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Abstract: The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station
(ECOSTRESS) provides remotely-sensed estimates of evapotranspiration at 70 m spatial resolution
every 1–5 days, sampling across the diurnal cycle. This study, in partnership with an operational water
management organization, the Eastern Municipal Water District (EMWD) in Southern California,
was conducted to evaluate estimates of evapotranspiration under ideal conditions where water is not
limited. EMWD regularly uses a ground-based network of reference evapotranspiration (ETo) from the
California Irrigation Management Information System (CIMIS); yet, there are gaps in spatial coverage
and questions of spatial representativeness and consistency. Space-based potential evapotranspiration
(PET) estimates, such as those from ECOSTRESS, provide consistent spatial coverage. We compared
ECOSTRESS ETo (estimated from PET) to CIMIS ETo at five CIMIS sites in Riverside County, California
from July 2018–June 2020. We found strong correlations between CIMIS ETo and ECOSTRESS ETo

across all five sites (R2 = 0.89, root mean square error (RMSE) = 0.11 mm hr−1). Both CIMIS and
ECOSTRESS ETo captured similar seasonal patterns through the study period as well as diurnal
variability. There were site-specific differences in the relationship between ECOSTRESS AND CIMIS,
in part due to spatial heterogeneity around the station site. Consequently, careful examination
of landscapes surrounding CIMIS sites must be considered in future comparisons. These results
indicate that ECOSTRESS successfully retrieves PET that is comparable to ground-based reference
ET, highlighting the potential for providing observation-driven guidance for irrigation management
across spatial scales.

Keywords: ECOSTRESS; CIMIS; potential evapotranspiration; reference evapotranspiration;
water use; California

1. Introduction

In 2015, more than 94% of California was in a state of severe drought that resulted in a state-wide
mandatory reduction on non-agricultural water use by 25% [1]. As a result of this extreme drought
period, there was an estimated 564,000 acres of fallowed farmland and impacts on the agricultural
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economy of California totaling USD 1.8 billion [2]. Extreme drought conditions are expected to worsen
due to global climate change [3], stressing the increasing importance on sustainable water management
and quantifying water availability and supply.

The Eastern Municipal Water District (EMWD) covers over 1437 km2 of California in Southwest
Riverside county. This area contains a population of 804,000, with EMWD servicing over 145,000 potable
water connections, 237,000 sewer connections and 433 recycled connections. EMWD provides water
for both urban and agricultural customers, including 74 agricultural customers with 110 recycled water
connections. Recycled water is a key part of EMWD’s water supply portfolio and is currently 100%
beneficially reused, with agricultural crop production consuming 67% of this supply. EMWD focuses
on responsible use and protection of the natural environment through groundwater management,
water use efficiency and various other sustainable practices. Approximately 75% of EMWD’s potable
water demand is supplied by imported water from the Metropolitan Water District of Southern
California through its Colorado River Aqueduct and its connections to the State Water Project.
Approximately 25% of EMWD’s potable water demand is supplied by EMWD groundwater wells.

EMWD has a tiered rate structure based on levels to encourage efficient water use by customer
groups and discourage wasteful behaviors. These tiers are applied to a water budget, which is calculated
to encourage efficient indoor and outdoor use: (1) the indoor water budget is based on the water volume
needed per person per day, (2) the outdoor budget is based on area of landscape, vegetation water
use estimated using daily evapotranspiration (ET), and a conservation factor. This outdoor budget
calculates actual daily ET, evaporation from the ground and other surfaces and transpiration from
plants (Figure 1), using reference evapotranspiration (ETo) estimates over well-watered standardized
pastures, from the California Irrigation Management Information System (CIMIS) weather stations,
adjusted by crop coefficients. The CIMIS network is a highly valuable source of information across
California, consisting of approximately 155 stations, providing local and highly dense measurements
and estimates of weather and reference evapotranspiration [1]. CIMIS provides total precipitation,
solar radiation, vapor pressure, air temperature, relative humidity, dew point, wind speed, and soil
temperature, as well as a derived hourly ETo (more frequent estimates are available but not used
here). In addition, EMWD uses Spatial CIMIS, which interpolates data from the CIMIS stations with
hourly visible National Oceanic and Atmospheric Administration (NOAA) Geostationary Operational
Environmental Satellite (GOES) data, especially with regard to incoming solar radiation, to extend ETo

estimated values from the stations to spatial daily ETo maps (2 km resolution) covering the entire state
of California [4]. Although GOES satellite data can provide enhancements and extend the estimates of
evapotranspiration [5,6] that are anchored by CIMIS stations [4], its resolution is still relatively coarse,
and the interpolation of many critical weather variables such as wind may lead to uncertainty in spatial
ETo for regional to statewide applications.

Evapotranspiration (ET) is a critical component of the hydrologic cycle and represents the greatest
data gap in understanding local conditions and demands on water [7]. ET can provide an indication of
the amount of consumptive water use from vegetated surfaces, i.e., transpiration, and water loss due to
evaporation from water bodies, soils and other surfaces. In addition to ET, potential evapotranspiration
(PET) can be used to characterize ET under conditions where water is not limited [8]. This variable
can provide insight into atmospheric demands on water and help assess drought conditions. Further,
examining the ratio of actual ET and PET can help assess the degree to which a region is water-stressed.
This is also known as the Evaporative Stress Index (ESI) [9,10] and has been used as an early warning
of drought onset [10].

This study is the first to focus on potential evapotranspiration (PET) from the ECOsystem
Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), a spaceborne instrument
launched in June 2018, which acquires thermal data from the International Space Station every 1–5 days
(depending on location) at 70 m spatial resolution. Previous work investigating PET derived from
other space-based measurements (including NOAA-14 and MODIS) include those applied in the
Great Plains [11] and across AmeriFLUX sites in the continental United States [12] at coarser spatial
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resolutions (1 km). This study is envisioned as the first evaluation of ECOSTRESS PET as well as the first
step towards leveraging ECOSTRESS PET for urban water management. To address this objective, we
examined ECOSTRESS PET relative to reference ET (ETo) estimates derived from ground-based CIMIS
weather station data through direct comparisons of seasonal patterns and diurnal cycle. The study
period spans the full ECOSTRESS data record available at the time of study, from July 2018–June 2020.
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by Eastern Municipal Water District in Southwest Riverside County, CA. Black triangles represent
155 CIMIS stations in California; red circles represent the stations used in this study.

2. Methods

2.1. CIMIS ETo

CIMIS data [1] were downloaded for five stations located in the EMWD area of interest, based in
Riverside County in Southern California (Figure 1). These stations measure a suite of meteorological
parameters, including solar radiation, air temperature, and relative humidity from which ETo is derived
and made available. This study utilizes the CIMIS ETo hourly dataset acquired from the period of
15 July 2018 to 10 June 2020. This period corresponds with the timeframe during which ECOSTRESS
has been acquiring data.

The hourly ETo data from CIMIS were derived from a modified Penman equation [13], which is
as follows,

ETo = c
[

∆
∆ + γ

(Rs (1 − α) − Rb) +
γ

∆ + γ
f u (ea − ed)

]
(1)

c = adjustment factor (crop coefficient) (unitless);
∆ = slope of saturated vapor pressure at mean air temperature (mbar/degrees C);
ea = saturated vapor pressure at mean air temperature (mbar);
ed = actual vapor pressure (mbar);
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fu = wind function (km/day);
Rs = solar radiation (mm/day);
Rb = back radiation (mm/day);
γ = psychrometric constant (mbar/degrees C);
α = albedo (unitless).

This equation [14] calculates ETo using a modified version of the Penman–Monteith equation,
driven by meteorology and the fixed parameters associated with the standardized reference crop,
including stomatal and surface resistance, albedo, and height of vegetation. This hypothetical reference
crop assumes full shading of the ground, well-watered conditions, and is typically used to represent
short green vegetation such as grass or alfalfa. The meteorological input data were measured by
CIMIS weather stations, including incoming solar radiation, air temperature, vapor pressure, relative
humidity, and wind speed. To inform water demand for crops in the microclimate and under available
radiation, the adjustment factor or crop coefficient is applied and varies for each crop type, typically
based on empirical data from field measurements.

Although designed as well-maintained pasture sites, many of the CIMIS locations exhibit
substantial land cover heterogeneity. Figure 2 provides a snapshot of this heterogeneity, with Station
62—Temecula displaying at least two additional land cover types in addition to the reference field,
including water stations and areas with trees. Station 179—Winchester, in addition to the reference
field, also shows areas of bare dirt and road. Station 237—Temecula East III is also surrounded by
low lying shrubs and bare dirt. Station 239—Hemet location also includes bare dirt, paved road,
and different vegetation cover types. Lastly, Station 240—Perris-Menifee shows the reference site
surrounded by bare dirt. The site-to-site differences and land cover heterogeneity is taken into account
in this study by applying a site-specific calibration, which will be discussed in a following section.Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 13 
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heterogeneous environments. (A) Station 239/Hemet; (B) Station 240/Perris–Menifee; (C) Station
179/Winchester; (D) Station 62/Temecula; (E) Station 237/Temecula East III.

2.2. ECOSTRESS PET

ECOSTRESS is a thermal radiometer that measures thermal infrared radiation (TIR) in five bands
ranging from wavelengths of 8 to 12.5 µm and an additional band centered at 1.6 µm for geolocation [2].
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Data products most pertinent to this study include the ECOSTRESS Level 3 Evapotranspiration
generated using the Priestley–Taylor JPL algorithm [15] and the Level 4 Evaporative Stress Index
(ratio of actual evapotranspiration/potential evapotranspiration), which also utilizes PT-JPL and for
which calculation of PET is an intermediate product [16,17].

From the Level 4 ESI Data Product, we extracted PET values for the site that came in units of
W/m2. As part of the ECOSTRESS ESI product, PET is derived from the Priestley and Taylor (1972) [18]
equation for calculating ET, which itself is a modified version of the Penman–Monteith (1965) [19]
equation. PET, defined below, was extracted as an interim data product from ECOSTRESS ESI:

PET =

[
α

∆
∆ + γ

Rn
]

(2)

where Rn represents net radiation, and α is the Priestley and Taylor coefficient, set at 1.26 assuming
the maximum rate of evapotranspiration. This equation does not include the parameterization of the
stomatal (rs) and aerodynamic resistance (ra) for a crop, which simplifies the equation. ECOSTRESS’
TIR contributes to the PET estimation through the net radiation. Actual ET estimates will approach
PET under ideal conditions in which water is not a limiting factor [16,20]. To relate PET in terms of
W/m2 to CIMIS ETo in terms of mm hr−1, the following conversion was applied:

PET (mm/hr) =
PET

(
W/m2

)
∗ 3600 s

hr ∗ 1000 mm
m

∆Hvap ∗ ρwater
(3)

where
∆Hvap(latent heat o f vaporization) = 2.45× 106 J/kg (4)

ρwater = 997 kg/m3 (5)

Sixty ECOSTRESS scenes, spanning from 15 July 2018 to 10 June 2020, were utilized in this study.
PET values were extracted from ECOSTRESS ESI pixels over the study area sites (Figure 1). There are
two major gaps in the data acquired by ECOSTRESS due to the loss of the primary and redundant
sides of the mass storage unit (MSU) from 29 September 2018 to 6 December 2018 and 14 March 2019
to 15 May 2019, respectively. ECOSTRESS data were acquired using the Land Processes Distributed
Active Archive Center (LP DAAC) Application for Extracting and Exploring Analysis Ready Samples
(AppEEARS) quick subsetting tool [3]. A request over the 5 CIMIS station locations was uploaded
to the AppEEARS tool and ECOSTRESS Level 4 Evaporative Stress Index was extracted for these
locations and over the ECOSTRESS record. ECOSTRESS PET is necessary for calculating ECOSTRESS
Evaporative Stress Index and was therefore available as a secondary product.

2.3. Analysis and Calibration of ECOSTRESS PET to CIMIS ETo

A calibration step was implemented in the matchup process to account for variability introduced
by spatial heterogeneity surrounding each CIMIS site; this was conducted on a site-by-site basis.
For each site consisting of N = 50–60, 50% of the samples were randomly selected as training data
and used to develop a regression relationship between CIMIS ETo and ECOSTRESS PET. This linear
relationship was used to calibrate ECOSTRESS PET, resulting in an ECOSTRESS ETo estimate:

ECOSTRESS calibrated ETo
[
mm hr−1

]
=

ECOSTRESS PET
[
mm hr−1

]
− b

m
(6)

The coefficients (b = intercept and m = slope) were determined by regressing ECOSTRESS PET to
CIMIS ETo at hourly time steps on a site-by-site basis. To evaluate the overall effect of a site-by-site
calibration, we pooled all ECOSTRESS ETo estimates and evaluated the resulting statistical performance
of regressing ECOSTRESS ETo to CIMIS ETo. Statistics including R2, root mean square error (RMSE),
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normalized root mean square error (nRMSE), and percent bias, were calculated based upon the
remaining data (N = 143). There was an improvement in R2 from 0.77 (pre-calibration) to 0.81 for
Station 62, which exhibited greater spatial heterogeneity than site Station 237, which showed a smaller
change in R2 = 0.89 to 0.90 (Figure 3). ECOSTRESS ETo was converted to hourly units and compared
with the nearest hourly match from CIMIS ETo.
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Figure 3. CIMIS sites (A,B) exhibit varying levels of spatial heterogeneity, with examples shown here.
Station 237, while showing paved areas, is largely vegetation and some bare dirt, whereas Station 62 is
within 50 m of a water tower. (C,D) exemplify the ECOsystem Spaceborne Thermal Radiometer
Experiment on Space Station (ECOSTRESS) potential evapotranspiration (PET) (pre-calibrated;
gray squares) and ETo (calibrated; blue circles) correlated to CIMIS reference evapotranspiration
(ETo). Stations 237 and 62 correspond with Figure 2A,B and Figure 2B,D respectively.

2.4. ECOSTRESS and CIMIS ETo Seasonal and Diurnal Time Series

Data were pooled from all sites for this portion of the study. ETo was visualized over the full
study period and ECOSTRESS data record (up until June 2020) to determine whether ECOSTRESS
ETo could capture recent seasonal scale variability and diurnal variability that were comparable to
those of CIMIS ETo. For recent seasonal variability, this was achieved by conducting weekly composite
comparisons for CIMIS ETo and ECOSTRESS ETo values, which were then plotted as a time series.
For diurnal variability, this study considers ETo at different times of day during a period identified in
the seasonal time series where ETo remained relatively stable (31 May 2019 to 12 July 2019). During
this period, mean values of ECOSTRESS ETo acquired at different times of the day were overlaid on
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the mean values of CIMIS ETo. Standard deviation from ECOSTRESS ETo acquisitions for each time of
day were determined as well.

3. Results

3.1. Matchups ECOSTRESS ETo and CIMIS ET

The correlation between matchup data (ECOSTRESS PET and CIMIS ETo) was statistically
significant (p < 0.01). After calibration, this study found an overall R2 of 0.89 (N = 143), an increase
from 0.80 (N = 142) (Figure 4) and an improvement in the RMSE from 0.20 to 0.10 mm hr−1 (Table 1).
Figure 4 depicts the regression of all points from all five stations. Table 1 summarizes changes in
statistics between ECOSTRESS PET and CIMIS ETo to ECOSTRESS ETo (calibrated) and CIMIS ETo.
Other changes include an 89% reduction in bias from 0.15 mm hr−1 to 0.016 mm hr−1 and a shift of
percent bias from 33% to 0%. The nRMSE was also improved from 20% to 11%.
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Figure 4. Linear regression was applied to the test data across all five stations (N = 143), with an overall
R2 of 0.89.

Table 1. Summary statistics for simple linear regression for ECOSTRESS PET (pre-calibrated)
and ECOSTRESS ETo (calibrated), demonstrating improvements in root mean square error (RMSE),
normalized root mean square error (nRMSE), and reduction in percent bias.

R2 MSE RMSE nRMSE Slope Intercept %Bias

ECOSTRESS PET 0.80 0.040 0.20 0.20 0.99 0.15 33%
ECOSTRESS ETo 0.89 0.011 0.10 0.11 1.0 0.016 0.0%

3.2. Seasonal Patterns from July 2018–June 2020

ETo maximums were observed during summer months (2018, 2019, 2020) and minimums were
observed in winter months, though the availability of data during winter months was much more
limited (spanning only 2019–2020). In general, this pattern corresponds with expected ETo seasonal
variability of well-watered crops that have a peak growing season during the summer and thus
increased ET during this period, and decreased ET during the winter (Figure 5).
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Figure 5. Seasonal time series using weekly composites of ECOSTRESS ETo (blue circles) and CIMIS
ETo (grey line).

3.3. Diurnal Patterns (31 May 2019–12 July 2019)

At 7:00 AM PT, there was an average CIMIS ETo value of 0.10 mm hr−1 and a continued increase
until a maximum average value of 0.84 mm hr−1 at midday (2:00 PM PT), at which point declines
in ETo were observed until 7:00 PM PT (0.087 mm hr−1) (Figure 6). Both ETo from ECOSTRESS and
CIMIS captured this pattern over the course of the day. ECOSTRESS ETo means ranged similarly
(0.13 mm hr−1) at 7:00 AM PT, peaking at 12:00 PM PT, 0.88 mm hr−1, with a standard deviation ranging
from 0.03 to 0.15 mm hr−1.
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4. Discussion

4.1. Sources of Uncertainty, Subpixel Contamination and Spatial Heterogeneity

One source of uncertainty was spatial heterogeneity surrounding the CIMIS stations, introduced
by mixed land cover and properties and observed in other studies examining PET over heterogeneous
areas [12]. This study adapted to these differences by calibrating ECOSTRESS PET to CIMIS ETo,
which allowed for a bias adjustment (Figure 2) and is reflected in Figure 3 and summarized in Table 1.
Future work may consider factoring land cover characteristics into optimal pixel selection within a
scene, particularly where mixed use (built and natural environment) is present. In many cases, the
size of the reference fields that the CIMIS stations represent are smaller than one ECOSTRESS pixel
(70 × 70 m), which can contribute to pixel contamination due to surrounding landscapes that affect the
estimations of PET, as shown in the site maps in Figure 2.

4.2. Differences in Spatial Scales and Changing Ground Conditions

One of the primary differences between ECOSTRESS and CIMIS are spatial sampling scales,
where ECOSTRESS samples every 1–5 days at 70 m spatial resolution, and CIMIS sites are acquiring
meteorological data at point-scale at well-watered plots with reference crop cover to ensure microclimate
conditions are driven by land surface characteristics. CIMIS ETo calculations are based off of mean
air temperature, net radiation, and wind measurements. In semi-arid regions, there is the potential
for readings to be inaccurate due to high magnitude of ground heat flux impacting longwave
radiation measurements, as well as strong biotic, or atmospherically decoupled, control over ET [12,21].
In addition, changes in field status and maintenance could influence the ETo estimates, particularly at
the CIMIS station scale. Furthermore, ECOSTRESS PET utilizes satellite estimates of albedo of the area
of interest from MODIS [21], which can vary depending on MODIS availability and can be influenced
by local albedo conditions of the field site. This study observed some range in statistics site-to-site,
which was likely due to spatial heterogeneity around each station (Figure 3). Note that Temecula East
III 237 has a more homogeneous footprint within the ECOSTRESS pixel with more chaparral and brush
coverage, whereas Temecula 62 has three different land covers present with a water storage unit laden
with pavement and concrete, a dark-colored dirt plot with trees, and a light-colored dirt plot with
trees. A visual inspection of historic Google Earth images for the sites showed substantial changes
in land cover conditions over our period of study, such that selection of consistently homogenous
reference sites over Riverside County was not immediately feasible. Despite this variability, statistics
across all five sites indicated a strong correlation between the two datasets (R2 = 0.89 after calibration,
and R2 = 0.80 prior to calibration). The Normalized Difference Vegetation Index (NDVI), defined as the
ratio of reflected near-infrared light to reflected visible light, is used as an indicator of plant greenness
and health, and could potentially be used to help account for recent conditions of the reference site in
future work.

4.3. Differences in PET Models

There are a variety of methods to calculate potential evapotranspiration; however, the three
most popular methods are the Thornthwaite (temperature-based), Priestley–Taylor (radiation-based)
and Penman–Monteith (combination-based) models [8]. Of these three methods, Priestley–Taylor and
Penman–Monteith are most similar to one another because the dominant term in the PET calculation
is the net radiation (Rn) term, relative to local variables such as air temperature, wind speed and
vapor pressure deficit [8]. In a comparison study of potential evaporation across the globe with
eddy covariance sites, Palmer et al. [20] and Maes et al. [22] reported that a Priestly–Taylor model
with a biome specified albedo consistently performed better than Penman, Penman–Monteith, or any
temperature-based models. This difference may in part be due to how the Penman–Monteith models
utilize a constant for unstressed stomatal conductance [22]. The Priestley–Taylor method contains an
implicit assumption of the wind speed effects on PET being addressed by the albedo term [22], which
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could also introduce uncertainty in PET estimates. However, it has been shown in other studies that the
vast spatial heterogeneity of stomatal resistance and other small-scale Penman–Monteith factors may
be adequately represented by the Priestley–Taylor method at larger scales as land surface complexity
increases greatly [11,23,24]. Overall, there seems to be agreement that the Priestley–Taylor method is
well suited for large-scale remote sensing studies, and further, demonstrates satisfactory performance
when compared to other PET estimation models.

In this study, ECOSTRESS ETo values were comparable to ground-based estimates of ETo (R2 = 0.89,
RMSE = 0.10 mm hr−1). Similarly, in 2008, one study evaluated a MODIS-based Priestly–Taylor PET
product evaluation at the point-scale compared to daily PET calculations from MODIS to four FLUXNET
eddy covariance station locations [12]. The variable sampling at the daily temporal scale with modeled
and observed PET used a modified Priestley–Taylor parameterization to improve their results over
observations across the year of 1997 (R2 = 0.90) [11]. Further, He et al. [25] employed a satellite-based
surface energy balance approach (METRIC) to compare field scale crop ETo to actual ET (R2 = 0.74;
RMSE = 0.14 mm day−1) over an almond orchard using Landsat observations [25], which matched
closely for the year of 2004 (R2 = 0.87; RMSE = 1.81 mm day−1; bias = −0.70 mm day−1). With respect
to temporal sampling, ECOSTRESS PET has five times the observations in half the time window and a
better agreement of the data across the year (Figure 6), falling within the min/max range of CIMIS
ETo values acquired over the same period. This study and its subsequent results have important
implications for water utility districts, individual farmers, and others in the water resource management
space. While R2 values appeared to be comparable across these studies, it should be noted that this
work was examining ECOSTRESS PET relative to CIMIS ETo, not ground-based estimates of PET,
as the ultimate goal was to demonstrate comparable estimates of ECOSTRESS PET to support future
consideration of this product as an enhancement of existing CIMIS ETo or spatial CIMIS ETo estimates.

4.4. Applications of Water Management

On average, 53% of all potable water used at residential properties in California is used to irrigate
ornamental landscapes [26]. About 47% of all homes are over-irrigating, which can be due to irrigation
system inefficiencies and failure to change watering schedules to match actual evapotranspiration
demands. EMWD is exploring methods and new datasets, such as ECOSTRESS, to better understand
consumptive water needs, with the goal of improving water conservation and efficiency in water
usages. The backdrop of these goals is the need to meet the future water demands of a growing
population, reducing wasted water and energy caused by excessive landscape irrigation, and better
communicating to customers the actual amount of water needed to maintain healthy plant material
at their properties. These progressive methods will help in combatting the effects of anthropogenic
warming, which is expected to intensify drought severity in California [3].

Derived primarily from remote sensing observations with moderate resolution, PET can potentially
serve as a proxy for spatially explicit and time varying water demand estimates, and thus overcome
the uncertainties due to spatial interpolation of CIMIS ETo. This validation study provides the first
step towards this by evaluating ECOSTRESS PET relative to ETo from CIMIS sites, with greater spatial
coverage, better spatial resolution than spatial CIMIS (2 km) [4] and comparable estimates in value.
While we note various sources of variability in ECOSTRESS PET and CIMIS ETo, minor calibration
of these measurements can be implemented to adjust for site-to-site biases that may arise, likely
due to uncertainties as described previously. It is important to note that while ECOSTRESS and
many other space-based assessments of ET provide good spatial coverage, CIMIS ETo provides high
frequency temporal measurements, demonstrating the high complementarity between the two datasets.
Furthermore, ECOSTRESS is unique in its variable overpass and sampling times, which can provide
insights into ET conditions across broader spatial scales and at different times of the day. Enhanced
evapotranspiration metrics can improve how Californians use water during drought conditions and
even aid in monitoring drought. Creating a higher resolution ET data product for relevant stakeholders
will be vital in assessing vegetation health, improving irrigation methods, and conserving water.
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5. Conclusions

Results show good agreement between ECOSTRESS ETo and CIMIS ETo (R2 =0.89, RMSE = 0.11 mm hr-1)
with possibilities to strengthen this agreement by considering sources of spatial variability. Primary
sources of uncertainty include landscape heterogeneity among the reference station sites, differences in
spatial footprints of ECOSTRESS pixels and CIMIS stations, CIMIS station discrepancies in readings due
to ground conditions (changing mean air temperature due to advection), and inherent differences arising
from the different models being implemented for estimation of ETo and PET. Future considerations
may consider use of NDVI to help locate nearby homogeneous sites to help optimize pixel selection
for ECOSTRESS. However, these data show that ECOSTRESS PET is comparable to CIMIS reference
ET, across spatial scales enabled by ECOSTRESS measurements. This has significant implications for
water utilities such as EMWD, agricultural managers, and other water management entities across
the state, representing an opportunity to supplement CIMIS ETo site estimates with an independent
estimate of PET conditions with greater spatial coverage at 70 m spatial resolution.
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