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Abstract

Given the magnitude of soil carbon stocks in northern ecosystems, and the vulnerability of these stocks
to climate warming, land surface models must accurately represent soil carbon dynamics in these
regions. We evaluate soil carbon stocks and turnover rates, and the relationship between soil carbon
loss with soil temperature and moisture, from an ensemble of eleven global land surface models. We
focus on the region of NASA’s Arctic-Boreal vulnerability experiment (ABoVE) in North America to
inform data collection and model development efforts. Models exhibit an order of magnitude
difference in estimates of current total soil carbon stocks, generally under- or overestimating the size
of current soil carbon stocks by greater than 50 PgC. We find that a model’s soil carbon stock at steady-
state in 1901 is the prime driver of its soil carbon stock a hundred years later—overwhelming the effect
of environmental forcing factors like climate. The greatest divergence between modeled and observed
soil carbon stocks is in regions dominated by peat and permafrost soils, suggesting that models are
failing to capture the frozen soil carbon dynamics of permafrost regions. Using a set of functional
benchmarks to test the simulated relationship of soil respiration to both soil temperature and
moisture, we find that although models capture the observed shape of the soil moisture response of
respiration, almost half of the models examined show temperature sensitivities, or Q10 values, that are
half of observed. Significantly, models that perform better against observational constraints of
respiration or carbon stock size do not necessarily perform well in terms of their functional response
to key climatic factors like changing temperature. This suggests that models may be arriving at the
right result, but for the wrong reason. The results of this work can help to bridge the gap between data
and models by both pointing to the need to constrain initial carbon pool sizes, as well as highlighting
the importance of incorporating functional benchmarks into ongoing, mechanistic modeling
activities such as those included in ABoVE.

© 2020 The Author(s). Published by IOP Publishing Ltd


https://doi.org/10.1088/1748-9326/ab6784
https://orcid.org/0000-0003-4734-9085
https://orcid.org/0000-0003-4734-9085
https://orcid.org/0000-0001-6960-4193
https://orcid.org/0000-0001-6960-4193
https://orcid.org/0000-0002-4051-3228
https://orcid.org/0000-0002-4051-3228
https://orcid.org/0000-0001-9300-4585
https://orcid.org/0000-0001-9300-4585
https://orcid.org/0000-0002-2050-7373
https://orcid.org/0000-0002-2050-7373
mailto:deborah.huntzinger@nau.edu
https://doi.org/10.1088/1748-9326/ab6784
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ab6784&domain=pdf&date_stamp=2020-02-07
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ab6784&domain=pdf&date_stamp=2020-02-07
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0

10P Publishing

Environ. Res. Lett. 15 (2020) 025005

1. Introduction

The fastest rates of climate warming are occurring in
the high northern latitudes (AMAP 2017,
USGCRP 2017). Warming temperatures and rising
atmospheric CO, could benefit plants by increasing
plant productivity (Qian ef al 2010, Natali et al 2012),
accelerating nutrient cycling (Hobbie et al 2002, Mack
et al 2004), and lengthening the growing season (Zeng
et al 2011). However, it is likely that warming
temperatures will also lead to more rapid rates of soil
respiration (e.g. Hayes etal 2011, Koven et al 2017) and
more extensive permafrost thaw (Schuur et al 2013,
Hayes et al 2014, Hugelius et al 2014, Schuur et al
2015); both of which could feedback to further
accelerate warming through the release of CO, and
CH,; to the atmosphere (Bond-Lamberty and
Thomson 2010b, Schaefer et al 2011, Schuur et al
2015). Given the magnitude of soil carbon stocks at
high latitudes (Hugelius et al 2014), and the potential
vulnerability of these stocks to climate warming
(Harden et al 2012, Schadel et al 2014, Crowther et al
2015, Phillips et al 2017), robust future climate
projections require that global land surface models
accurately represent soil carbon dynamics in high-
latitude regions (Koven et al 2017), particularly under
rapidly changing environmental conditions (Tang et al
2019).

Theoretically, soil carbon dynamics can be pre-
dicted given knowledge of the size of initial carbon
pools stocks, carbon input rates, residence time of car-
bon in soil pools, and the sensitivity of stored carbon
to environmental factors (Fisher et al 2014a, Luo et al
2015). However, results from previous evaluation stu-
dies show widely different estimates of both stocks and
climate-carbon feedbacks across models (Todd-
Brown et al 2013, Fisher et al 2014b, Tian et al 2015,
McGuire et al 2016). This variability in model esti-
mates has not, to date, been well constrained by con-
ventional benchmarks (Luo et al 2016). A key
challenge in model benchmarking is confronting
models with observations that not only tell us whether
models produce the right endpoints, such as magni-
tude of soil carbon pools or gross primary productivity
(GPP), but also if they simulate the correct pathway(s)
to those endpoints, such as the response of soil respira-
tion to climate warming (Huntzinger et al 2017). End-
points are critical for robust predictions of how much
carbon is (or has the potential to be) stored within a
given ecosystem. Pathways are crucial for predicting
the vulnerability of stored carbon and ensuring the
integrity of future projections of carbon fluxes under
varied environmental conditions.

The use of observational data to evaluate model
performance is an ongoing challenge due to the spatial
and temporal mismatch between models and mea-
surements, as well as the lack of concurrence between
what is measured and what is modeled (Hayes and
Turner 2012, McGuire et al 2012, Hoffman et al 2017,
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Collier et al 2018). Another challenge is the lack of
reported uncertainties on many observational data
products, since the choice of the observational data
product has as much or more influence on inferred
model skill as the model itself (Schwalm et al 2015).
Given these ongoing (and unresolved) challenges, the
central questions remain as to (1) what can we learn
about a model’s ability to represent soil carbon stocks
and losses in high-latitude regions using existing data
products, and (2) whether current data products are
sufficient to identify the largest sources of uncertainty
in predicting soil carbon dynamics.

In this analysis, we focus on evaluating model-
simulated soil carbon stocks and turnover, and the
relationship between respiration and both soil temp-
erature and moisture in the Arctic-Boreal region
(ABR). Can models simulate reasonable soil storage
and losses through heterotrophic respiration within
the ABR? And, do modeled simulated soil carbon
dynamics match the temperature and soil moisture
responses obtained from observations ? Combined,
this information has the potential to: (1) provide a
roadmap that modelers can use to reduce uncertainty
in their predictions of terrestrial C cycle dynamics, not
just within the high-latitude regions, but globally or in
other vulnerable regions (Lenton et al 2008); and (2)
identify the types of observationally-based data pro-
ducts that are needed in order to best support model
evaluation and development moving forward.

2.Data and methods

2.1. Study domain

This work focuses on soil carbon dynamics within the
ABR. Specifically, we focus on the region within
NASA’s  Arctic-Boreal Vulnerability Experiment
(ABOVE; figure S1 is available online at stacks.iop.org/
ERL/15/025005/mmedia). ABoVE is a NASA cam-
paign in Alaska and Western Canada that started in
2015 to study the response of Arctic and boreal
ecosystems to environmental change. The ABoVE
activity is divided into three phases, with the first two
phases focused primarily on intensive airborne, satel-
lite, and in situ data collection, and phase 3 focused
more on analysis and synthesis. Modeling activities are
included in all phases (Fisher et al 2018), ranging from
initial benchmarking (Stofferahn et al 2019) with
existing data in Phase 1 to integrated modeling
(diagnosis and prediction) with ABoVE data in Phase
3. The work presented here was conducted during the
first phase of ABoVE, and thus focuses on the initial
benchmarking of process-based models using existing
datasets.

3.Model ensemble

We use an ensemble of eleven global land surface
models from the Multi-scale Synthesis and Terrestrial
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Table 1. Model estimates of total soil carbon (TSC), soil carbon residence time (ResT), heterotrophic respiration (Rh), and net primary
productivity (NPP) for the full ABoVE domain and for only those regions dominated (>50%) by soils other than peat and permafrost. Also
shown are the multi-model ensemble (MME) minimum (min), maximum (max), and median (med) values and a corresponding estimate

from the observational constraint.

Full ABoVE Domain Non-permafrost and peatland dominated regions
NPP TSC ResT NPP
Model TSC(PgC)  ResT (years) Rh(PgC yrfl) (PgC yrfl) (PgC) (years) Rh (PgC yr~ b (PgC yr’l)
CENTURY 23.68 49.34 0.55 0.55 6.03 29.81 0.33 0.33
CLM4.0 22.46 64.66 0.70 1.11 11.21 55.32 0.44 0.73
CLM4VIC 10.40 41.91 0.45 0.78 5.14 33.03 0.29 0.51
DLEM 39.85 65.98 0.75 0.79 22.78 73.95 0.46 0.49
HYLAND 25.95 2,501.67 0.41 0.43 11.59 90.58 0.30 0.31
ISAM 106.37 141.82 1.10 1.15 29.52 78.45 0.57 0.61
LPJ-wsl 162.68 116.39 2.13 2.68 60.16 88.60 1.03 1.31
ORCHIDEE 60.35 49.55 1.53 1.75 22.18 46.69 0.74 0.85
SIBCASA 32.21 29.57 1.50 1.93 11.91 26.46 0.73 0.93
TEM6 85.69 203.90 0.84 1.01 34.10 126.29 0.53 0.62
VEGAS2.0 72.06 91.28 1.23 1.31 29.11 76.49 0.63 0.66
MME min 10.40 29.57 0.41 0.43 5.14 26.46 0.29 0.31
MME max 162.68 2501.67 2.13 2.68 60.16 126.29 1.03 1.31
MME med 39.85 65.98 0.84 1.11 22.18 73.95 0.53 0.62
Constraint® 84.59 57.92 1.43 1.60 20.79 40.52 0.69 0.87

* Observational constraints are as follows: Total soil carbon (TSC)—Northern Circumpolar Soil Carbon Database (NCSCD, Hugelius et al
2013a, 2013b), Heterotrophic respiration (Rh)—Hashimoto et al (2015), Soil carbon residence time (ResT)—TSC from NCSCD divided by
Rh estimates from Hashimoto et al (2015). Net primary productivity (NPP)—MODIS NPP product (Zhao et al 2005).

Model Intercomparison Project (MsTMIP; (Huntzin-
ger et al 2013). We also use MsTMIP’s series of
sensitivity simulations (table S1) to attribute changes
in historical soil carbon storage and loss within the
ABoVE domain (Loboda et al 2017) to key physical
and biogeochemical drivers over the time period from
1901 through 2010. All models produce monthly
output at half-degree spatial resolution from common
forcing data for both spin-up and transient simula-
tions, but differ in their representation and parameter-
ization of soil C dynamics (Huntzinger et al 2014)
(table S2). Therefore, each model can be viewed as a
different realization of soil carbon uptake, loss, and
storage within the ABoVE domain. MsTMIP models
are run using a common protocol, where the environ-
mental forcing data and sensitivity simulations are
uniform across the ensemble (Huntzinger et al 2013,
Wei et al 2014b). The MsTMIP sensitivity simulations
are a set of semi-factorial runs where four time-varying
drivers (climate, atmospheric CO,, land-cover change,
and nitrogen deposition) are sequentially turned-on
(table S2) resulting in a set of five global simulations.
Using these sensitivity simulations, we are able to
quantify the relative contribution of each environ-
mental driver to modeled changes in the soil carbon
dynamics. There are eighteen models in the Version
2.0 release of Phase I MsTMIP (Huntzinger et al 2020).
However, only eleven models met the following three
criteria and are included in the analysis: (1) simulate
the rate of soil carbon loss (heterotrophic respiration,
Rh), soil carbon storage (total soil carbon (TSC)), and
the rate of soil carbon inputs (net primary productiv-
ity, NPP); (2) submitted estimates for all sensitivity

simulations (Huntzinger et al 2013) (RG1-SG3 for
C-only models and RGI-BGl for C-N models;
table 1); and (3) modeled output meets the criteria for
carbon closure or mass balance across carbon fluxes,
e.g. net ecosystem productivity (NEP) = photosynth-
esis — respiration, and total ecosystem respiration = -

heterotrophic ~ respiration ~ (Rh) + autotrophic
respiration (Ra).
3.1. Analysis approach

We leverage the sensitivity simulations of the MsTMIP
activity with a tiered benchmarking approach to
evaluate simulated soil carbon stocks and residence
time (i.e. turnover rate), and the relationship between
simulated soil carbon loss, temperature, and soil
moisture within the ABoVE domain (figure S1). We
evaluate models in terms of: (1) large-scale state
estimates (e.g. magnitude of simulated soil carbon
stocks); (2) the sensitivity of modeled soil carbon
stocks, inputs and losses to environmental forcing
factors like climate and atmospheric CO,; and (3)
simulated functional relationships and emergent
properties related to changing environmental condi-
tions. The evaluation of large-scale state estimates
provides an assessment of how well models simulate
contemporary TSC stocks within the ABoVE domain.
Simulation differencing (e.g. SG2 minus SG1; table S1)
allows us to quantify and compare the influence of
individual environmental forcing factors on model
estimates of soil carbon stock size and inputs (through
net primary production or NPP) and losses (through
heterotrophic respiration or Rh) over the 110-yr
simulation period in the ABoVE Domain. Finally, we
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test each model’s relationship of transient soil carbon
loss as a function of both temperature and soil
moisture across a range of temperature and soil
moisture values. The benefit of ‘functional bench-
marks’ is that they can provide more insight into the
potential predictive power of a model (Hoffman et al
2017, Hall et al 2019) rather than a model’s estimate of
soil carbon stocks or Rh alone. The use of functional
benchmarks in land carbon modeling is promising;
and as long as the observations are concurrent (taken
at the same location in space and time), enables the
extrapolation of observations beyond sparse study
sites (Fisher et al 2018). Functional relationships have
been used to evaluate simulated above-ground pro-
ductivity with changing evapotranspiration, and ulti-
mately led to a 50% reduction in model spread in
estimates of future productivity (Mystakidis et al
2016).

3.2.Model benchmarking

3.2.1. Gridded observationally-based state and flux
products

In this study, the size of model-derived soil carbon
stocks in the ABoVE Domain are evaluated against
estimates from the northern circumpolar soil carbon
database (NCSCD) (Hugelius et al 2013a, 2013b). The
NCSCD is an observationally-constrained database of
organic soil carbon storage in the northern circumpo-
lar permafrost region, and contains estimates of
contemporary (e.g. year ~2000) soil carbon stocks at
multiple gridded spatial resolutions to a depth of 3 m
(Hugelius et al 2013a). Models represent soil C
dynamics to depths ranging from 0.3 to 3 m, with
some models having variable soil carbon depth across
gridcells (table S2). However, models did not report
soil carbon output within specified depth ranges (e.g.
0-1 m, 1-2 m depth). Therefore, to maintain consis-
tency with published datasets and other model-data
comparisons (e.g. Todd-Brown et al 2013, Tian et al
2015, Koven et al 2017), we assume simulated soil
carbon is contained within the top 1 meter and we use
the 0.5° gridded NCSCD product of soil carbon from 0
to 1 m depth, clipped to the ABoVE Domain. Both the
modeled and NCSCD estimates of soil carbon are
aggregated spatially over the full domain using area-
weighting. A significant portion of the ABoVE domain
is covered by continuous and discontinuous perma-
frost. Although there are increasing efforts to improve
process representation in models (Luo et al 2015),
peatlands and permafrost carbon dynamics are not
explicitly included in many global scale land carbon
and Earth system models (Limpens et al 2008, Koven
et al 2013a, Tian et al 2015). Therefore, we aggregate
soil carbon stocks over: (1) the full ABoVE domain; (2)
permafrost/peatland dominated soils; and (3) non-
permafrost-peatland soils. We define permafrost and
peatland regions as those regions covered by 50% or
greater histels, histosols, gelisols, or orthel soil classes
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based on the thematic classification in the NCSCD
database (figure S2). We designate non-permafrost
regions as those cells dominated (50% or greater) by
other soils.

In addition to TSC, we also evaluate the magnitude
of simulated component fluxes leading to the carbon
input (i.e. NPP) and loss (i.e. Rh) from soil carbon
pools against available, observationally-based, gridded
data products. We use annual estimates from the
MODIS NPP product (Zhao et al 2005, Zhao and Run-
ning 2010) and annual Rh estimates from a study by
Hashimoto et al (2015). NPP is derived from Collec-
tion 5.5 of the MOD17 dataset (Zhao et al 2005) avail-
able from the Numerical Terradynamic Simulation
Group (NTSG) (http://ntsg.umt.edu). The NPP was
re-projected from 1 km resolution to a 0.5° grid to be
consistent with modeled output. Rh estimates, taken
from Hashimoto et al (2015), are derived from soil
respiration  (Rs) data (Bond-Lamberty and
Thomson 2010a), an updated climate-driven model of
Rs (Raich and Potter 1995, Raich et al 2002), and an
empirical relationship based on meta-analysis (Bond-
Lamberty et al 2004). We compare annual model esti-
mates to these two data sets over the time period
between 2000 and 2010, which is coincident with both
observationally-constrained gridded products. Both
the modeled and observationally-derived flux esti-
mates are also aggregated spatially over the full ABoVE
Domain using area-weighting.

3.2.2. Derived benchmarks

We evaluate the emergent or integrative behavior of
soil carbon stocks and losses by computing an inferred
soil carbon residence time for each model. We use the
term ‘inferred’ here to acknowledge that each model
has a different soil carbon pool structure (table S2).
The inferred soil carbon residence time represents an
approximate integrated turnover time for each model
across its various soil carbon pools. At steady-state,
carbon losses should equal inputs and the size of
carbon pools should be constant with time. In order to
calculate residence time, we assume quasi steady-
steady conditions in each decade of the simulations; a
similar approach has been employed by others (Jeong
et al 2018). The inferred quasi steady-state soil carbon
residence time for each decade and each model is
determined by the ratio of simulated decadal mean soil
carbon stocks to decadal mean Rh for each gridcell. To
reduce the impact of outliers, we use the median across
all land cells to compute the inferred residence time
for each model across the full ABoVE domain. Because
this inferred residence time is computed by decade, we
examine how simulated soil carbon turnover rates
change over the 110 year simulation period. Through
simulation differencing, we attribute changes in
inferred residence time to key environmental forcing
factors. To construct an observational constraint on
inferred soil carbon residence time for the last decade
of the simulations (i.e. 2000-2010), we use the gridded

4


http://www.ntsg.umt.edu/

10P Publishing

Environ. Res. Lett. 15 (2020) 025005

soil carbon stocks reported between 0 and 1 m by the
NCSCD, along with the gridded annual Rh from
Hashimoto et al (2015) using the same approach as
described for the models.

Spatial variability in soil or heterotrophic respira-
tion is modulated by differences in vegetation cover,
root distribution and depth, biological activity, temp-
erature, and variations in soil characteristics, includ-
ing soil moisture, texture, and geochemistry.
Evaluating model representation of many of these fac-
tors is difficult due to the lack of concurrent measure-
ments. In addition, models vary considerably in their
treatment (inclusion/exclusion) of many of these
effects. However, most models include climatic con-
trols (e.g. temperature and moisture) on soil carbon
decomposition. Therefore, we focus on observation-
informed functional benchmarks of soil carbon loss
with changing soil temperature and moisture to exam-
ine the modeled pathways to model endpoints. Mod-
els treat temperature and soil moisture effects
separately using independent scaling factors; therefore
it is appropriate to evaluate modeled functional
responses of respiration with temperature and soil
moisture separately. Field observations of soil respira-
tion afford a dynamic view of respiration in response
to changing environmental conditions including
temperature and soil moisture. Soil respiration (Rs) is
the product of both respiration by roots (part of Ra)
and microbial decomposition of soil organic matter
(Rh). However, Rs is not an output easily produced,
nor commonly simulated, by models (Fisher et al
2014a, Phillips et al 2017). Rather, most models report
the component fluxes Rh and Ra (which includes both
above- and below-ground maintenance respiration).
Here, we use direct measurements of Rs, soil temper-
ature, and soil moisture (reported as volumetric water
content) from both control and warming plots of
experimental warming studies synthesized by Carey
et al (2016a, 2016b) to provide observationally-based
functional response curves of respiration with both
temperature and soil moisture. We focus on observa-
tions from boreal forests and northern shrubland eco-
systems, which include 810 individual data points
from seven sites (latitude range 46.7°-63.9° N; Carey
et al 2016a, 2016b). We chose the dataset synthesized
by Carey et al (20162, 2016b) for two key reasons: (1) it
includes measurements in key ecosystem types found
within the ABoVE domain; and (2) the measurements
of temperature, moisture, and respiration are con-
current (i.e. taken at the same location in space and
nearly simultaneously).

3.2.3. Respiration—temperature response

To create functional relationships of Rh with temper-
ature for each model, we first construct Rh versus
temperature curves for each grid cell within the
ABOVE domain using monthly Rh output for each
model from the climate only simulation (SG1; table
S1) for the time period between 2000 and 2010. Most
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models did not report soil temperature, and the
number of soil layers and the thickness of each soil
layer varies considerably across models (table S2).
Therefore, we use monthly near-surface air temper-
ature taken from the MsTMIP environmental driver
data (Wei et al 2014a) and derived from the CRU-
NCEP climate re-analysis data as a proxy for soil
temperature. Since the Carey et al (2016b) dataset is
not representative of the entire ABoVE domain (i.e.
does not include regions underlain with continuous
permafrost; or such tundra or taiga ecosystems) and
only reports respiration values at temperatures above
freezing, we restrict the comparison to modeled
respiration values associated with temperatures
greater than 0 °C and in non-permafrost or peatland
dominated grid cells in boreal and northern shrubland
ecosystem regions as defined by the MsTMIP environ-
mental driver data; (Wei et al 2014a). To isolate the
shape of the functional response curve and factor out
the influence of modeled soil carbon stocks size on the
magnitude of respiration, we normalize the respira-
tion response of both modeled and observations by
dividing by the magnitude of respiration at 0 °C. We fit
an exponential model to respiration as a function of
temperature over the temperature range of 0 °C-20 °C
using equation (1), where Ry is respiration at a given
temperature (T) and 7y, and , are fitted parameters

Ry =~ x expT, (@))

We extract an inferred temperature sensitivity of
respiration, defined as the increase in soil respiration
per 10°C in temperature (or Q10), for both the
modeled and observed curves for boreal forests and
northern shrubland (separately and combined) using
equation (2)

Qo = exp'®*. (2)

We compute the median ‘inferred” Q10 for each
model and compare it to the observationally-con-
strained values derived from Carey et al
(2016a, 2016b). The term inferred Q10 is used here to
acknowledge that we are using air temperature rather
than soil temperature in equation (1), and that the
respiration versus temperature curves include non-
temperature factors (such as soil moisture) that could
influence respiration and by extension the inferred
Q10 values for each model.

3.2.4. Respiration—soil moisture response

We use the soil respiration and soil moisture measure-
ments reported by Carey et al (2016a, 2016b) to
evaluate modeled functional response of respiration
with changing soil moisture conditions. However,
evaluating functional response curves of respiration
with soil moisture presents several challenges. First,
soil moisture is a prognostic variable rather than
prescribed input in models. As such, it depends on
model-specific treatments of evaporation, runoff, and
soil parameters such as porosity and soil layer depth
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Figure 1. Normalized difference between modeled and observationally-constrained net flux into (net primary productivity, NPP) and
out of (heterotrophic respiration, Rh) soil carbon, along with net soil carbon stocks and apparent soil carbon residence time (ResT)
across the ABoVE domain for the decade 2000-2010. Apparent soil carbon residence time is calculated as the ratio of total soil carbon
stocks to Rh. Refer to table 1 for magnitude of individual model estimates.

(Koster et al 2009). Second, only five (CENTURY,
CLM, CLM4VIC, LPJ-wsl, and TEM6) of the eleven
models reported soil moisture. Therefore, the analysis
is limited to only a subset of the MsTMIP ensemble.
Third, models typically report soil moisture in units of
mass per volume of soil or kg m>. To compare with
the observational constraint, we convert the soil
moisture reported by models into volumetric water
(VWC)—a dimensionless quantity—by
dividing reported soil moisture by the density of water
(1000 kg m ) and the thickness of each model’s top
soil layer (in meters). For the model TEM6, which has
variable soil layer thickness by grid cell, we used the
TEMG6’s reported active layer thickness as an estimate
of the thickness of the upper most soil layer in the
model.

The influence of soil moisture on Rs is more com-
plex than with temperature (Tang and Baldoc-
chi 2005). Respiration tends to increase with
increasing soil moisture until some critical soil moist-

content

ure value is reached. Once the soil moisture exceeds
this optimal value, respiration tends to decrease within
further increases in soil moisture (Tang and Baldoc-
chi 2005). We are interested in comparing this optimal
volumetric water content across models and between
models and observations. To do so, we extracted grid-
cell monthly Rh and derived VWC for the last decade
of simulations (2000-2010) for the climate-only simu-
lation (SG1). We then bin respiration by VWG, calcu-
late the median Rh per bin, and normalized the
respiration values by the maximum median Rh across
all bins. The same process is followed to construct a

respiration with VWC curve based on observational
data for Carey et al (2016a, 2016b) using measure-
ments from control-only plots, as well as both control
and warming plots. We varied the bin width to assess
the impact of bin width choice on the analysis. To be
consistent with the observational data and the respira-
tion-temperature analysis described above, we restric-
ted the analysis to gridcells in boreal and northern
shrubland ecosystems and in non-permafrost or peat-
land dominated regions.

4. Results and discussion

Models exhibit an order of magnitude difference in
estimates of current TSC stocks within the ABoVE
domain (table 1 and figures S4, S5). The observation-
ally-based estimate of soil carbon from the NCSCD
falls within the spread of model results (table 1).
However, model performance against the NCSCD
benchmark is relatively poor, with over half of the
models underpredicted or overpredicting by more
than 50 PgC the amount of soil carbon stored within
the top 1 m of soil across the full ABoVE domain.
Disagreement between the models and the NCSCD is
greatest at the North Slope, the Mackensie basin, and
the Hudson Bay peatlands (figures 2(a)—(c), S5), where
carbon burial rates by cryoturbation or peat develop-
ment are the highest (Tarnocai et al 2009). For most
models in the ensemble, performance against the
NCSCD improves significantly if permafrost and peat-
land dominated regions are removed (figures 1 and S4
and S6). This is not surprising, since most models do
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Figure 2. MsTMIP model ensemble median (MEM) (A) total soil carbon inkg C m~2, (D) heterotrophic respiration, Rh (gC m?
month "), and (G) soil carbon residence time (years), alongside observationally-based estimates of the same quantities based on (B)
the Northern Circumpolar Soil Carbon Database (NCSCD), (E) Hashimoto et al (2015), and (H) a derived inferred soil carbon
residence time computed by the ratio of NCSDC soil carbon stocks to the Hashimoto Rh. The percent bias of MEM to observational
constraint for each quantity are shown to right (C), (F), (I).

not explicitly model peatlands (Luo et al 2016). Also,
the prescribed vegetation cover provided to modelers
as part of the MSTMIP protocol did not explicitly
include wetland and peatland land cover types (Wei
et al 2014b, Tian et al 2015). In order to capture the
frozen-soil carbon dynamics ubiquitous to permafrost
regions, models need to include vertically resolved soil
carbon pools. This result it also echoed by other
studies (e.g. Koven etal 2013b, Luo eral 2016, McGuire
et al 2018). Most models have multiple layers to
simulate soil temperature and moisture. However,
many have only a single, dimensionless soil carbon
model representing all the carbon within the soil
column (table S2). Even if the model partitions carbon
into multiple pools, a dimensionless soil carbon model
cannot capture the vertical mixing of frozen and
thawed soil, or the vertical heterogeneity of organic
matter within the soil column. To simulate the
accumulation of carbon within permafrost, the model
must also include burial by sediment and vertical
mixing by cryoturbation (Koven et al 2013b, Burke
et al 2017).

In addition to most models underestimating the
size of TSC stocks across the full ABoOVE domain, a
majority of models (8 out of 11) also underestimate the
magnitude of contemporary (i.e. 2000-2010) ecosys-
tem fluxes (Rh and NPP) compared to

observationally-based constraints (figure 1 and table 1;
figures S7, S8). Since most models assume first-order
reaction kinetics for soil decomposition, the magni-
tude of a given model’s initial TSC stocks controls the
magnitude of Rh. We see this in comparison with
observational constraints, where underestimation of
Rh (and soil carbon residence time) is greatest at
higher latitudes (North Slope, the Mackensie basin,
and the Hudson Bay peatlands) where models also
tend to underestimate overall TSC stock size
(figures 2(c), (f), (i)). Overall, model underestimation
of Rh leads to inferred soil carbon residence times
(ResT) that are longer than observations would sug-
gest (figures 1 and 2(i)).

We find that the magnitude of carbon stocks at
steady-state is the prime driver of carbon stock size at
the end of the simulation period (figures 3(a), (b); table
S$3). This is true not only for carbon stocks, but also key
ecosystems fluxes (figures 3(c), (d)). Almost all land
carbon models, assume steady-state conditions prior
to the start of transient simulations. While some mod-
els initialize carbon pools with observed biomass at the
start of simulations (Schaefer er al 2008), without also
optimizing model parameters, models will drift back
towards their internal steady-state condition. The
modeling community is starting to recognize the
importance of steady-state conditions on model
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Figure 3. (A)—~(D) Steady-state (SS) versus decadal mean condition in 2000-2010, and (E)—(H) the relationship between steady-state
conditions for total soil carbon (TSC), total live biomass (TLB), heterotrophic respiration (Rh), and net primary productivity (NPP)
across the MsTMIP ensemble (black circles represent individual model).

performance (Tian et al 2015, Luo et al 2017, Shi et al
2018), however it is clear that more work is needed.

The magnitude of steady-state TSC stocks is
strongly driven by simulated above ground productiv-
ity or GPP, and both productivity and TSC drive chan-
ges the magnitude of respiration losses (figures 3(e)—
(h)). GPP represents the primary carbon input into
ecosystems and any bias in simulated GPP or NPP
(defined as GPP—Ra) propagates through the model to
produce bias in both simulated carbon stocks and
respiration (Schaefer et al 2012). For example, models
with lower NPP than MODIS also estimate lower soil
carbon stocks compare to the NCSCD estimate
(table 1; figure 1). Evaluating simulated GPP is beyond
the scope of this analysis, but Schaefer et al (2012)
found that improved representation of light use effi-
ciency, drought stress, and low temperature inhibition
improve simulated GPP.

The influence of steady-state conditions on pool
and flux size overwhelms the effect of environmental
forcing factors in terms of the spread or variability in
model estimates of both stocks and fluxes over the
110-simulation period of the MsTMIP runs (figure 4).
However, models do indicate an acceleration of soil
carbon cycling within the ABoVE domain through a
decrease in inferred soil carbon residence time and an
increase in the magnitude (i.e. rate) of NPP and Rh

relative to 1901 conditions (figure 4). Across the
ensemble, the primary driver for decreases in soil car-
bon residence time (and increase in flux magnitude) is
climate, followed by rising atmospheric CO,; how-
ever, the relative contribution of each varies con-
siderably across models (figure 4).

While the relative magnitude of soil carbon losses
through Rh across models is strongly tied to the rate of
productivity and the size of soil carbon stocks of a
given model, a model’s sensitivity to environmental
forcing factors (e.g. temperature) should control the
rate of carbon turnover changes (i.e. acceleration) with
changing environmental conditions. We evaluated
model sensitivity of soil carbon losses with changing
temperature by extracted an inferred Q10 for each
model for the two major ecosystem types within the
ABOVE domain (figure 5). Two groups of models
emerge—those with an inferred Q10 that is too low
compared to the observations and those with an infer-
red Q10 that is comparable to observations (figure 5).
With the exception of CENTURY, using air temper-
ature as opposed to soil temperature to derive the
inferred Q10 does not have a significant impact on the
results (figure S9). CENTURY reports soil tempera-
tures that are several degrees warmer that air tempera-
tures in the region and significantly warmer than soil
temperatures reported by other models (figures S10,
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S11). Given that CENTURY weights soil temperatures
by day length (Parton 1984, Parton et al 1992), it is
possible that high-latitude summer temperature is
overestimated in the model and that this gives rise to
the large differences seen here. The same analysis was
performed by ecosystem type (boreal forest versus
northern shrublands; figure S12). Most models apply a
consistent or constant Q10 regardless of ecosystem
type, and this appears to be the case for most models
within the MsTMIP ensemble (figure S12). However,
the inferred Q10 derived from the observational con-
straint is varies between boreal forests and northern
shrublands, suggesting that perhaps ecosystem specific
Q10s are more appropriate. The lack of observations
prevented us from statistically evaluating respiration
response below freezing. In frozen soils, microbial
activity and associated respiration becomes limited to
thin water films surrounding fine soil particles (Schae-
fer and Jafarov 2016). However, we do know that
respiration decreases with temperature and effectively
ceases below —8 °C (Mikan et al 2002). However, we
found that most models show small, but persistent
respiration at temperatures below freezing (not
shown). To improve simulated respiration in frozen
soil, models need to account for thin water films and
reduce respiration to near zero at about —8 °C.
Interestingly, models that perform better against
observational constraints of model endpoints (e.g. soil
carbon stocks, component fluxes), do not necessarily
perform better against observational constraints on

pathways to those endpoints (i.e. functional response
of respiration versus temperature). In fact, the reverse
tends to be true. Models that show weaker sensitivity
of Rh to temperature (figure 5) tend to perform better
against observational constraints in terms of their esti-
mated soil carbon stock and flux magnitudes
(figure 1). This suggests that models may be getting the
right endpoints, but for the wrong reasons. It could
also mean that the observational constraints them-
selves are insufficient for properly assessing model
performance.

Consistent with observations, models tend to
show an increase in respiration with soil moisture up
to an optimal VWC. Past this optimal value, further
increases in soil moisture lead to a decline in the
amount of belowground carbon respired (figures S13,
S14). The optimal VWC where maximum respiration
occurred varies between models in the ensemble, but
appears consistent with observations (figure 6) when
using only control plots. When including both control
and warming plots in the observational constraint, the
uncertainty on the optimal VWC at maximum
respiration narrows slightly (figure 6), leaving several
models with either an optimal VWC lower (TEM6) or
higher (LPJ-wsl, CLMA4VIC) than observations
suggest.
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Figure 5. Functional response of simulated respiration with changing air temperature. (Top) Median normalized respiration with
temperature extracted from gridcell response curves using monthly heterotrophic respiration (Rh) and air temperature for each
model in the ensemble. Compared to similar curve obtained from an observational constraint taken from soil respiration
measurements taken from control-only plots and both control and warming plots at warming experiments sites in Boreal and
Northern Shrubland ecosystems (Carey et al 2016a, 2016b). (bottom) the inferred Q10 for each model based on heterotrophic
respiration (Rh) as a function of temperature relationship shown in (A). Black circles represent the median inferred Q10 across all land
cells within the ABoVE domain for Boreal and Northern Shrubland ecosystem in non-permafrost and peatland dominated regions.
Error bars represent the spread (interquartile range) in inferred Q10 values across gridcells. Red circle and error bars show the inferred
Q10 from control-only (filled circle) and both control and warming (open circle) sites at warming experiments reported by Carey et al
(2016a,2016b).

5. Conclusions

The results from this study suggest three potential

pathways to improving simulated soil carbon
dynamics, particularly in the ABR, that encompass
both modeled endpoints and the pathways to those
endpoints: (1) improving steady-state conditions in
models; (2) using functional benchmarks to constrain
model sensitivity to key environmental forcing factors;
and (3) including vertically resolved soil biogeochem-
istry to better simulate soil carbon dynamics particu-

larly in permafrost regions.

5.1. Improving steady-state initial conditions
(endpoint)

To improve simulated steady-state soil carbon pool
size, models need to improve simulated GPP. The
initial, steady state pool size determines the magnitude
of carbon stocks and respiration throughout the
110 year simulation, overwhelming all other factors.
One can constrain initial carbon pools using observed
carbon stocks (Schaefer et al 2008). However, without
change a model’s parameterization of GPP, pools and
fluxes will rapidly drift back towards the model’s own
internal steady-state condition. Improving the repre-
sentation of light use efficiency, drought stress, and
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low temperature inhibition will improve simulated
GPP (Schaefer et al 2012), and will thus improve the
magnitude of simulated carbon stocks and respiration.

5.2. Improving model response to environmental
forcing (pathway)

Uncertainty in model response to key drivers (e.g.
climate warming) represents a major weakness in
future carbon cycle and climate projections (Friedling-
stein ef al 2014, Huntzinger et al 2017). Several of the
models in this study show temperature sensitivities, or
Q10 values, that are half of observed. This suggests that
modelers need to revisit their Q10 values and perhaps
employ biome specific Q10 values, particularly in
high-latitude. While models tend to reproduce the
shape of the observed soil moisture response within
uncertainty, we recognize the need for more data to
improve this benchmark. Models likely also need to
account for thin water films in frozen soils, but more
data is needed to create an appropriate benchmark for
models. Modelers and field-based scientists need to
work more closely to bridge the gap between data and
models and incorporate more functional benchmarks
into ongoing activities such as those included in
ABOVE (Fisher et al 2018).

5.3. Vertical resolved soil biogeochemistry
(pathway)

The spread in simulated stocks and fluxes appear
greatest in regions dominated by peat and permafrost,
suggesting models do not capture frozen-soil carbon
dynamics. A dimensionless carbon model cannot
differentiate between frozen and thawed organic

matter distributed vertically in the soil column. Also,
to simulate the accumulation on carbon in permafrost,
a model needs to include sedimentation and burial as
well as vertical mixing due to cryoturbation (Koven
et al 2013b, Luo et al 2016, McGuire et al 2018).
Vertically resolved soil carbon pools will likely also
improve simulated respiration in permafrost regions.

Modelers should simultaneously compare model
outputs against many benchmarks throughout devel-
opment to evaluate model endpoints and pathways. Of
course, we need more observations to improve model
benchmarks, such as respiration response below freez-
ing. Nevertheless, reducing overall model uncertainty
often results in the ‘balloon’ effect: squeezing in one
place causes it to pop out in another. Internal model
components have become so complex and inter-
connected that fixing one process often changes
another, seemingly unrelated process. Only with fre-
quent comparison of model outputs against multiple
benchmarks can we detect changes to these inter-
connected processes and reduce overall model
uncertainty.
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