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We developed a robust method to reconstruct a digital terrain model (DTM) by classify-
ing raw light detection and ranging (lidar) points into ground and non-ground points
with the help of the Progressive Terrain Fragmentation (PTF) method. PTF applies
iterative steps for searching terrain points by approximating terrain surfaces using the
triangulated irregular network (TIN) model constructed from ground return points.
Instead of using absolute slope or offset distance, PTF uses orthogonal distance and
relative angle between a triangular plane and a node. Due to this characteristic, PTF
was able to classify raw lidar points into ground and non-ground points on a heteroge-
neous steep forested area with a small number of parameters. We tested this approach by
using a lidar data set covering a part of the Angelo Coast Range Reserve on the South
Fork of the Eel River in Mendocino County, California, USA. We used systematically
positioned 16 reference plots to determine the optimal parameter that can be used to
separate ground and non-ground points from raw lidar point clouds. We tested at dif-
ferent admissible hillslope angles (15◦ to 20◦), and the minimum total error (1.6%) was
acquired at the angle value of 18◦. Because classifying raw lidar points into ground and
non-ground points is the basis for other types of analyses, we expect that our study will
provide more accurate terrain approximation and contribute to improving the extraction
of other forest biophysical parameters.

1. Introduction

Using airborne light detection and ranging (lidar) for topographic mapping is rapidly
becoming standard practice in geo-spatial science because lidar is one of the most effec-
tive methods for extracting three-dimensional (3D) shapes in a terrestrial environment
(Hodgson and Bresnahan 2004; Liu 2008). Lidar is used in hydrological modelling, coastal
management, urban planning, landscape ecology, and forest management (Lefsky et al.
2002; Lim et al. 2003; Wulder et al. 2008). Compared with traditional airborne data
(such as optical images and multispectral images), which typically provide only horizon-
tal information, lidar directly provides both horizontal and vertical information (Lim et al.
2003). Subsequently, lidar is very effective for quantitative assessment of forest parameters
because it is able to directly depict 3D object shapes by capturing high-density and high-
accuracy 3D point clouds in object space (Habib et al. 2005). Because the lidar beam has the
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7294 J.-H. Lee et al.

ability to pass through gaps in foliage and reflect from different parts of a forest canopy,
several studies have used lidar data to extract forest biophysical parameters such as tree
height, timber volume, and forest biomass over extensive forested areas (Asner et al. 2011;
Clark et al. 2011; Jensen et al. 2006; Lee and Lucas 2007; Næsset et al. 2004; Popescu
2007; Wulder et al. 2008). Forest measurement by airborne laser scanning requires a dig-
ital terrain model (DTM) for representing the ground surface and a digital surface model
(DSM) for describing the canopy surface (Hyyppä et al. 2008). Thus, creating an accu-
rate terrain surface is critical for accurate forest parameter estimation because an incorrect
terrain surface model propagates the error to its derivatives in forest parameter estimation.

Even though airborne laser scanning provides highly accurate 3-D point clouds repre-
senting surface shapes in great detail, there is no distinction in raw lidar points in regard
to whether a point represents a terrain or a non-terrain object. It is a prerequisite to sepa-
rate clouds of lidar points into ground returns and non-ground returns in almost all of the
applications using airborne laser scanning (Evans and Hudak 2007). Accordingly, efficient
and accurate ground filtering is critical in using airborne laser scanning across disciplines.
Although terrain surface extraction is an essential part of processing lidar data, it is sur-
prisingly difficult to extract accurate terrain surface from raw lidar point clouds because
the data represent multiple surface objects over the complex terrain surface, and there is a
broad range of studies for extracting bare earth surface from lidar data (Liu 2008).

Sithole and Vosselman (2004) used four categories including slope-based, block-
minimum, surface-based, and clustering/segmentation methods and discussed character-
istics of each approach. Liu (2008) used slightly different categories to review several
research studies and addressed interpolation-based, slope-based, and morphological meth-
ods as the most popular approaches.

The slope-based method developed by Vosselman (2000) used an assumption that the
gradient of natural ground slope is distinctly different from the slope of non-ground objects
such as trees and buildings to separate ground and non-ground points (Sithole 2001).
Vosselman’s method is only applicable for gently sloped areas because a single static gra-
dient threshold fails to distinguish terrain slope versus non-terrain object when the terrain
has steep slopes. Sithole (2001) modified previous methods so that the threshold changes
with the terrain slopes. However, this method still has limited filtering performance in areas
with large buildings or low vegetation penetration.

Interpolation-based methods, first proposed by Kraus and Pfeifer (1998), iteratively
approximate the ground using weighted linear least squares interpolation. This method cre-
ates a rough approximation of the terrain surface and uses it to calculate residuals (offset
between the points and the surface). Based on calculated residual, different weights are
assigned to each point. Points of negative residual are more likely to be ground points
than the others so that more weight is assigned for points of negative residuals to calcu-
late terrain interpolation. Lee and Younan (2003) enhanced Kraus and Pfeifer’s method
by implementing adaptive line enhancement (ALE) – substituting the least squares method
with normalized least squares so that it creates a robust terrain surface even for steep slopes
or spurious peaks. However, the ALE method needs a number of parameters (delay fac-
tor and adaptation parameters) and relatively subjective trial and error procedures are still
required to select appropriate parameters.

Morphological methods are relatively simple and fast, so they have an advantage in
processing large amounts of lidar points. Defining optimal operator size is the key fac-
tor in creating a correct terrain surface – removing non-ground objects, yet keeping the
shape of the terrain surface. However, it is almost impossible to meet this demand with one
fixed window size. Kilian, Haala, and Englich (1996) applied the morphological operator
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(opening) several times with different operator sizes starting from the smallest window
size. Then each point was assigned different weights proportional to the window size when
it was classified as a ground point. Zhang et al. (2003) suggested progressive use of mor-
phological filters to remove non-ground features by gradually increasing the window size
of the filter, and the thresholds were determined by the elevation difference between sur-
faces before and after filtering. This method assumed the slope is constant. However, the
major limitation of this method is that a constant slope over the area is not a realistic con-
dition, especially in complex environments. Chen (2007) improved the method of Zhang
et al. (2003) in that their method does not require the assumption of a constant slope. They
used the fact that non-terrain objects (such as buildings) normally have sudden elevation
changes along the edges, but the change of ground is usually not abrupt like non-terrain
objects. This method shows encouraging results compared with other methods with mini-
mum requirements for parameters and assumptions. In general, this method performs well,
but when lidar points do not have enough penetration through vegetation (such as in old
and densely forested areas), this method can create false flat-terrain surfaces under large
trees in steep-terrain areas.

The block-minimum (or local minimum) method is relatively simple. This method
searches for the minimum value from the neighbour points within a given spatial extent
(Clark, Clark, and Roberts 2004; Cobby, Mason, and Davenport 2001; Suarez et al. 2005).
Even though the idea is simple, it is almost impossible to find one filter size that removes
all non-terrain objects without compromising for details of the terrain surface. Wack and
Wimmer (2002) used an improved block-minimum method by implementing a hierarchical
approach to detect non-ground raster elements.

Segmentation-based methods use grouped neighbour points which are generated by
using some homogeneity criterion (Sithole 2005). Rather than classify individual points,
segment-based methods classify segments into ground and non-ground objects by using the
characteristics of the segment. Akel et al. (2005), Gorte (2002), and Lee and Schenk (2001)
applied a region-growing approach to create segments and used the segments to classify
lidar data. Jacobsen and Lohmann (2003) used the eCognition software (Definiens, Munich,
Germany) to generate segments and classified segments into different types of objects, so
that non-ground objects were filtered and only bare-ground remained to achieve DEM.
Tovari and Pfeifer (2005) applied a robust interpolation-based filtering method using the
segments which were created by the region-growing method rather than individual points.

Regardless of types of filtering methods, it is challenging to distinguish between ground
returns and points reflected in the vegetation where there is a steep slope under dense forest
cover (Kobler et al. 2007). This is because this type of area has sparse and spatially hetero-
geneous ground returns. In addition, due to a steep gradient in this type of area, slope-based
threshold methods do not work properly (Sithole 2001). As raw lidar point data are nor-
mally processed in automated approaches due to large amounts of data, it is required to
optimize filtering parameters with minimal user intervention (Kobler et al. 2007). Most
existing filtering methods are based on the assumption that variations of natural terrain are
more gradual than those of non-terrain surfaces. So, the majority of filtering methods cal-
culate elevation differences and slope changes and determine certain threshold values for
distinct points (Meng et al. 2009; Sithole and Vosselman 2004). Thus, it is necessary to
gain prior knowledge of the sites to select threshold or parameter values. In addition, this
assumption has shown limited success on steep and densely forested areas where the basic
assumption often fails because of steep terrain gradients and sparse ground points.

The objective of this study is to develop a robust method that classifies raw lidar points
into ground and non-ground points by using a progressive terrain fragmentation (PTF)
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7296 J.-H. Lee et al.

method which iteratively densifies a triangular surface by relatively robust criteria. This
method is similar to that of Axelsson (2000). The uniqueness of our method is in priori-
tizing a set of lidar points, which are used to approximate a triangulated irregular network
(TIN) surface so that more representative terrain points are included before the other points.
This prioritization procedure minimizes the false inclusion of non-ground points during the
iteration process.

2. Materials and methods

2.1. Progressive Terrain Fragmentation (PTF) algorithm

The characteristics of the TIN structure, which represents a surface as a set of non-
overlapping contiguous triangular facets of irregular shape and size, are very effective in
identifying subgroups of surfaces to represent heterogeneous terrain surfaces (Lee 1991).
The seed point set is used to generate the initial terrain surface in a TIN structure, and
additional terrain points are included at the end of each iteration for the following terrain
estimation. The key requirement in this method is the setting up criteria to select correct
terrain points. It is challenging to set-up criteria to filter out non-terrain points from the raw
lidar point clouds for a large area of varied terrain characteristics. Although there are many
studies on extraction of the terrain surface model from raw lidar points, there is much room
for improving efficiency and accuracy of filtering methods with minimum user intervention
(Liu 2008; Silvan-Cardenas and Wang 2006).

In this study, we first prepared multi-level local minimum point sets as candidate ground
points from all raw lidar point clouds. Figure 2 shows an example of lidar point reduction at
different levels. The maximum cell size (initial-level) and the finest cell size (ending-level)
can be specified by the user’s decision based on the characteristics of the site. From sparse
point sets, the terrain approximation surface is estimated in a TIN structure. Then, the
points are added to TIN estimation in each iteration, if the point satisfies the specified cri-
teria. The criteria differ in characteristics of each triangular surface to give priority to more
important (or significant) points to approximate the terrain surface, yet minimize com-
mission errors. It is similar to the approach by Sohn and Dowman (2008), who classified
TIN surfaces based on the characteristics of contained points. In our research, we classify
TIN facets into convex (upward curved) and concave (downward curved) surfaces based
upon the orthogonal distance between the facet and the points as follows. The lidar points
falling into the same facet are grouped as the member points of the corresponding facet.
The orthogonal distance between the TIN facet and candidate points are calculated. Then,
if there is at least one negative point (a point which is below the TIN surface) in the mem-
ber points, the surface is classified as a ‘concave surface’. For concave surfaces (downward
curved surfaces), the point with maximum distance in the negative direction (below the
surface) from the facet surface is selected and added to terrain points. Otherwise, if there
are only positive offset points (above the surface), it is classified as a ‘convex surface’. For
convex surfaces (upward curved surfaces), the point with the minimum angle (between a
facet and a node point) within a certain threshold (α) is selected. Then the selected point is
added to the set of ground points for the next iteration. The flowchart of progressive terrain
fragmentation algorithm is illustrated in Figure 1.

2.1.1. Lidar point reduction

One of the most beneficial characteristics of lidar data is its high density and detail by a
3D point cloud. On one hand, extremely high sampling makes it possible to extract a broad
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International Journal of Remote Sensing 7297

Figure 1. Flowchart of the Progressive Terrain Fragmentation algorithm.

range of useful information from the data sets. On the other hand, a large volume of data
requires a lot of storage resource and processing power. The iterative process, especially,
requires extensive processing time and power. In optimal conditions, higher lidar point den-
sity (sampling density) can provide more accurate surface description. However, because
only a small part of all data points is returned from the terrain surfaces (especially, het-
erogeneous forested areas), processing all echoes would be inefficient when there is no
accuracy improvement for retrieving terrain elevation models (Liu 2008).

In this research, we use a coarse-to-fine strategy, which starts with sparse points (broad
scale) for an initial surface estimation and moves to the finer scale level for retrieving a real
terrain surface by fragmenting triangular surfaces (Figure 2). The approach used by this
study is similar to the progressive TIN densification method (Axelsson 2000) and recursive
terrain fragmentation (Sohn and Dowman 2008). Although only a small fraction of lidar
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7298 J.-H. Lee et al.

Figure 2. Example of lidar points reduction at different levels and TIN surface fragmentation.

points is selected and used for approximating the terrain surface at a coarse level of esti-
mation, if all raw lidar points are used for the search process, the efficiency of the process
is significantly decreased. To cope with this problem, multi-level point sets are generated
so that reduced point sets are used for the coarse-scale stage and the next level of point
sets (higher density) is used as the iteration continues. Local minimum elevation points are
selected as candidate terrain points in the hierarchical configuration that follows. A non-
overlapping grid with squared cells is superimposed over the original raw lidar points. The
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minimum elevation value within each cell is selected as a candidate ground point. It starts
from a 1 m × 1 m sized cell and the size is doubled at each grid level until it reaches the
maximum cell size, which can vary by user’s decision. The maximum cell size is selected
based on the largest type of structure in the area (Axelsson 2000). In this study, 32 m is
selected for the maximum cell size because 32 m is large enough to filter out the largest
type of object (i.e. trees). Even though the surface fragmentation process is performed from
coarse to fine scale, searching for the minimum value at each level is carried out in reverse
scale (fine to coarse strategy) because the minimum point at a certain level is one of the four
minimum values of the previous finer level. For this reason, the number of points required
for searching minimum elevation is decreased by 1/4 of the previous level.

2.1.2. Triangulation and assign point for each facet

An initial TIN surface is derived from the coarsest level of the point sets with a grid size of
L1 (32 m). After that, the next level of point sets (extracted from a grid size of L2 (16 m))
is used to search terrain points. The points falling into the same facet are grouped and the
points of each group are processed with the parameters calculated from the facet where the
points belong. Instead of calculating all of the lidar points in each iteration step, coarse-
to fine-scale levels of point sets are used. Figure 2 illustrates triangulation from the set of
reduced lidar points.

2.1.3. Searching terrain points

We calculate the orthogonal distance between all of the member points falling into a
certain triangle and the triangle plane. Each triangle is defined by three nodes (terrain
points selected from previous approximation) so that each planar surface is modelled from
these three points. Then, the characteristic of the triangle is classified as either a concave
(downward curved) or convex (upward curved) surface as follows.

Concave: The orthogonal distance is calculated between a point (Pi) and the corre-
sponding perpendicular point (Pi

′) on the plane. When the elevation of Pi is lower than
Pi

′(zi - zi
′ < 0), the orthogonal distance is negative and vice versa. If there is at least one

negative offset point in a facet, it is classified as a concave facet (Figure 3(a)). Then, a
point with the minimum offset height (maximum distance in a negative direction from the
facet) is searched within a specific facet and the selected point is added to the terrain point
set (Figure 3(b)). These points, classified as terrain points, are used for creating the new
surface at the next iteration.

Convex: A facet with no negative offset point is classified as a convex surface
(Figure 3(c)). In this case, the point with the minimum divergent angle (within a thresh-
old angle – admissive angle (α)) is selected as a terrain point. For searching the minimum
angular divergent point, we calculate angles between the node and the facet. Because there
are three angles between one node and a TIN facet (tetrahedral shape), we select the maxi-
mum angle (out of three angles) as a representing angle (θ i = MAX(θ i1, θ i2, θ i3)). Once the
representative angle is determined for each point, we select the minimum angular divergent
point among the points falling into a certain TIN facet. Then, we use this angle for assess-
ing whether it is a ground or non-ground point in the filtering procedure (Figure 3(d)). The
purpose of using the minimum divergent point for convex surfaces is to minimize the pos-
sibility of commission errors (classifying non-ground point as ground points incorrectly).
In this iterative procedure, commission errors could lead to large propagated errors if
falsely created terrain surfaces are used as a basis for the following raw point assessment.
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7300 J.-H. Lee et al.

Figure 3. Illustration of triangular surface types and searching terrain points. (a) Concave surface,
(b) selecting the maximum distance offset point in negative direction, (c) convex surface, and (d)
searching the minimum angle point within admissible angle range.

We iteratively conduct this terrain point-searching procedure until no additional terrain
point exists for each level. Then, the search moves to the next level (coarse to fine scale)
and repeats the procedure.

2.1.4. Lidar points classification

It is common to interpolate raw lidar points into raster images before applying filtering
procedures because filtering on raster images runs faster than processing raw lidar point
clouds (Chen 2007). However, interpolating lidar points into raster images causes loss of
information (Liu 2008). Therefore, instead of converting lidar point into raster images, all
lidar points are explicitly classified into either ground points or non-ground points. The
terrain surface which is created at the end of the iteration is used as the basis for point
classification. If the orthogonal distance is less than 0.3 m, these points are classified as
ground points and others are assigned as non-ground points. Offset distance threshold was
selected by doubling typical vertical accuracy of the ALTM 1233 laser mapping system
(Optech Inc., Ontario, Canada) (15 cm) (International Hurricane Research Center 2012).
These classified points are compared to the reference plot data sets and are used for final
accuracy assessment.

2.2. Test site and data

2.2.1. Test site

To evaluate this method, we perform our analysis at the Angelo Reserve (39◦ 45′ N;
123◦ 38′ W; 430–1290 m elevation), which is part of the University of California Natural
Reserve System (NRS) in Mendocino County, CA. This site is particularly useful for our
purpose (evaluating the performance of a non-terrain filtering method) because this area
consists of heterogeneous forests with various densities and a steep topographic slope.
In other words, the site represents difficult conditions for separating ground and non-ground
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points from raw lidar data in automated procedures. In north-facing slopes, old conifer
species are dominant (Pseudotsuga) and are mixed with broadleaf trees (Lithocarpus).
Quercus species (Pseudotsuga-mixed hardwood forest), and to a lesser extent tanoak, are
present as well (Hunter and Barbour 2001; Power et al. 2004). We use a study site of
size 4 km2, which is a subset of the entire data set (180 km2) of the South Fork Eel river
watershed.

2.2.2. Lidar data

Lidar data used in this study were generated by the National Science Foundation (NSF)-
supported National Center for Airborne Laser Mapping (NCALM). Airborne laser scan-
ning was performed on 29 June 2004. The data were acquired by an ALTM 1233 laser
mapping system (Optech Inc.) mounted on a fixed-wing aeroplane. The mean flying alti-
tude was 600 m above the ground. The laser pulse frequency was 33 kHz and the scanning
frequency was 28 Hz. The swath width was 20◦ per half angle and 50% overlapping flight
lines were used. The data sets included the first and last pulses for x, y, z coordinates,
intensity value, and GPS (global positioning system) time. Combined with inertial navi-
gation and kinematic GPS, this system provides absolute elevation of the ground surface
with vertical accuracy of 10–15 cm in open areas (Farid et al. 2008; International Hurricane
Research Center 2012). The density of lidar points is varied by flight height, ground surface
elevation changes, and overlap between swaths. The average point density of this study is
3.1 echoes per square metre (first and last returns combined).

2.2.3. Reference plots

Because the main objective of this study is to separate ground and non-ground points
from raw lidar point clouds, the performance is accessed by accuracy of filtering non-
ground points rather than absolute elevation errors. Several research studies conducted
field measurement of reference points with a combination of total station and GPS units
(Hodgson and Bresnahan 2004; Kobler et al. 2007; Reutebuch et al. 2003; Bater and
Coops 2009).

Sithole and Vosselman (2004) create the reference data for their comparison of filter
algorithms by the manual point interpretation method. In addition, Kobler et al. (2007)
suggest that manual filtering is the best possible method, given no additional information.
Accordingly, we manually create the reference data from the original lidar point cloud.
Because point density is high enough to depict ground surface and non-ground objects
(e.g. tall trees and sub-canopy vegetation), we are able to create reference data by manual
interpretation of 3D lidar point plots. Non-ground points are carefully selected and removed
by 3D visualization software (Quick Terrain Modeler, Applied Imagery). By this visual
interpretation procedure, all points are explicitly assigned as either ‘ground points’ or ‘non-
ground points’ and are used for selecting optimal parameters and assessing performance of
this method. Even though we are familiar with this area, it is impossible to discover the
pattern of lidar point distribution over the entire area before analysing the data sets. Thus,
we place 16 reference plots (10 m ×10 m) systematically. The distance between plots is
set to 200 m in two perpendicular directions (either north–south or east–west), so that plots
are well distributed over the study site. Figure 4 shows the distribution of 16 reference
plots.
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Figure 4. Reference plots (10 m ×10 m) in test area (4 km2).

2.3. DEM for qualitative analysis

Although the main purpose of this study is to classify raw lidar points into ground and
non-ground points, we additionally generate a DEM for visual inspection of classification
quality. Because a continuous surface is easier for the human eye to detect abnormal shapes,
an interpolated surface is utilized to identify inaccurate lidar point filtering results. Evans
and Hudak (2007) suggest that thin-plate interpolation provides a better result than others,
such as ordinary kriging and inverse distance weighting. Accordingly, we use thin-plate
interpolation (TPI) for interpolating terrain point and creating DEM for visualizing terrain
surfaces.

2.4. Parameter optimization

The PTF method requires three parameters: (1) angle threshold between a triangular surface
and a node point, (2) distance threshold, and (3) grid size for initial seed points. Because dis-
tance threshold is intended to remove only outliers (either positive or negative), it does not
have a huge impact if there is no outlier in the raw lidar points. We used 100 m as a thresh-
old value for both positive and negative direction. Also, the result is not sensitive to the grid
size for the initial seed points. A grid size for initial seed points can be selected based on the
largest non-ground object (e.g. building) within the filtering area (Axelsson 2000). In this
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study, there is no large artificial object in the filtering area, so a value is set to 32 m, which
is larger than the canopy diameter of tall trees. Angle threshold is the key parameter to
decide the performance of this method. It is important to determine an adequate threshold
value to maximize filtering performance. In this study, we use 16 systematically distributed
plots to assess the performance of this method.

The optimal threshold (admissible angle) value is selected by comparing percentage
errors between different threshold values. For a quantitative analysis of this method, the
filtering errors, which are produced by comparing the filtering result with the reference data,
are investigated. There are two types of errors in filtering lidar data – Type I (omission) error
and Type II error (commission). A Type I error is to miss ground points even though the
points are truly ground points, and a Type II error is to falsely classify non-ground points as
ground points. Total errors can represent combined error (Type I and Type II). However, it
is considered that the total number of errors is greatly influenced by the proportion between
ground and non-ground points (Sithole and Vosselman 2004).

3. Results

3.1. Parameter selection

As we describe above, the main parameter to determine the accuracy of this method is
angle threshold. We test different admissive angles to decide the optimum angular thresh-
old value. As the admissible angle increases, Type II errors (falsely accepting non-ground
points as ground points) increase, but Type I errors (misclassifying true ground points as
object points) decrease and vice versa. Depending on the priority in filtering purpose, the
balance between Type I and Type II errors can be adjusted. For example, minimizing Type
II errors intends to remove as many non-ground points as possible, so that a terrain model
from ground points does not create false peaks and spikes. However, it compromises the
detail of the terrain surface by removing true ground points. Because the two error types
react in an opposite manner, a total error can be used to assess the performance of certain
methods. Figure 5 shows total, Type I, and Type II errors at different admissible angles
(from 15◦ to 20◦). The minimum total error is acquired at the angle value of 18◦. Table 1
shows the confusion matrix with an angle threshold of 18◦ (all 16 plots combined); 10.7%
of ground points (48 out of 448) were misclassified as non-ground points (Type I error)
and 0.72% of non-ground points (35 out of 4893) were falsely classified as ground points
(Type II error). The total error is 1.55% and the total error is mostly influenced by Type II
error because non-ground points comprise a large proportion of all plots. Figure 6 shows
the different results obtained for various admissive angles. When the admissive angle of
15◦ was used, a large portion of true ground points was removed because the ground points
were misclassified as non-ground points.

3.2. Error analysis by plot characteristics

Although the plots are selected by a systematic sampling scheme, the reference plots rep-
resent different surface shape characteristics so that we can recognize the source of errors
and optimize the threshold value under different surface characteristics. Table 2 shows total,
type I, and type II error for the 16 reference plots.

A Type I error at Plot 9 is 95.3% with 15◦ angle threshold and the error is changed
to 25.6% with a 20◦ angle threshold. Because Plot 9 is located on a steep ridge line, a
small angle threshold is not able to detect ground points during iteration procedures; so,
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Figure 5. Results of total, Type I, and Type II errors at different admissible angles.

Table 1. Accuracy assessment table (angle threshold: 18◦).

Filtered Error

BE OBJ Total points Type %

Ref. BE 400 48 448 I 10.71%
OBJ 35 4858 4893 II 0.72%
Total 435 4906 5341 Total 1.55%

Note: BE, bare earth; OBJ, object.

this plot shows a large type I error at the low-angle threshold. We find that a value of 18◦
is the minimum threshold to retrieve correct terrain shapes for this plot. Plot 1 and Plot
10 show similar results (with less magnitude) because both plots are also on ridge lines.
For Plots 4 and 12, Type II errors increased as angle threshold increased. These plots have
relatively low vegetation, so it is more likely to falsely detect non-terrain (low vegetation)
as terrain points. Other plots (2, 3, 5–8, 11, 13–16) are not sensitive to angle threshold and
show almost the same number of errors, regardless of error types. This is because these
plots have large gaps between terrain surfaces and canopy layers (tall trees), and hence the
confusion between ground and non-ground points is less likely to happen.

3.3. Qualitative assessment of filtering performance

In addition to the quantitative analysis of the contingency matrix with 16 reference plots, we
also perform qualitative analysis by visual inspection of the interpolated DEM. Reference
plots are responsible for the accuracy of our method, the plots are discrete and are sim-
ply a smaller portion of the entire study area. Hence, visual inspection of the interpolated
ground surface (i.e. DEM) from the lidar points, which are classified as ground points,
supplements the limitation of the quantitative accuracy assessment (plot-based approach).
Figure 7 shows the DEM created from ground points for qualitative analysis. By using a
hillshading map from the DEM, we visualize the 3D characteristics of the created DEM.
The angle threshold value is set to 18◦, which is acquired from previous procedures. This
angle threshold is large enough to remove all major Type I errors (omission errors) in the
area, and hence we cannot detect major loss of terrain surface description. However, it
falsely classifies low vegetation points as ground points, and we can detect commission
errors at south-facing slopes covered with low vegetation.
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Figure 6. DEM created by different admissive angles for the subset area. (a) Location of the subset
area, (b) admissive angle 15◦, (c) admissive angle 18◦, and (d) admissive angle 20◦.

4. Discussion

By using point data rather than interpolated surface for separating ground and non-ground
points, we minimize the errors during the interpolation of lidar points to a raster surface.
In general, approaches that use raw lidar points require more computing power; so these
approaches are slower than the raster-based approaches. However, we use a coarse-to-fine
approach to select ground points from the raw lidar point clouds so that relatively small
numbers of points are used at each iteration. Hence, we expect that this approach would
provide faster performance than the methods that utilize all lidar points throughout a pro-
cedure. In addition, we prioritize a set of lidar points, which are used to approximate a TIN
surface so that important terrain points are added earlier than the other points.

While our approach to classify the ground and non-ground points from the raw lidar
points for complex forested areas has advantages, there are still several aspects which need
to be improved. The result from our study shows that one universal threshold value cannot
perform optimally for all types of terrain characteristics. Even though a threshold value can
be adjusted by a user’s preferences, more study should be conducted to optimize a thresh-
old value with minimum user interventions. The major limitation of our method is the use
of one universal threshold value for the entire level of filtering procedures. We found that
different threshold values are required for different levels of scale (especially coarse- to
fine-scale approaches). For example, relatively large threshold values are needed only for
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Figure 7. Shaded relief map of DEM by 18◦ angle threshold (1 m grid cell size, thin-plate
interpolation).

the early stage of terrain approximation so as not to omit terrain points, and smaller thresh-
old values are preferred to reduce commission errors (falsely detect low object points as
terrain points). In addition, our approach showed limited success in separating ground and
non-ground points when the area is covered by low and dense vegetation. This limitation
is mainly caused by the characteristics of discrete-return lidar systems, which do not have
sufficiently short pulse width to record ground return pulses when the ground is covered by
low vegetation. Hence, it is recommended to understand this limitation before applying our
approach.

Although this method has been developed for complex forested areas with steep terrain
slopes, we need to test the performance of this method for different environmental condi-
tions. For example, under urban conditions, which have various types of artificial structures
(buildings, bridges, ditches), the parameters should be tested and may need to be optimized
to maximize the accuracy of the results.

Also, for more objective comparison with other filtering methods, we need to per-
form our method with a common data set and reference data, such as the International
Society for Photogrammetry and Remote Sensing (ISPRS) Commission III/WG3 data set
(Sithole and Vosselman 2004). Because the ISPRS data set has various site conditions, we
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can test our method for different environmental conditions. In addition, we can directly
compare the performance and accuracy of our method with the previously conducted
studies.

It is worth mentioning that the development of filtering methods is closely related to the
advancement of airborne laser-sensing technology. Although conventional discrete return
airborne laser scanning systems have provided unprecedented high-quality data sets for
research pertaining to land surface processes (Slatton et al. 2007; Carter, Shrestha, and
Slatton 2007), discrete return scanning systems provide discrete pulses separated by sev-
eral metres due to the pulse width (length). In general, the pulse width of lidar systems
ranges from 6 to 12 ns, which translates into pulse lengths of 1.8–3.6 m (Hodgson et al.
2003). Hence, conventional discrete lidar sensors have difficulties in filtering off-ground
points where low vegetation exists on steep slopes and abrupt changes take place (Lin and
Mills 2009; Raabe et al. 2008). Recently, full-waveform scanning systems are becoming
more popular because full-waveform scanning systems provide additional attributes (such
as amplitude and echo width) over conventional discrete return systems for extracting ter-
rain surface (Mallet and Bretar 2009; Rutzinger et al. 2008). Lin and Mills (2009) applied
the progressive densification filter developed by Axelsson (2000) with full-waveform scan-
ning systems to improve the accuracy for extracting DTM. Doneus et al. (2008) also took
advantage of a full-waveform scanning system to separate low-level vegetation from the
ground for archaeological application.

5. Conclusion

In this study, the PTF method is developed to improve the performance of filtering non-
terrain points from raw airborne laser scanning data. Iterative procedures for searching
terrain points gradually approximates terrain surface. Instead of using absolute slope or
offset distance, this method utilizes orthogonal distance and relative angle between a tri-
angular plane and a node. For this reason, PTF was able to classify raw lidar points into
ground and non-ground points on a heterogeneous steep forested area with a small num-
ber of parameters. We found that ‘admissible angle’ is the most influential parameter for
accurate filtering procedures, and a smaller admissible angle threshold causes inaccurate
terrain approximation by omitting terrain points around ridge lines. On the contrary, a large
admissible angle threshold is associated with failure to remove low vegetation. The opti-
mum threshold value for admissible angle was selected by examining 16 reference plots,
which minimizes the total number of errors for classifying raw lidar points. Classifying
raw lidar points (ground vs non-ground) for generating terrain surface is a basis for other
analyses related to forest biophysical parameter extraction. Thus, we expect that our study
will provide more accurate terrain approximation and contribute to improving extraction of
other forest biophysical parameters.
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