

Terra and Aqua: MODIS. MODIS on Terra and Aqua recorded measurements in 36 spectral bands 
(620 nm–965 nm and 3.66 μm–14.385 μm). We processed and analyzed data products for NDVI and EVI 
(MOD13Q1 V005, MYD13Q1 V005), gross primary productivity (GPP) (MOD17A2 V005, MOD17A3 V055, 
MYD17A2 V005), net primary productivity (NPP) (MOD17A3 V055, MYD17A3H V006), evapotranspiration 
(ET) (MOD16A2 V006), Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation 
(FAPAR) (MCD15AC3H V006), LST Day and Night (MOD11A1 V006, MYD11A1 V006), and Albedo Bands 
1–10 Day and Night (MCD43A3 V005)67. Three ground sites were excluded from analyses of evapotranspiration 
due to pixel contamination from adjacency to open water (Plot 1: ocean; Plots 25 & 26: canal). We acquired the 
data from the USGS EROS Earth Observing System Data and Information System (EOSDIS) Land Processes 
DAAC for tiles h09v08 and h10v08. Data were screened and masked for clouds based on the provided metadata 
and quality flags. MODIS NDVI and EVI were available from daily measurements at 16 day temporal composites 
and 250 m spatial resolution; LAI, FAPAR, and Albedo at 4 day composites (LAI, FAPAR) or 16 day composites 
(Albedo) at 500 m; and, GPP, NPP, ET, and LST at 8 day composites (GPP, NPP, ET) or daily composites (LST) 
at 1 km. MODIS NPP and ET products were combined to produce the Canopy Greenness Limitation product 
described in Fisher, et al.19. Canopy greenness limitation (N.L.) is calculated from the ratio of NDVI to evapotran-
spiration (AET) normalized to a percentage, increasing further from the upper bound in the global scatterplot of 
average maximum paired AET and NDVI:
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where the pairedmax is for the quotient; the x subscript is for the given pixel; and the min and max are for across 
the entire data set to apply consistent global normalization.

SMAP: radar and radiometer. The SMAP radiometer recorded measurements at 1.41 Hz, and the radar at 
1.26 Hz. We processed and analyzed data products for Soil Moisture (SM) and Albedo (SP3SMP V004, SPL3SMP 
E V001); Surface Soil Moisture (SSM), Root Zone Soil Moisture (RZSM), and LAI (SPL4SMGP V002); and, Net 
Ecosystem Exchange (NEE), Heterotrophic Respiration (Rh), Soil Organic Carbon (SOC), and GPP (SPL4CMDL 
V002)68. We acquired the data from the NASA Distributed Active Archive Center (DAAC) at the National Snow 
and Ice Data Center (NSIDC). SMAP data bins were extracted based on latitude and longitude from the EASE 
Grid projection and processed to WGS84 projection. Recommended retrieval quality flags were applied. Radar 
data were available only for 2015Q1-2. All SMAP products were available at daily time steps with SSM, RZSM, 
and LAI at 3 hourly time steps and 9 km spatial resolution; SM and Albedo were additionally available at 36 km 
(radiometer).

OCO-2: High-Resolution Spectrometers. The high-resolution spectrometers on OCO-2 recorded measure-
ments at 0.76, 1.61 and 2.06 μm. We processed and analyzed data products for SIF generated from the Iterative 
Maximum a Posteriori Differential Optical Absorption Spectroscopy (IMAP-DOAS) preprocessor (L2IDP)69. 
We acquired the data from https://oco2.gesdisc.eosdis.nasa.gov/data/. OCO-2 data bins were extracted based on 
latitude and longitude from the EASE Grid projection and processed to WGS84 projection. Data were aggregated 
to monthly means for data/bands SIF757 and SIF771 following Sun, et al.70. OCO-2 SIF data were available at 
16-day time steps and 36 km spatial resolution.

ICESat: GLAS. GLAS on ICESat recorded measurements from a full waveform LiDAR at 1.064 μm and 40 Hz. 
We processed and analyzed the vegetation canopy height product developed by Simard, et al.71, which fused 
GLAS with MODIS and climate data to produce the product. We acquired the data using the Spatial Data Access 
Tool (SDAT) from the Oak Ridge National Laboratory (ORNL) DAAC. Data were provided in GeoTIFF format, 
pre-screened and quality controlled. ICESat canopy height data were available as a static map from 2005 at 1 km 
spatial resolution.

EO-1: Hyperion. Hyperion on EO-1 recorded measurements in 220 spectral bands ranging between 0.4–2.5 μm 
(SWIR and VNIR)72. We acquired the L1T data (systematically terrain-corrected) from Earth Explorer. Data were 
provided in GeoTIFF format. Forty-three bands were removed from the Hyperion cube as uncalibrated. Cloud 
screening was performed with bands 31, 51, and 133 using information on Julian day, sun elevation angle (cos θs), 
scaling factor, irradiance value (ESUNλ), and Earth-Sun distance (d) from the metadata. Cloud-corrected 
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radiance was converted to reflectance (ρp) using ρ = π λ

λ θp
L d

ESUN cos s

2
, where Lλ is spectral radiance at the sensor’s aper-

ture. Hyperion data were processed from images collected over 2002–2012 at 30 m spatial resolution.

Results and Discussion
We evaluated spatial gradients of in situ soil nutrients and chemical properties against remotely sensed canopy prop-
erties. Remotely sensed greenness and derived products such as GPP were correlated with in situ measurements of 
relative aboveground biomass increase (r2 = 0.72; p < 0.1) (Fig. 1a). Contrary to expectations, as in situ extractable 
soil phosphorus (P) and base cations (calcium, Ca; potassium, K; magnesium, Mg) increased in availability across 
sites, remotely sensed mean annual canopy greenness decreased (r2 = 0.09–0.79; p < 0.1) (Fig. 1b–e), controlling for 
climatic differences such as precipitation (Supplementary Fig. 2). Base cations (K and Mg) were strongly negatively 
correlated with NDVI (Landsat 8) (r2 = 0.79 and 0.77), while Ca was weakly negatively correlated (r2 = 0.09). We 
use the term “Greenness” instead of NDVI in the figures to facilitate translation to science communities unfamiliar 
with the remote sensing terminology. All statistics for Figs.1–4 can be found in Supplementary Table 1. Assessing 
only the wet season, the negative relationship between canopy greenness and Ca increased in strength (r2 = 0.91), 
and remained similar for P, K, and Mg (Supplementary Fig. 2). It may be that these results could be even stronger 
than shown due to greenness saturation causing large point spreads at high values73,74.

The inverse relationship between soil P and cations with canopy greenness likely results from a strong positive 
relationship between annual litterfall and soil P and cations (r2 = 0.88–0.98; p < 0.1), indicating greater leaf turno-
ver, and potentially shorter leaf lifespan, where soil nutrients are plentiful (Fig. 2b–f). Strong links between litterfall 
rates and soil fertility have been shown throughout the tropics, including Panama20,37,75–77. Accordingly, increasing 
litterfall was related to a strong decline in greenness (r2 = 0.94; p < 0.1) (Fig. 2a). That is, litterfall increased with soil 
P and cation availability across the subset of sites with litterfall measurements, helping explain the broader negative 
relationship between canopy greenness and soil P and cations across all sites, as an increase in litterfall can lead to a 
brighter surface due to fewer canopy leaves78,79. At the same time, these decreases in greenness with increasing soil P 
and cations were countered by increases in greenness with increasing soil nitrogen (N) (r2 = 0.14; p < 0.1) (Fig. 1f), 
with soil N not significantly correlated with litterfall (Fig. 2f), nor with soil P or cations.

Notably, we also found that canopy greenness was strongly positively correlated with extractable soil alu-
minum (Al) across soil orders (r2 = 0.97; p < 0.1) (Fig. 3), which initially appears paradoxical as Al is toxic 
to plants80–85. Al was not significantly correlated with soil base cations nor with litterfall. In acidic soils, Al is 
solubized and can be a major factor limiting plant production86, with increased Al concentrations in leaves asso-
ciated with decreased photosynthetic rates and decreased foliar N, P, and other nutrients87. Extractable soil Al 
and manganese (Mn) were recently identified as the strongest constraints on canopy tree diameter growth for 
one of our Panama sites at mid-precipitation88. Aluminum toxicity can elicit plant responses in cell walls, plasma 

Figure 1. Remotely sensed canopy greenness was negatively correlated with in situ soil phosphorus (P) and 
cations (K, Mg, Ca), but positively correlated with in situ soil nitrogen (N) and aboveground biomass (AGB) 
increase. Individual plots (gray points, solid line) are aggregated by soil order (red points, dashed line; statistics 
shown).
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membranes, and symplasm89, and metabolic changes like autophagy as defense responses90, which can help repair 
plant tissue damages from Al toxicity. Thus, under elevated Al toxicity, plants may invest substantially in leaf 
repair, which could be related to longer leaf lifespans, changes in pigmentation, and/or leaf structural changes 
that could affect canopy reflectance properties. Thus, canopy greenness relationships with soil Al may result from 
change in leaf greenness not related to increased photosynthesis and growth, which canopy greenness is usually 
taken to indicate.

Spatial gradients in nutrients and greenness are not necessarily indicative of nutrient limitation91. Using a 
novel remote sensing index of canopy greenness limitation, we assessed how observed greenness compares with 

Figure 2. Litterfall was negatively correlated with remotely sensed canopy greenness, positively correlated with 
soil phosphorus (P) and cations (K, Mg, Ca), and had no relationship with soil nitrogen (N).

Figure 3. Remotely sensed canopy greenness was positively correlated with in situ extractable soil aluminum 
(Al), paradoxically given that Al is toxic to plants. It may be that tropical plants that have adapted to excess Al 
soils are relatively more productive than plants on less toxic soils because a significant amount of photosynthate 
is required to filter out the Al.
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potential greenness based on energy and water availability at a broad scale19. We found a strong relationship 
with soil N only (r2 = 0.65; p < 0.1) (Fig. 4a), suggesting that canopy greenness in tropical forests in Panama is 
predominantly driven by soil N, but not by other nutrients23,76. This could reflect the strong association between 
foliar N and chlorophyll content, with plants taking up additional N even in N-rich soils (“luxury consumption”). 
Also, total soil C (r2 = 0.71; p < 0.1) and root biomass (r2 = 0.62; p < 0.1) were strongly correlated with the 
remotely sensed canopy greenness limitation product (Fig. 4b,c), such that as the canopy approached maximum 
theoretical greenness, soil C and root biomass also increased. This relationship with soil C stocks could reflect 
greater root biomass and greater plant photosynthetic activity at higher soil N, both of which could contribute to 
soil C stocks92–94. This result contrasts with a fertilization experiment at one Panama site where added N alone had 
no effect on litterfall or stem growth rates, although N and P added together did appear to elevate productivity77. 
The links among soil N, canopy greenness, roots, and soil C may suggest a previously unmeasured input of C to 
soil via root exudates, which can be a significant sink of annual photosynthate, but are challenging to measure in 
situ95. The strong coupling between canopy and soil properties underscores the potential utility of remote sensing 
for assessing belowground properties in tropical ecosystems.

Our analysis thus far has aimed at exploring first-order relationships between soil properties and canopy 
greenness. Although this is just a first step, one may wish to see how these results can be integrated into mech-
anistic, process-based modeling systems, such as terrestrial biosphere models (TBMs) or Earth system models 
(ESMs)96. The need for nutrient processes, especially in the tropics, is well-stated27,96–99. Certainly, building these 
relationships into these types of models is beyond the scope of this paper. Still, our results provide compara-
tive behaviors for the results of future model developments100,101. Numerous multi-variate statistical approaches 
can also assign weighting to the different controls on canopy greenness responses. These approaches include, 
for example, multi-variate regression, artificial neural networks, random forest, principal components analysis, 
and structural equation modeling. We have used these approaches extensively in previous analyses102–104. In this 
analysis, however, the data distribution statistical requirements for these approaches were not always satisfied, 
and, while the results largely reinforced what we already found, they often minimized interesting relationships 
with the micronutrients. Moreover, some approaches, such as structural equation modeling, require certain 
assumptions about fixed pathways, or known relationships, that must be defined. Yet, our results showed unex-
pected responses, such as decreasing greenness with increasing P and base cations. Ultimately, soil N was the only 
nutrient-based significant predictor of canopy greenness limitation.

Although it had already been established that the sites were situated such that soil properties were only weakly 
or not at all correlated with precipitation43,52–54, we took additional measures to separate the influence of precipi-
tation from soil properties on canopy characteristics105–107. First, we evaluated all data normalized by mean annual 
precipitation (Supplementary Fig. 2). Second, we assessed only wet season canopy properties from the remote 
sensing data (and in situ data, where appropriate; i.e., litterfall), though there were fewer cloud-free remote sens-
ing data in the wet season-only analysis (Supplementary Figs. 3 and 4). This precaution avoids results driven 
by the large litterfall that occurs across these semi-deciduous forests during the dry season. Ultimately, the pat-
terns and statistics remained largely unaffected by normalization to precipitation (i.e., statistically significant at 
p < 0.1), with correlation coefficients decreasing in some cases, but increasing in others. These steps were taken to 
ensure that we assessed soil effects on canopy properties independent from precipitation effects.

We assessed a large suite of soil variables and remote sensing products. Ultimately, the clearest results for the 
greenness analyses came from Landsat 8, which has the highest spatial resolution of all the products assessed. The 
high spatial resolution likely contributed to the ability to detect relatively clear patterns107. Though that is not to say 
that an improvement in spatial resolution for SIF or soil moisture would necessarily translate into stronger correla-
tions; but, we had no ready way to test this108. We also tested the soil variables against MODIS NDVI, which has a 
coarser spatial resolution, but finer temporal resolution, than Landsat. Spatial resolution resulted in larger impor-
tance than temporal resolution in this particular analysis. This was likely due to the large spatial heterogeneity in soil 
properties in conjunction with the fortuitous acquisition of a sufficient number of cloud-free images from Landsat.

Given the significant coupling we found between in situ soil nutrients, soil C, and root biomass with remotely 
sensed canopy greenness limitation, we produced Panama-wide maps of soil C and N based on those respective 

Figure 4. Remotely sensed canopy greenness limitation was strongly correlated with in situ (a) soil nitrogen, 
(b) soil carbon, and (c) total roots.
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relationships (Fig. 5). We note that the maps should be treated more as thought exercises than as definitive truth, 
relying both on assumptions about the representativeness of the plots to the region/country at large as well as 
the soil-canopy relationships. For example, some areas are inaccessible and not well sampled by the plots, and 
are unlikely to be representative of the actual soil nutrients. As a reference for uncertainty in the maps, the lin-
ear model RMSE divided by plot mean was 19% for soil carbon and 18% for soil N. Given these caveats, some 
interesting spatial patterns do emerge. Total soil C and N are relatively well-constrained, with maxima along the 
Caribbean side and minima along the Cordillera de Talamanca mountain range. Interestingly, these maps com-
pare (qualitatively) similarly to existing soils maps for the country109–111. There is potential power in many of these 
maps, as tropical soil C, for example, represents a large uncertainty in global C cycle models112,113.

Conclusions
We found significant coupling between remotely sensed canopy properties of greenness and productivity with in 
situ soil nutrients, C, and toxic elements for humid tropical forests across soil fertility and precipitation gradients. 
These patterns emerged across a two-fold increase in precipitation, but relationships of canopy properties with 
soil nutrients were as strong or stronger than relationships with precipitation, providing new insight into how 
we think about canopy scale assessments of tropical ecosystem fertility and productivity. Soil nutrients led to 
competing effects on canopy greenness, with P and cations leading to a decrease in greenness related to increases 
litterfall, likely related to decreased nutrient use efficiency. In contrast, soil N corresponded to increased canopy 
greenness, and no relationship with litterfall. Of particular interest was the use of a novel remote sensing index 
of canopy greenness limitation, which we found had strong relationships with soil N, soil C, and root biomass, 
highlighting the potential utility of a remote sensing product for assessing belowground nutrients and C storage 
in some tropical ecosystems. Future satellite missions using imaging spectroscopy, for example, may further refine 
these analyses, disentangling much of the canopy chemistry differences related to soil nutrient patterns114,115. 
These results may help explain interpretations of the greening of the tropics due to CO2 under nutrient limita-
tions, and how climate projections and C cycle uncertainties are tied directly both to tropical ecosystem process 
understanding and soil carbon and nutrients.
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