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1  | INTRODUC TION

Biomass production (BP) consists of photosynthetically derived car-
bon used for biomass growth, that is, to build up leaves, wood, and 
roots (Vicca et al., 2012). BP is smaller than net primary productivity 
(NPP), which is the sum of BP and carbon allocated to nonstructural 
organic compounds that are used to maintain functions of rhizo-
sphere and plant (e.g., mycorrhizae, root exudates, and volatile car-
bon compound emissions; Campioli et al., 2015; Chapin et al., 2006; 
Vicca et al., 2012). A large fraction of BP (about 8.2 Pg C/year) is 
being appropriated by humans through the harvest of food, wood, 
and fibers (Erb et al., 2016; Haberl et al., 2007). The remaining BP en-
ters into a cascade of ecosystem carbon pools, and determines the 
land carbon balance (Friend et al., 2014). Currently, nonharvested 
BP forces a carbon sink offsetting one‐third of anthropogenic emis-
sions (Le Quéré et al., 2015). The fate of this carbon sink, however, is 
highly uncertain under climate change and anthropogenic activities 
(Ciais et al., 2013; Peñuelas et al., 2017). In particular, since BP is 
a fraction of photosynthetically assimilated carbon (gross primary 
production, GPP), both dynamics in GPP and the fraction of GPP 
allocated to BP could affect the outcome of BP.

Progress has been made to derive observation‐based GPP esti-
mates from eddy covariance networks (Beer et al., 2010), and from 
new remote sensing data (e.g., solar‐induced chlorophyll fluores-
cence, Guanter et al., 2014; near‐infrared reflectance of vegetation, 
Badgley, Field, & Berry, 2017). However, we still know little about 

the allocation of GPP to BP, hereafter defined as biomass production 
efficiency (BPE), that is, the ratio of BP to GPP. This is because in 
situ estimates of BP are rarely at the same locations as GPP. Earlier 
studies usually suggest a constant BPE universally (Gifford, 1995; 
McCree & Troughto, 1966; Waring, Landsberg, & Williams, 1998). 
However, more recent syntheses of both field measurements and 
remote sensing products all indicate that BPE varies greatly across 
vegetation types, environmental conditions, ecosystem manage-
ment intensity, and soil fertility gradients (Campioli et al., 2015; 
Fernández‐Martínez et al., 2014; Vicca et al., 2012; Zhang, Xu, Chen, 
& Adams, 2009; Zhang et al., 2014). This spatial heterogeneity of 
BPE hinders the upscaling of this quantity to a global scale.

Terrestrial carbon cycle models simulate the dynamics of CO2 
fluxes and carbon pools in response to variations in climate and atmo-
spheric composition, and can be run with climate scenarios to proj-
ect future carbon storage change (Cramer et al., 2001; Friedlingstein 
et al., 2006; Piao et al., 2008; Yao, Piao, & Wang, 2018). Previous 
models often assumed a constant fraction of autotrophic respira-
tion (Ra) to GPP as a simplifying concept (e.g., Landsberg & Waring, 
1997; Nemani et al., 2009; Sands, Battaglia, & Mummery, 2000; 
Veroustraete, Sabbe, & Eerens, 2002), whereas ecosystem models at 
present employ more detailed descriptions of the carbon cycle (e.g., 
Krinner et al., 2005; Peng, Liu, Dang, Apps, & Jiang, 2002; Tian et al., 
2012; Zhu et al., 2014). These latter carbon cycle models have struc-
tural similarities in the equations of leaf scale photosynthesis (Rogers 
et al., 2017) and soil carbon dynamics (Luo et al., 2016), but they differ 
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Abstract
Plants use only a fraction of their photosynthetically derived carbon for biomass 
production (BP). The biomass production efficiency (BPE), defined as the ratio of BP to 
photosynthesis, and its variation across and within vegetation types is poorly under-
stood, which hinders our capacity to accurately estimate carbon turnover times and 
carbon sinks. Here, we present a new global estimation of BPE obtained by combining 
field measurements from 113 sites with 14 carbon cycle models. Our best estimate 
of global BPE is 0.41 ± 0.05, excluding cropland. The largest BPE is found in boreal 
forests (0.48 ± 0.06) and the lowest in tropical forests (0.40 ± 0.04). Carbon cycle 
models overestimate BPE, although models with carbon–nitrogen interactions tend 
to be more realistic. Using observation‐based estimates of global photosynthesis, we 
quantify the global BP of non‐cropland ecosystems of 41 ± 6 Pg C/year. This flux is 
less than net primary production as it does not contain carbon allocated to symbionts, 
used for exudates or volatile carbon compound emissions to the atmosphere. Our 
study reveals a positive bias of 24 ± 11% in the model‐estimated BP (10 of 14 models). 
When correcting models for this bias while leaving modeled carbon turnover times 
unchanged, we found that the global ecosystem carbon storage change during the 
last century is decreased by 67% (or 58 Pg C).
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greatly regarding how GPP assimilates are allocated to different plant 
organs or respired for maintenance and growth purposes, the pro-
cesses that determine BPE. In this respect, BPE in a model is not a pa-
rameter, but rather a diagnostic variable that can be calculated from 
model outputs and reflects plant processes driven by environmental 
conditions and ecological stoichiometry in the case of models inte-
grating carbon–nutrient interactions. Note that in current models, 
BP = NPP, because mycorrhizae and exudates are not considered.

In this study, we aim to quantify the global value of BPE by apply-
ing an emergent constraint approach (Cox et al., 2013; Kwiatkowski 
et al., 2017; Wenzel, Cox, Eyring, & Friedlingstein, 2014; Zhao et al., 
2016) to model outputs from a recent dataset of BPE measured glob-
ally (Campioli et al., 2015). This approach can reduce the intermodel 
uncertainties by identifying a robust linear intermodel relationship 
between one quantity that cannot be directly measured and the 
other quantity with available field observations. When combined 
with observations of the second quantity, this relationship can be 
used to constrain the first quantity (see Materials and Methods). 
The set of global carbon cycle models we used is known as the 
Multi‐scale Synthesis and Terrestrial Model Intercomparison Project 
(MsTMIP; Huntzinger et al., 2013; Wei et al., 2014; see model list in 
Table S1). We also extend this analysis to an evaluation of the model 
performance in simulating global BP, and ecosystem carbon storage 
change during 1901–2010, with a distinction between carbon‐only 
and carbon–nitrogen interactions.

2  | MATERIAL S AND METHODS

2.1 | BPE datasets

The newly assembled BPE dataset developed by Campioli et al. 
(2015) contains 131 field observations, including forests, grasslands, 

croplands, wetlands, and tundra. For the current study, 18 sites were 
excluded because carbon cycle models do not have an explicit con-
sideration of wetlands and tundra at present. In total, 113 observa-
tion‐based BPE values covering almost all major vegetation types 
were obtained, including 33 data points of boreal forests (BoF), 31 
data points of temperate forests (TeF), five data points of tropical 
forests (TrF), 20 data points of grasslands, and 24 data points of 
croplands.

A binary management classification scheme was also adopted 
in our study (Campioli et al., 2015). This classification scheme 
contained both managed status (when the site was dominated by 
human activity, such as thinning, harvesting, or planting for forests, 
or newly established and fertilized grasslands) and unmanaged sta-
tus (when the site was dominated by natural processes with a low 
human activity impacts). The anthropogenic ecosystem, that is, 
cropland, is inherently under managed conditions. This BPE dataset 
also contained information of site fertility, which was divided into 
three levels (i.e., low, medium, or high nutrient availability), according 
to information in previous studies or provided by associated authors 
(Campioli et al., 2015). In addition, climate data (i.e., mean annual 
temperature and mean annual precipitation) for each site were re-
trieved from the WorldClim database (http://world clim.org/ver-
sion2; Fick & Hijmans, 2017).

The uncertainty ranges of BP and GPP for each site were es-
timated based on method‐specific reduction factor determined by 
expert judgment, the number of measurement years, and vegetation 
type (Campioli et al., 2015; Luyssaert et al., 2007). Campioli et al. 
(2015) calculated the uncertainty range of BPE for each site by the 
means of the error propagation theory. And we then used this error 
propagation method to obtain the statistical uncertainty of averaged 
BPE across all sites (e.g., the red shaded area shown in Figure 1a rep-
resents the uncertainty range of site‐level mean BPE).

F I G U R E  1   Emergent constraint on the global mean biomass production efficiency (BPE). (a) Relationship between the modeled global 
(excluding cropland) and site‐level mean BPE of unmanaged vegetation. The black line represents the best fit across different models (black 
dots), the vertical red dashed line and shaded area represent the mean value of BPE and its statistical uncertainty from field observations, 
respectively (see Materials and Methods), and the horizontal red dashed line represents the constrained global mean BPE. (b) Probability 
density function for global BPE. The black line represents the probability distribution of the multimodel mean BPE, assuming that all BPE 
values estimated from terrestrial carbon models conform to a Gaussian distribution, the red line represents the probability distribution of 
global BPE constrained by field observations, and the black and red letters represent the values of global BPE (mean ± standard deviation) 
before and after the field constraints, respectively

(a) (b)

http://worldclim.org/version2
http://worldclim.org/version2
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2.2 | GPP datasets

We used three different data‐driven GPP datasets in our study, as 
they are often considered as benchmark for model evaluation (Li 
et al., 2019; Piao et al., 2013). The first one is an eddy covariance 
flux tower data‐driven GPP product at a spatial resolution of 0.5° 
during 1982–2011 (Jung et al., 2011). The second one is Moderate 
Resolution Imaging Spectroradiometer (MODIS) GPP product (col-
lection 055) at 1 km resolution over 2000–2012 (Zhao, Heinsch, 
Nemani, & Running, 2005). The third one is derived from a process‐
based model, the Breathing Earth System Simulator with a spatial 
resolution of 1 km over 2000–2015 (Jiang & Ryu, 2016). Here, all 
these GPP datasets were regridded to a common 0.5° grid to match 
the carbon cycle models used in our study. We separately calculated 
the mean annual global GPP during their observation period, and the 
average of them was further used in the calculation of global BP (ex-
cluding cropland).

2.3 | Carbon cycle models

We used modeling results from the Multi‐scale Synthesis and 
Terrestrial Model Intercomparison Project (MsTMIP; Huntzinger 
et al., 2013; Wei et al., 2014) to calculate model‐derived BPE. All 
model simulations participating in this project were performed with 
the same protocol for the period of 1901–2010 and at a 0.5° spatial 
resolution. Here, we focused on model outputs over the past three 
decades (1981–2010) from the “SG3” simulation, which was forced 
with time‐varying climate, atmospheric CO2 concentrations, and land 
use and land‐cover change. A total of 14 models drawn from MsTMIP 
version 1 (http://dx.doi.org/10.3334/ORNLD AAC/1225) were used  
in this study. These 14 MsTMIP models are CLASS‐CTEM‐N, 
CLM4, CLM4VIC, DLEM, GTEC, ISAM, LPJ‐wsl, ORCHIDEE‐LSCE 
(ORCHIDEE hereafter), SiB3, SiBCASA, TEM6, TRIPLEX‐GHG, 
VEGAS2.1, and VISIT (see Table S1). These 14 MsTMIP models were 
further divided into two groups based on whether an explicit nitrogen 
cycling was considered in each model, namely models with carbon–
nitrogen interactions (CLASS‐CTEM‐N, CLM4, CLM4VIC, DLEM, 
ISAM, TEM6, TRIPLEX‐GHG) and models without carbon–nitrogen 
interactions (GTEC, LPJ‐wsl, ORCHIDEE, SiB3, SiBCASA, VEGAS2.1, 
VISIT). The direct outputs of four variables, that is, the NPP, GPP, 
total living biomass, and total soil carbon were used in this analysis. 
Because TRIPLEX‐GHG did not report the NPP data in the MsTMIP 
variable list online, we calculated NPP indirectly as the difference 
between GPP and Ra for this model. To estimate the changes in mod-
eled carbon storage, three models were excluded for reasons being 
either unavailability of carbon pools (SiB3) or nonphysical values of 
soil carbon stocks (CLASS‐CTEM‐N and CLM4VIC) due to issue such 
as nonlinear interactions among hydrologic and carbon cycle param-
eters (Huang et al., 2016; Sargsyan et al., 2014). In MsTMIP, NPP 
equals BP as all carbon cycle models do not deal with nonstructural 
NPP components (e.g., root exudation and root symbionts) explicitly 
at present. Thus, the modeled NPP is hereafter called modeled BP 
in our study.

All of the global land cover maps used in MsTMIP models originated 
from the Synergetic Land Cover Product (SYNMAP; Jung, Henkel, 
Herold, & Churkina, 2006; Wei et al., 2014). To be compatible with the 
five vegetation types adopted by this study, the 47 SYNMAP classes 
(excluding shrubs, snow, barren, and urban areas) used in SYNMAP 
were first reclassified into three plant functional types (PFTs; i.e., for-
ests, grasslands, and croplands) based on a translation method defined 
by Jung et al. (2006). Here, croplands included all those SYNMAP veg-
etation classes with “crops” as a life form. According to the Köppen–
Geiger climate classification (Peel, Finlayson, & McMahon, 2007), the 
forests located in boreal/tropical regions were then merged into BoF/
TrF, while those over temperate areas were renamed as TeF. Using this 
reconstructed land cover map, represented PFT was defined as the 
PFT covering more than 50% of the fractional area in each grid cell. To 
obtain global natural vegetation BP and GPP, the grid cells with crop-
land as represented PFT were excluded in the calculation.

2.4 | Model constraining

We further adopted the recently widely used “emergent constraint” 
approach (e.g., Cox et al., 2013; Kwiatkowski et al., 2017; Wenzel 
et al., 2014; Zhao et al., 2016) to reduce the uncertainties in MsTMIP‐
simulated global mean BPE. This approach relies on a strong linear 
intermodel relationship between one quantity that cannot be di-
rectly measured and the other quantity with available field obser-
vations. A more accurate estimate can be achieved by constraining 
the first quantity through available field observations of the second 
quantity (illustrated schematically in the box 1 from Eyring et al., 
2019). Here, using a similar method like Zhao et al. (2016), we first 
built a linear relationship between global and site‐level mean BPE 
values across the 14 MsTMIP models (as shown in Figure 1a). This 
model‐derived relationship between global and site‐level mean BPE, 
combined with field observations, provided an emergent constraint 
on the simulated global mean BPE. Specifically, the conditional prob-
ability density function (PDF) for the constrained global BPE was 
calculated by integrating the PDF of the observations with the PDF 
of the model‐derived regression line. More detailed information of 
the “emergent constraint” approach can be found in Appendix S1.

We first computed the values of site‐level BPE from modeled 
BP and GPP at the same location and for the same vegetation type 
than observed data. We only used BPE data from 83 unmanaged 
sites (except for cropland) because forest and grassland man-
agement was not taken into account in the MsTMIP models. As 
cropland management is not well represented in current models 
with simplified and incomplete description (Piao et al., 2018), the 
cropland sites are not included in the emergent constraint for 
the global mean BPE, while they are included for the vegetation 
type level BPE only for comparison. We also excluded 28 sites be-
cause their vegetation type was a fraction smaller than 50% of 
the modeled vegetation in the corresponding grid cell (hereafter 
these data are called nonrepresentative data). This leaves 55 sites 
for our analysis, including 36 non‐cropland sites. Hence, the con-
straining approach was applied to all PFTs combined (Figure 1, 

http://dx.doi.org/10.3334/ORNLDAAC/1225
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F I G U R E  2   Emergent constraint on 
the mean biomass production efficiency 
(BPE) for different vegetation types. Same 
as Figure 1 but the field observations 
are divided into five vegetation types: (a, 
b) Boreal forests (BoF). (c, d) Temperate 
forests (TeF). (e, f) Tropical forests (TrF). 
(g, h) Grassland. (i, j) Cropland. Only 
unmanaged observations (except for 
cropland) for which the fraction of their 
represented vegetation type is higher 
than 50% of area in the corresponding 
model pixel are included. Right‐hand 
column shows the relationship between 
modeled biome‐specific and site‐level 
mean BPE across 14 MsTMIP models, 
for five vegetation types, respectively. In 
each panel, n is the sample size of the field 
observations, the black line represents 
the best fit across different models (black 
dots), the vertical red dashed line and 
shaded area represent the mean value of 
BPE and its statistical uncertainty from 
field observations, respectively, and the 
horizontal red dashed line represents the 
constrained mean BPE. Left‐hand column 
shows the probability distributions of 
mean BPE across 14 MsTMIP models, 
for five vegetation types, respectively. 
In each panel, the black line represents 
the probability distribution of multimodel 
mean BPE, assuming that all BPE values 
estimated from terrestrial carbon models 
can be represented by a Gaussian 
distribution, the red line represents the 
probability distribution of global mean 
BPE constrained by field observations, 
and the black and red letters represent 
the values of BPE (mean ± standard 
deviation) before and after constraint, 
respectively
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excluding cropland, n = 36) and to each individual PFT (Figure 2; 
Figures S3 and S4).

2.5 | Changes in global ecosystem carbon storage 
during 1901–2010

We used a total of 11 MsTMIP models (i.e., CLM4, DLEM, GTEC, ISAM, 
LPJ‐wsl, ORCHIDEE, SiBCASA, TEM6, TRIPLEX‐GHG, VEGAS2.1, and 
VISIT) “SG3” simulations with GPP, BP, soil carbon storage, and bio-
mass carbon storage available. Based on the constrained global BPE, 
we further applied a two‐box model (Liu et al., 2019) and re‐estimated 
the changes in global (excluding cropland) ecosystem carbon storage 
during 1901–2010 for each model as following steps.

First, we calculated the turnover times of global ecosystem bio-
mass carbon and soil carbon in each year during 1902–2010 for each 
model using the following equation set:

where, CB(i) is the biomass carbon storage in year i, ∆CB(i) is 
the change in biomass carbon storage from year i − 1 to year i 
[∆CB(i) = CB(i) − CB(i − 1)], NPP(i) is the NPP in year i, τB(i) is the 
turnover time of biomass carbon in year i, kB(i) is the turnover rate 
of biomass carbon in year i, CS(i) is the soil carbon storage in year 
i, ∆CS(i) is the change in soil carbon storage from year i − 1 to year 
i [∆CS(i) = CS(i) − CS(i − 1)], τS(i) is the turnover time of soil carbon in 
year i, kS(i) is the turnover rate of soil carbon in year i, i is year during 
1902–2010 (i = 2, 3, 4, …, 110).

Second, assuming that simulated carbon pools in 1901 are in equi-
librium (Figure S6) and BPE is invariant during 1901–2010 (equals to, 
in numeral, the constrained BPE). The biomass (C′

B
) and soil carbon (C′

S
)  

storage in each model in 1901 were recalculated as C′

B
 (1) = GPP(1) × 

BPEConstrained × τB(1) and C′

S
 (1) = GPP(1) × BPEConstrained × τS(1), respec-

tively. Here, C′

B
 (1) and C′

S
 (1) are the re‐estimated biomass and soil 

carbon storage in each model in 1901, respectively. GPP(1) is the GPP 
in the first year (1901). BPEConstrained is the constrained global natural 
vegetation BPE (0.41). τB(1) is the turnover time of biomass carbon in 
the first year (1901), assuming that τB(1) equals τB(2) in Equation (1). 
τS(1) is the turnover time of soil carbon in the first year (1901), assum-
ing that τS(1) equals τS(2) in Equation (1). Then, we reconstructed the 
global biomass carbon and soil carbon in each year during 1902–2010 
for each model using the following equations:

where C′

B
(i) is the re‐estimated biomass carbon storage in year i, 

GPP(i) is the GPP in year i, BPEConstrianed is the constrained global 
natural vegetation BPE (0.41), kB(i) is the turnover rate of biomass 

carbon in year i, C′

S
(i) is the re‐estimated soil carbon storage in year 

i, kS(i) is the turnover rate of soil carbon in year i, i is year during 
1902–2010 (i = 2, 3, 4, …, 110).

Last, we calculated the changes in global carbon storage (biomass 
carbon + soil carbon) during 1901–2010, using biomass and soil car-
bon storage in the original MsTMIP model outputs and re‐estimated 
by Equation (2) separately. Paired t test was used to test the dif-
ference between original and reproduced global ecosystem carbon 
storage changes during 1901–2010.

3  | RESULTS

3.1 | Emergent constraint on the global mean BPE

Figure 1a shows the relationship between modeled global and site‐
level mean BPE (cropland is excluded throughout this section, see 
Materials and Methods). MsTMIP models simulate a large spread 
in global non‐cropland BPE, with a range going from 0.36 for the 
TRIPLEX‐GHG model to 0.62 for the SiB3 model (Figure 1a). We 
found a strong linear relationship across different models between 
their site‐level and global mean BPE (R2 = 0.77, p < .05). This allows 
us to define an emergent constraint relationship (see Materials and 
Methods; Cox et al., 2013; Kwiatkowski et al., 2017; Wenzel et al., 
2014; Zhao et al., 2016) whereby the selected field observations can 
be used to constrain the global modeled value of BPE. According to 
the emerging relationship shown in Figure 1a and the average of 
selected field BPE observations (0.44), the constrained global best 
estimate of BPE is 0.41. It is lower than the original multimodel av-
erage (0.46). When compared to the unconstrained PDF of models 
(black line), the constrained PDF (red line) is more narrow, so that 
the uncertainty on BPE is reduced from ±0.08 to ±0.05 (1‐σ SD, 
Figure 1b).

Given that several studies showed nutrient scarcity to be as-
sociated with lower BPE for comparable GPP level (Fernández‐
Matínez et al., 2014; Vicca et al., 2012), we divided the models 
into two groups, those with (n = 7) and without (n = 7) carbon–
nitrogen interactions, to test possible controls of BPE by nutri-
ent limitations. Result shows that the constrained global BPE and 
uncertainty range are almost the same between the two groups 
of models (0.40 ± 0.05 for models with carbon–nitrogen interac-
tions and 0.41 ± 0.05 for the other models; Figure S1). Models with 
carbon–nitrogen interactions (0.47 ± 0.08) tend to better match 
site observations (0.44 ± 0.04) compared to carbon‐only models 
(0.53 ± 0.09), because of their lower BPE (Figure S1). At the global 
scale, the BPE from models with carbon–nitrogen interactions 
(0.43 ± 0.07) is also smaller than that from carbon‐only models 
(0.49 ± 0.08; Figure S1). This is consistent with a decrease of BPE 
observed at forest sites under nitrogen limitation (Vicca et al., 
2012). Furthermore, the constrained global mean BPE for mod-
els with carbon–nitrogen interaction is robust when separately 
calculated using site‐level BPE with different nutrient availability 
classes (categorized as low, medium, and high nutrient level; see 
Materials and Methods; Figure S2).
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3.2 | Emergent constraint on the mean BPE for 
different vegetation types

Applying a similar emerging constraint method, we also constrained 
BPE for the different vegetation types, including forests, grasslands, 
and croplands (see Materials and Methods). To do so, we conven-
tionally divided forest sites into boreal, temperate, and tropical 
groups (Campioli et al., 2015; Luyssaert et al., 2007). Strong linear 
relationships like the one in Figure 1 were also found within each 
vegetation type (p < .05, Figure 2) particularly for boreal and TrF, 
with R2 > 0.9. The constrained BPE is substantially lower than the 
original multimodel average for each vegetation type, except crop-
land (Figure 2). A noticeable decrease of BPE (constrained value 
minus original model mean) is found in BoF (Figure 2a). The multi-
model mean BPE for BoF is 0.55 ± 0.11, but the magnitude of BPE 
after the constraint from observations is decreased to 0.48 ± 0.06. 
In contrast, crops have a higher BPE when constrained by field ob-
servations (Figure 2e). The higher BPE for crops from observations 
(0.55 ± 0.06) than from models (0.50 ± 0.10) may be related to sev-
eral traits and processes that are not included in models, including 
crop varieties and more generally the allocation processes specific to 
crop plant types, and management operations such as irrigation and 
fertilization. The sample sizes of the site data (n) used to constrain 
BPE in some vegetation types are small (n = 5), but the constrained 
values of BPE are robust even if we include nonrepresentative data 
(Figures S3), or if we base the site‐level model estimates on all pix-
els with similar climate as the site observations instead of only the 
pixel of the actual site location (the difference in climate conditions 
within an interval of 1°C × 50 mm; Figures S4). Overall, among the 
natural vegetation types, the lowest value of BPE after applying the 
constraint is found for TrF (0.40 ± 0.04) and the largest is for BoF 
(0.48 ± 0.06; Table S2).

4  | DISCUSSION

4.1 | Possible reasons for overestimated BPE in 
models

As mentioned above, BPE can be used as a critical diagnostic param-
eter to characterize how carbon is partitioned among different path-
ways, providing us an opportunity for testing model performance. 
Our study suggested an overestimation of BPE by most models in 
natural ecosystems. That is to say, in current models, the fraction 
of carbon sequestrated by plants allocated to BP is overestimated, 
but less for respiration purpose. As current models have similar 
structures in representing photosynthesis, they differ greatly in 
simulating Ra. Ra is usually separated into two components: growth 
(Rg) and maintenance respiration (Rm; Atkin, Meir, & Turnbull, 2014; 
Dewar, Medlyn, & Mcmurtrie, 1999; Gifford, 2003; Ryan et al., 1995; 
Thornley & Cannell, 2000). This concept has been widely utilized in 
carbon cycle models, where Rm is first predicted as a function of tem-
perature and biomass, and Rg is a fixed proportion of productivity 
(Cox, 2001; Piao et al., 2010). The simulations and parameterizations 

of Rm and Rg vary greatly among models, for instance, constant 
growth respiration coefficient in CLM is 0.3 (Lawrence et al., 2011), 
but in TEM6 is 0.2 (Hayes et al., 2011), potentially resulting in large 
biases of BPE outputs.

Whether a model has an explicit consideration of carbon– 
nitrogen interaction appears to strongly influence modeled BPE val-
ues. Although carbon cycle models overestimate plant BPE, models 
without carbon–nitrogen interactions show much more model–
data mismatch. These models, without a consideration of nitrogen 
limitation on carbon cycle, may overestimate the CO2 fertilization 
effect of vegetation growth and therefore overestimate plant BPE 
(Vitousek & Howarth, 1991). As for models with carbon–nitrogen 
interactions, although modeled BPE is smaller than that in carbon‐
only models and better match with the benchmark (Figure 3a), this 
does not imply that carbon–nitrogen models perform better, be-
cause if modeled GPP and BP are both well simulated, Ra in the 
model will have to compensate for ignoring the production of non-
structural compounds, and probably overestimating Ra in this case. 
If the production of nonstructural compounds is incorporated in 
modeling processes, simulated Ra will have to be (objectively or in-
advertently) tuned down. Thus, the processes related to BPE still 
need improvements in carbon–nitrogen models. This BPE case 
study also warns that future model development should avoid pa-
rameters over‐tuning for “perfect” model performance when there 
are key processes missing yet in models, to generate the right cau-
sality in carbon cycle processes and vegetation dynamics.

4.2 | Implications of overestimated BPE in models

As shown in Figure 3a, global BP (excluding cropland) ranges from 
35 Pg C/year in CLM4VIC to 88 Pg C/year in SiB3. Since most models 
overestimate BPE, they most likely also overestimate BP (in case of 
similar or overestimated global GPP in models). To test this hypoth-
esis, we quantify global natural vegetation BP (excluding cropland) 
by multiplying the constrained estimate of BPE presented above by 
observation‐based GPP estimates from three different products: 
the MODIS GPP product (Zhao et al., 2005), a eddy covariance flux 
tower data‐driven GPP product (Jung et al., 2011), and a new GPP 
product derived by Breathing Earth System Simulator (Jiang & Ryu, 
2016)—all averaged over non‐cropland vegetation only. The result 
shows a global BP (excluding cropland) of about 41 ± 6 Pg C/year 
which is lower by 24 ± 11% than that originally simulated by the 
models (10 of 14 models; Figure 3).

The overestimation of BPE and BP by carbon cycle models im-
plies reduced carbon storage change during the historical period 
in models, because carbon storage change is controlled by BP 
changes and by the turnover rate of ecosystem carbon pools (Luo 
et al., 2003; Parton, Schimel, Cole, & Ojima, 1987; Potter et al., 
1993; Xia, Luo, Wang, & Hararuk, 2013). By correcting the MsTMIP 
model outputs for their bias of BPE based on equations for substi-
tute models (see Materials and Methods) and not accounting for 
BPE change in response to climate and rising CO2 (see Figure S5), 
we found that the lower BPE implies a 67% smaller increase of 
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ecosystem carbon storage during 1901–2010 (from 86 ± 144 Pg C 
of increase in average ecosystem carbon storage in original model 
simulations to 28 ± 115 Pg C of increase in average ecosystem 
carbon storage, p < .01, Figure 3b), assuming unchanged carbon 
turnover rate. This overestimation of ecosystem carbon storage 
increase due to the bias of BPE is particularly significant for car-
bon‐only models (p < .01, Figure 3b). Compared to carbon‐only 
models, models with carbon–nitrogen generally reproduce smaller 
ecosystem carbon storage changes with original model simulations 
(p = .09, Figure 3b), because their BPE is more comparable with the 
constrained BPE.

In summary, our results show that carbon cycle models gener-
ally overestimate BPE, not only suggesting that the capability of 
future terrestrial carbon sequestration is less than current model 
predictions but also implying that future reduction of greenhouse 
gas emission to meet climate target may be underestimated. 
Furthermore, models with carbon–nitrogen interactions simulate 
BPE closer to observed values compared to carbon‐only models, 
although Ra in these models is probably overestimated to compen-
sate for the omission of nonstructural carbon fluxes. These results 
suggest that more efforts should be put into improving carbon 
cycle modeling with processes treated either very simplistically or 
insufficiently, in order to represent correct carbon cycle processes 
and vegetation dynamics for correct reasons. Measurements of 
BPE across different vegetation types, for different management 
intensities and different levels of soil‐available nitrogen and phos-
phorus are also needed to refine the global estimation of this key 
carbon cycle variable.
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