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A B S T R A C T   

Accurate estimation of gross primary production (GPP), the amount of carbon absorbed by plants via photo-
synthesis, is of great importance for understanding ecosystem functions, carbon cycling, and climate-carbon 
feedbacks. Remote sensing has been widely used to quantify GPP at regional to global scales. However, polar- 
orbiting satellites (e.g., Landsat, Sentinel, Terra, Aqua, Suomi NPP, JPSS, OCO-2) lack the capability to 
examine the diurnal cycles of GPP because they observe the Earth’s surface at the same time of day. The 
Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), launched in June 2018, 
observes the land surface temperature (LST) at different times of day with high spatial resolution (70 m × 70 m) 
from the International Space Station (ISS). Here, we made use of ECOSTRESS data to predict instantaneous GPP 
with high spatial resolution for different times of day using a data-driven approach based on machine learning. 
The predictive GPP model used instantaneous ECOSTRESS LST observations along with the daily enhanced 
vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), land cover type from 
the National Land Cover Database (NCLD), and instantaneous meteorological data from the ERA5 reanalysis 
dataset. Our model estimated instantaneous GPP across 56 flux tower sites fairly well (R2 

= 0.88, Root Mean 
Squared Error (RMSE) = 2.42 μmol CO2 m− 2 s− 1). The instantaneous GPP estimates driven by ECOSTRESS LST 
captured the diurnal variations of tower GPP for different biomes. We then produced multiple high resolution 
ECOSTRESS GPP maps for the central and northern California. We found distinct changes in GPP at different 
times of day (e.g., higher in late morning, peak around noon, approaching zero at dusk), and clear differences in 
productivity across landscapes (e.g., savannas, croplands, grasslands, and forests) for different times of day. 
ECOSTRESS GPP also captured the seasonal variations in the diurnal cycling of photosynthesis. This study 
demonstrates the feasibility of using ECOSTRESS data for producing instantaneous GPP (i.e., GPP for the 
acquisition time of the ECOSTRESS data) for different times of day. The ECOSTRESS GPP can shed light on how 
plant photosynthesis and water use vary over the course of the diurnal cycle and inform agricultural management 
and future improvement of terrestrial biosphere/land surface models.   

1. Introduction 

Photosynthesis, the underlying process of terrestrial vegetation, 
constitutes the largest flux of the global carbon cycle. Quantifying the 
spatial and temporal dynamics of photosynthesis at the ecosystem scale 
(i.e., gross primary production, GPP) can provide important information 
on the magnitude and variability of terrestrial carbon budget and 
carbon-climate feedbacks (Beer et al., 2010; Xiao et al., 2014). Previous 
studies showed the feasibility of estimating GPP at different temporal 
scales (e.g., daily, monthly, annual) (Zhao et al., 2005; Xiao et al., 2010; 

Gilabert et al., 2015). The seasonal and interannual variations of GPP 
are found to be driven by climate variability, plant phenology, and 
changes in physiological capacity due to nutrient status and soil mois-
ture deficits (Li and Xiao, 2020; Mäkelä et al., 2006; Xia et al., 2015; Xu 
and Baldocchi, 2004). Diurnal variations (or diel variations) of GPP are 
mainly driven by environmental (e.g., solar radiation, air temperature, 
soil moisture, vapor pressure deficit or VPD) and physiological (e.g., 
stomatal conductance) factors (Damm et al., 2010; Franco and Lüttge, 
2002; Paul-Limoges et al., 2018). Diagnosing the diurnal variations of 
GPP can provide insights into direct interactions between 
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photosynthesis and these controlling factors, which otherwise would be 
obscured by aggregating the instantaneous variables to daily or seasonal 
scales. 

The eddy covariance (EC) technique provides temporally (half- 
hourly or hourly) continuous estimates of ecosystem-level GPP over the 
course of the diurnal cycle (Baldocchi et al., 2001). However, these EC 
flux towers provide only spatially sparse GPP estimates due to their 
sparse distributions across the globe (Xiao et al., 2010). Satellite ob-
servations make up for the limitation in spatial representation and 
global coverage of the EC technique and can lead to spatially continuous 
GPP estimates from regional to global scales based on different ap-
proaches (Xiao et al., 2019), including light use efficiency models 
(Running et al., 2004; Zhao et al., 2005; Stocker et al., 2020), terrestrial 
biosphere models (Liu et al., 1997; Ryu et al., 2011), and data-driven 
approaches (Beer et al., 2010; Xiao et al., 2010). During the past de-
cades, GPP has been successfully estimated from polar-orbiting satel-
lites, such as Landsat (30 m, 16-day) (Gitelson et al., 2012; Robinson 
et al. 2018), Terra/Aqua (500 m, 8-day) (Running et al., 2004; Zhao 
et al., 2005; Xiao et al., 2010), Sentinel-2 (up to 10 m, 5-day) (Lin et al., 
2019b; Wolanin et al., 2019), and OCO-2 (0.05

◦

, 8-day) (Li and Xiao, 
2019a). However, polar-orbiting satellites lack the capability to examine 
the diurnal cycle of GPP because they observe the Earth’s surface at the 
same time of day for every revisit. Fortunately, the recent launch of the 
Ecosystem Spaceborne Thermal Radiometer Experiment on Space Sta-
tion (ECOSTRESS) provides an unprecedented yet unexplored oppor-
tunity for examining the variations of plant carbon uptake over the 
course of a day on large scales. 

ECOSTRESS, managed by National Aeronautics and Space Admin-
istration (NASA)’s Jet Propulsion Laboratory (JPL), was launched to the 
International Space Station (ISS) on 29 June 2018. ECOSTRESS uses a 
multispectral thermal infrared radiometer to measure radiance in five 
bands from 8 to 12.5 μm and an additional band at 1.6 μm for geo-
location and cloud detection (http://ecostress.jpl.nasa.gov). On board 
the ISS with an inclined, precessing orbit, ECOSTRESS can measure the 
Earth’s surface at different times of day from 53.6

◦

N to 53.6
◦

S, which is 
promising to capture diurnal biological processes that are unexploited 
by traditional polar orbiting, sun-synchronous platforms with a fixed 
equator crossing time (e.g., Landsat, Sentinel, Terra, Aqua, Suomi NPP, 
JPSS, OCO-2). ECOSTRESS has a high spatial resolution of 38 m × 69 m 
(at nadir) and frequent revisit time of 1–5 days depending on the latitude 

(Fisher et al., 2015, 2020). The combination of diurnal sampling capa-
bility and fine spatial and temporal resolutions endows ECOSTRESS 
with a great potential for sampling the diurnal variation of terrestrial 
ecosystems, even for individual farmers’ fields. ECOSTRESS can provide 
key insights into plant–water dynamics, ecosystem–climate interactions, 
and agricultural management. It also has potential to answer how do 
snapshots of remote sensing scale with daily integrals across different 
biomes and latitudinal zones (Sims et al., 2005; Ryu et al., 2012). 

The ECOSTRESS mission measures the temperature of plants from 
space, and provides both land surface temperature (LST) and emissivity 
(Level-2 products) at a spatial resolution of ~70 m × 70 m (Hook et al., 
2019; Hulley et al., 2019). LST is one of the important parameters for 
studying processes at the land-atmosphere interface which measures 
Earth’s surface temperature rather than air temperature. For plants, 
many physiological or biological activities (e.g., transpiration, photo-
synthesis) of canopy (or leaves) are closely associated with the varia-
tions in LST, and therefore LST is widely used as a key variable for 
estimating evapotranspiration (ET) (Su, 2002; Nagler et al., 2005; Jin 
et al., 2011) and GPP (Sims et al., 2008; Xiao et al., 2010; Schubert et al., 
2010). Currently, no other satellite sensors have such sufficient spatio- 
temporal resolution to reliably monitoring LST at the local to global 
scale over the diurnal cycle. For example, the Moderate Resolution 
Imaging Spectroradiometer (MODIS) on board the Terra and Aqua sat-
ellites together provides global coverage of LST only at two times during 
the daytime and two at night (Fig. 1: 10:30 and 22:30 for Terra and 
13:30 and 1:30 for Aqua, local solar time) although with moderate 
spatial resolution (1 km). Geostationary satellites such as the Geosta-
tionary Operational Environmental Satellite (GOES-R) series can cap-
ture the diurnal variations of LST (Fig. 1) but with much coarser 
resolution (2.5–4 km) (Fig. 2b). ECOSTRESS, therefore, provides a 
unique combination of high spatial and temporal resolution to monitor 
the temperature of plants over the course of the diurnal cycle (Fisher 
et al., 2020) (Figs. 1–2). 

Although ECOSTRESS provides a suite of data products (Table S1) 
such as an instantaneous ET product (a Level-3 product) (Fisher et al., 
2008, 2020) and the Level-4 water use efficiency (WUE) product (Fisher 
and ECOSTRESS Algorithm Development Team, 2018), ECOSTRESS 
does not offer an instantaneous GPP product. An instantaneous GPP 
product for different times of day and with fine spatial resolution will be 
valuable for studying how plants absorb carbon throughout the day in 

Fig. 1. Diurnal cycle of LST at the Bouldin Island corn site (US- 
Bi2) during August 2018. (a) shows the LST from GOES-R 
(GOES-16) and ECOSTRESS from August 1 to August 31, 
2018; (b) shows the hourly averaged LST during August: GOES- 
R provides continuous measurements of hourly LST; MODIS 
provides LST at only four times of the day; ECOSTRESS mea-
sures LST with fine spatial resolution (70 m × 70 m) at 
different times throughout the day, and therefore can monitor 
plants over the course of the diurnal cycle with finer spatial 
resolution.   
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response to the diurnal variations in environmental and physiological 
factors. In addition, the ECOSTRESS WUE product is based on 500 m, 8- 
day MODIS GPP (Zhao et al., 2005), not instantaneous GPP, and 
therefore can only provide WUE information on a daily or 8-day basis 
and miss the instantaneous variations of WUE over the different times of 
the day. Having an instantaneous ECOSTRESS GPP product will also 
allow us to develop instantaneous WUE estimates. Moreover, the syn-
ergistic use of such a new instantaneous ECOSTRESS product and the 
existing instantaneous ET product will allow scientists to identify when 
plants take up most of carbon or have most water stress over the course 
of a day, or how water and/or heat stress impacts plant water use and 
carbon uptake at diurnal timescales across different biomes, towards a 
better understanding of how plants link Earth’s carbon and water cycles. 

To advance these issues, our presented work here aims to generate 
instantaneous, high resolution GPP estimates based on instantaneous 
ECOSTRESS LST data. The 70 m ECOSTRESS LST data along with the 
EVI from the MODIS, land cover type from the National Land Cover 
Database (NCLD), and hourly meteorological variables were used for the 
GPP prediction. We selected California as our study region to explore 
whether the ECOSTRESS-based GPP estimates could reasonably capture 
the diurnal cycle of photosynthesis across biomes. California has high 
ecological, hydrological, and biological diversity (Fig. 3), and therefore, 
the estimation of GPP is complicated by the diverse geography, eco-
systems, microclimates, and land use and land management across the 
state (Baldocchi et al., 2019). For example, local ecosystems even have 
different seasonality due to the complex interactions between diverse 
ecosystems and environmental and climate drivers (Turner et al., 2020). 
These characteristics make California an ideal and challenging test bed 
for us to examine the effectiveness of our method. If ECOSTRESS GPP 
works well across California, it will increase our confidence in applying 
our method in other regions of the United States and the globe. Please 
note that the term ‘diurnal cycle’ was used to name the full 24 h period 
(i.e., the “diel cycle”) throughout this paper. To our knowledge, this 
study is the first effort to predict instantaneous GPP based on ECO-
STRESS observations. The availability of instantaneous GPP for different 
times of day will improve our understanding of how plant photosyn-
thesis and water use vary over the course of the diurnal cycle, and help 
better manage agricultural irrigation and improve terrestrial biosphere/ 
land surface models. 

Fig. 2. Diurnal cycle of ECOSTRESS LST across California (a) and comparison 
of ECOSTRESS and GOES-R LST (b). Both satellites observe LST at different 
times of day, but ECOSTRESS has much finer spatial resolution (70 m) and 
much more spatial details than GOES-R (~2 km). 

Fig. 3. Our study area consisting of four 
ecoregions across central and northern Cal-
ifornia. The base map in (a) is the MODIS 
land cover map (MCD12Q1, 500 m) with the 
University of Maryland (UMD) land cover 
classification scheme. The green symbols in 
the zoomed figure (b) denote the locations of 
eight EC flux sites used for evaluating the 
performance of ECOSTRESS-based GPP pre-
dictions in Section 3.3. Two crop sites (US- 
Bi1/Bi2) are overlapped because they are 
very close to US-Tw1/Tw4/Tw5. The land 
cover types across the study area include 
evergreen needleleaf forests (ENF), ever-
green broadleaf forests (EBF), deciduous 
broadleaf forests (DBF), mixed forests (MF), 
closed shrublands (CSH), open shrublands 
(OSH), savannas (SAV), grasslands (GRA), 
croplands (CRO), and wetlands (WET). (For 
interpretation of the references to colour in 
this figure legend, the reader is referred to 
the web version of this article.)   
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2. Materials and methods 

2.1. Study area 

We selected the central and northern California as our study area. 
This area consists of four ecoregions: the Central California Foothills and 
Coastal Mountains, Central California Valley, Sierra Nevada, and Coast 
Range (Fig. 3). The climate of the four ecoregions (defined by Level III 
Ecoregions map) (Omernik, 1987) is mainly characterized by Mediter-
ranean climate with hot dry summers and cool moist winters. The re-
gions with the highest elevation in Sierra Nevada have an alpine climate. 
The four ecoregions have distinct ecosystem types (Griffith et al., 2016): 
Coast Range in the west of California is dominated by highly productive 
evergreen forests; Central California Foothills and Coastal Mountains are 
primarily composed by woodlands and grasslands, with only patches of 
pine at high elevations; evergreen forests are the major ecosystems in 
the western Sierra Nevada, while juniper woodlands are on the eastern 
side of Sierra Nevada; Central California Valley is carpeted by vast 
agricultural regions. 

2.2. Data-driven approach, tower GPP, and explanatory data 

We used a data-driven method to develop the predictive GPP model. 
We applied the widely used Cubist (Quinlan, 1992), an advanced 
nonparametric regression tree model, to establish rule-based multivar-
iate linear models between the target variable - GPP and the explanatory 
variables. 

Cubist is a traditional vector data mapping algorithm developed in 
the machine learning domain. The established models can overlap with 
each other. Specifically, for a set of explanatory variables, they can 
match the conditions of one or multiple rules. Cubist may thus generate 
multiple outputs and take their average as the final GPP prediction. The 
Cubist model has been successfully applied in our previous studies for 
predicting spatially and temporally continuous net ecosystem carbon 
exchange (NEE) (Xiao et al., 2008; Xiao et al., 2011), GPP (Xiao et al., 
2010), and SIF (Li and Xiao, 2019b). More details on the Cubist method 
were described in these studies. Cubist provides three statistical mea-
sures to evaluate the model performance including mean absolute error 
(MAE), relative error (RE), and the product–moment correlation coef-
ficient (R). 

Six explanatory variables were considered for predicting GPP due to 
their close relationships with GPP and easy data access: LST, shortwave 
incoming radiation (SW), and VPD for characterizing environmental 
conditions, daily EVI and annual mean EVI for characterizing vegetation 
conditions, and land cover type as a categorical variable. The environ-
mental variables showed reasonable regulations on tower GPP (Fig. S1). 
As air temperature or VPD increased, GPP showed a convex parabolic 
curve with its peak value occurring around ~25 ◦C and 10 hPa, 
respectively (Fig. S1a, b). The increase of temperature and VPD would 
no longer lead to an increase in GPP when environmental conditions 
start to limit photosynthesis. GPP was also dependent on solar radiation, 
and high radiation overall corresponded to high productivity. The 
relationship between LST and tower GPP was similar to that between air 
temperature and tower GPP, with optimal LST around ~28 ◦C. 

For training, we were not able to obtain sufficient overpasses of 
ECOSTRESS LST for robust training due to the recency of the launch. 
Therefore, we used LST from GOES-R satellite (GOES-16, 2 km spatial 
resolution) (Yu et al., 2008; GOES-R Algorithm Working Group and 
GOES-R Program office, 2018) which provides hourly LST since 
December 2017. We extracted GOES-R LST for the grid cell in which 
each site was located, and used two years of data (2018 and 2019) for 
training. MODIS LST from Terra and Aqua was not considered because 
these two satellites together only provide four observations per day and 
cannot well sample the diurnal variation of LST. The land cover type, 
half-hourly SW and VPD from AmeriFlux sites that overlap the GOES-R 
observations (2018 and 2019) were used. For each site, we used the 

ReddyProc software (Wutzler et al., 2018) for the gap filling of EC data 
and partitioning of NEE into GPP and ecosystem respiration with the 
nighttime partitioning method (Reichstein et al., 2005). For each flux 
site, we extracted the daily MODIS bidirectional reflectance distribution 
function (BRDF)-corrected reflectance product MCD43A4 (Collection 6, 
500 m) from MODIS and VIIRS Land Products Global Subsetting and 
Visualization Tool (ORNL, 2018). The daily EVI was calculated from 
surface reflectances in near-infrared, red, and blue bands of the 
MCD43A4 and annual mean EVI was aggregated from the daily EVI. The 
machine learning approach can handle these different types of variables 
directly and normalizing these variables would not significantly influ-
ence the performance of the predictive model. 

Flux tower data were obtained from the AmeriFlux website (https: 
//ameriflux.lbl.gov). We identified AmeriFlux sites that had good- 
quality measurements available for the ECOSTRESS era and were also 
relatively homogeneous. For a given site, it was considered as relatively 
homogeneous if the dominant land cover type within the 1 km × 1 km 
area surrounding the site was consistent with the land cover type of the 
site. The 30-m NLCD land cover map was used to identify the land cover 
type for each grid cell. Heterogeneous sites were excluded from this 
analysis. A total of 56 AmeriFlux sites (containing 10 California sites) 
were used in this study, generating a dataset with a large number of 
hourly samples (165.1 thousand) encompassing a variety of climate and 
ecological conditions and ecosystem types across the U.S. We randomly 
used two thirds of the data points as training samples, and the remaining 
one third as testing data. The details of AmeriFlux sites including site 
code, site name, location and biome were described in Table S2. The 
data sets used for training and prediction were summarized in Table 1. 

2.3. ECOSTRESS LST and other explanatory data for prediction 

When the Cubist model was trained based on site-level samples, we 
applied it with spatially explicit (i.e., 2D gridded) input data (Table 1) 
including ECOSTRESS LST, MODIS daily EVI and annual mean EVI, 
ERA5 hourly SW and VPD, and land cover from the NLCD to produce 
multiple 70 m, instantaneous GPP maps for four ecoregions across 
California. 

Instantaneous ECOSTRESS LST was obtained from the Level-2 
product - ECO2LSTE (Version 1), which provides both LST and emis-
sivity retrieved from five thermal bands at a spatial resolution of ~70 ×
70 m with the physics-based Temperature Emissivity Separation (TES) 
algorithm (Hulley and Hook, 2010). Recent studies have shown that LST 
from ECOSTRESS was comparable to that from the existing thermal 
infrared instruments (Silvestri et al., 2020), and has high agreement 
with ground observations during the daytime (Li et al., 2020). The daily 
MODIS EVI throughout 2019 covering the study area was used to derive 
the annual mean EVI, which was used together with daily EVI corre-
sponding to the ECOSTRESS overpass days for predicting GPP. Both 
regional ECOSTRESS LST and EVI were downloaded using the Appli-
cation for Extracting and Exploring Analysis Ready Samples 
(AppEEARS) online portal (AppEEARS Team, 2020). The hourly SW and 
VPD corresponding to the ECOSTRESS overpass hours were obtained 
from ERA5 reanalysis dataset (Hersbach and Dee, 2016). For example, if 
ECOSTRESS overpassed California around 14:20, the hourly SW and 
VPD starting from 14:00 to 15:00 were used to represent the corre-
sponding radiation and atmospheric water conditions. ERA5 is the latest 
generation of global atmospheric reanalysis released by European 
Centre for Medium-Range Weather Forecasts (ECMWF). ERA5 data on 
single levels contain a variety of hourly meteorological variables at a 
horizontal resolution of 0.25

◦

× 0.25
◦

from 1979 to present. The VPD 
was calculated by the ERA5 2 m dewpoint temperature and 2 m air 
temperature. The land cover type was identified by the land cover 
product from NLCD 2016 recently released by U.S. Geological Survey 
(Yang et al., 2018). The NLCD land cover product was based on 30 m 
Landsat imagery with cloud cover less than 20% and has an overall 
agreement with reference data from 71% to 97%. 
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The MODIS EVI and ERA5 meteorological data were resampled to 70 
m resolution to match the resolution of ECOSTRESS LST using the 
bilinear interpolation method. For each 70-m grid cell, the land cover 
type was determined based on the nearest neighbor interpolation. 
Among these input variables, the very coarse spatial resolution of ERA5 
hourly data may affect the accuracy of the GPP estimates. Therefore, we 
evaluated the hourly ERA5 SW and VPD against flux tower data. Due to 
the very large number of hourly data points, we used the stratified 
sampling method and evaluated the data for 24 h in the first day of each 
month throughout 2018 for 44 sites with flux data available. Across all 
sites, ERA5 hourly SW (R2 = 0.90, RMSE = 89.18 W m− 2) and VPD (R2 

= 0.79, RMSE = 4.34 hPa) were strongly correlated with tower mea-
surements (Fig. S2a, b); at the site level, ERA5 SW and VPD were also 
strongly related to tower data for the majority of the sites (Fig. S2c, d). 
We also averaged hourly SW and VPD for 12 months for each site, and 
found that the site-averaged ERA5 hourly SW and VPD were also highly 
correlated with tower-averaged SW and VPD, respectively (R2 = 0.97, 
RMSE = 45.53 W m− 2 for SW and R2 = 0.75, RMSE = 3. 47 hPa for VPD; 
Fig. S3). Therefore, the accuracy of the ERA5 SW and VPD data was 
reasonable. 

2.4. Evaluation of ECOSTRESS GPP and analysis of diurnal cycles 

We first produced multiple 70-m resolution, instantaneous GPP maps 
for the central and northern California to examine the diurnal cycle of 
photosynthesis across biomes. We generated a total of nine images at 
different times of day during the summer from June to August 2019: 
5:48 am, 8:37 am, 9:51 am, 10:43 am, 12:15 pm, 1:54 pm, 3:32 pm, 6:01 
pm, and 7:43 pm local time. The acquisition time of the ECOSTRESS 
images was irregular because the instrument is aboard the ISS with an 
inclined, precessing orbit. These nine images could generally describe 
the changes in photosynthesis of vegetation over the course of one 
summer day. We then calculated regional averages of GPP for major 
biomes including deciduous forest, evergreen forest, mixed forest, 
cropland, wetland, shrubland and grassland to examine how the diurnal 
variations of photosynthesis varied across biomes. 

We compared the spatial pattern of ECOSTRESS GPP with those of 
midday SIF from the Orbiting Carbon Observatory-2 (OCO-2) and 
TROPOspheric Monitoring Instrument (TROPOMI). The SIF has proven 

as a strong proxy of photosynthesis (Li et al., 2018), and therefore the 
consistency in spatial patterns between ECOSTRESS GPP and OCO-2/ 
TROPOMI SIF based on qualitative evaluation can support the effec-
tiveness of ECOSTRESS GPP and also highlight its higher spatial reso-
lution. We compared our ECOSTRESS GPP at 1:54 pm, August 21, with 
SIF maps from TROPOMI (~12:10 pm, August 21) (Köhler et al., 2018) 
and OCO-2 (~12:55 pm) (Frankenberg et al., 2014). The OCO-2 SIF was 
aggregated over the interval from June to August 2019 due to the lack of 
OCO-2 overpass on the same day and the sparse coverage of OCO-2. It 
should be noted that the difference in the overpass time between ECO-
STRESS and OCO-2/TROPOMI could lead to significant difference in the 
instantaneous photosynthetic activity as indicated by GPP and SIF. 

We evaluated ECOSTRESS based GPP estimates for eight flux sites in 
California (Table 2). The LST data for all the ECOSTRESS overpasses 
over each site from 2018 to 2019 were obtained using the AppEEARS 
tool. We compared the extracted LST for the grid cell where each site 
was located and averaged LST from the neighboring pixels including 5 
× 5, 10 × 10, and 15 × 15 windows surrounding the site (i.e., ~350 m to 
1050 m away from the tower site) (Fig. S4). The difference in LST 
(RMSE) between the grid cell and the average from different windows 
was negligible and only slightly increased with window size, suggesting 
relatively homogeneous temperature conditions within the ~1 km × 1 
km window surrounding each site. Only cloud-free LST indicated by the 
L2 cloud mask product (ECO2CLD.001) was then used to predict GPP. 
ECOSTRESS does not provide its own cloud shadow layer. Since the 
Cubist model was constructed based on LST from GOES-R, we compared 
GOES-R LST with the ECOSTRESS LST for each site, and examined 
whether their difference would affect the GPP estimates. 

For four sites with different land cover types including US-Ton (Tonzi 
Ranch, woody savannas), US-Tw5 (East Pond Wetland, wetland), US-Bi1 
(Bouldin Island Alfalfa, cropland), and US-Snf (Sherman Barn, grass-
land), we further evaluated whether ECOSTRESS GPP could capture the 
diurnal cycle of tower based GPP. Such analysis could only be conducted 
by pooling together all the ECOSTRESS overpasses within a long tem-
poral window, such as one month or whole summertime, regardless of 
specific day because ECOSTRESS cannot provide temporally dense ob-
servations in one day or one week. Therefore, we predicted GPP at 
different times of day in August 2018 for the three sites (US-Ton, US-Bi1, 
US-Tw5), and compared them with mean hourly tower GPP of August 

Table 1 
List of the data used for the training of our predictive model and the estimation of GPP.  

Variables Training Prediction 

Product Spatial resolution Temporal resolution Product Spatial resolution Temporal resolution 

LST GOES-R ~2 km Hourly ECOSTRESS 70 m Instantaneous 
SW AmeriFlux / Half-hourly ERA5 0.25

◦

Hourly 
VPD AmeriFlux / Half-hourly ERA5 0.25

◦

Hourly 
Land Cover AmeriFlux / / NLCD 30 m / 
EVI MCD43A4 500 m Daily MCD43A4 500 m Daily  

Table 2 
Evaluation of instantaneous ECOSTRESS GPP for the eddy covariance flux sites in California.  

Site ID Lat Lon Biome N R2_e RMSE_e R2_g RMSE_g 

US-Bi1 38.10 − 121.50 CRO 88 0.88 4.40 0.90 4.21 
US-Bi2 38.11 − 121.54 CRO 38 0.95 5.14 0.95 5.32 
US-Snf 38.04 − 121.73 GRA 45 0.71 4.59 / / 
US-Ton 38.43 − 120.97 SAV 49 0.85 1.50 0.84 1.38 
US-Tw1 38.11 − 121.65 WET 87 0.96 1.96 0.95 2.10 
US-Tw4 38.10 − 121.64 WET 89 0.95 2.09 0.95 2.08 
US-Tw5 38.11 − 121.64 WET 76 0.99 1.10 0.99 1.10 
US-Var 38.41 − 120.95 GRA 53 0.53 1.97 0.60 1.76 
All / / / / 0.91 3.02 0.91 2.99 

N is the number of ECOSTRESS overpasses for each site; R2_e and RMSE_e are the measures for GPP predictions driven by ECOSTRESS LST, while R2_g and RMSE_g are 
the measures for GPP directly based on GOES-R LST. The units of RMSE are μmol CO2 m− 2 s− 1. The GOES-R LST was not used to predict GPP for the US-Snf site because 
US-Snf was surrounded by water within the footprint of GOES-R (2 km × 2 km). ECOSTRESS LST with much smaller footprint can better represent the temperature 
condition around this site. 
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2018. For US-Snf, we compared the predicted GPP and tower GPP at 
different times of day during June to July 2019 because there were few 
ECOSTRESS overpasses in August 2018. 

For the two cropland sites - US-Bi1 (Bouldin Alfalfa) and US-Bi2 
(Bouldin Corn), ECOSTRESS had dense observations during the pheno-
logical transition period of vegetation which offers a valuable oppor-
tunity to examine whether ECOSTRESS-based GPP estimates could track 
the change in diurnal cycle resulted from seasonal dynamics of vegeta-
tion phenology. We predicted GPP for US-Bi1 in two periods: day of year 
(DOY) 152–171 and DOY 275–305 in 2019. The first period includes the 
cutting and regrowth dates during the alfalfa growing season which has 
multiple and periodical harvesting across the year. The second period is 
the senescence stage of alfalfa in late autumn. For US-Bi2, we predicted 
GPP for the early (“green-up”) stage of the growing season (DOY 
145–171 in 2019). The year 2018 was selected for examining the diurnal 
cycle for the above four sites due to the availability of a number of 
ECOSTRESS overpasses, and the year 2019 was selected for examining 
the seasonal dynamics because the instrument provided continuous data 
from May to December 2019 while only about three months of data from 
July to mid-September were collected in 2018. 

Finally, we produced another group of instantaneous GPP maps for 
two times in different seasons: one was around midday and the other one 
was afternoon, which helped us examine whether ECOSTRESS GPP 
could also capture the seasonal variations of photosynthesis at the 
regional scale. Four GPP maps around midday in 2019 were generated: 
12:53 pm (June 6), 12:15 pm (August 25), 12:39 pm (October 5), and 
11:01 am (December 6), and other four images in the afternoon were 
acquired: 4:14 pm (May 30), 3:32 pm (August 17), 3:05 pm (October 

17), and 3:36 pm (December 16). The selected four maps for both times 
were used to represent four different seasons: early summer, summer, 
autumn, and winter, respectively. We did not generate GPP maps for 
spring 2019 because ECOSTRESS data were not available due to the 
issues with the ECOSTRESS recorders. 

3. Results 

3.1. Model evaluation 

We used the training dataset consisting of six explanatory variables 
(LST, SW, VPD, EVI, annual mean EVI, and land cover type) to develop 
the Cubist model, and found that Cubist performed well to develop the 
predictive GPP model (RE = 0.24, MAE = 1.22 μmol CO2 m− 2 s− 1, R =
0.94). We then used the testing tower GPP data to evaluate the perfor-
mance of the model. The scatterplots between half-hourly tower GPP 
and predicted GPP were shown in Fig. 4. Our model estimated half- 
hourly GPP fairly well (R2 = 0.88, RMSE = 2.42 μmol CO2 m− 2 s− 1), 
and only slightly underestimated GPP greater than 20 μmol CO2 m− 2 s− 1 

(Fig. 4a). The performance of the predictive GPP model was consistently 
strong across biomes (Fig. 4b–i). Among the eight biomes, R2 ranged 
from 0.80 to 0.90, and RMSE ranged from 0.82 to 4.24 μmol CO2 m− 2 

s− 1), indicating that our data-driven approach driven by ECOSTRESS 
LST and other input data could estimate instantaneous GPP fairly well 
for all the biomes. 

Fig. 4. The evaluation of the predictive model for the estimation of instantaneous GPP. (a) shows the scatterplot of tower GPP versus predicted GPP by ECOSTRESS 
for all the testing data (y = 0.88× + 0.33); (b-i) show the results separated by eight major biomes including evergreen needleleaf forests (ENF), deciduous broadleaf 
forests (DBF), mixed forests (MF), shrublands (SHR), savannas (SAV), grasslands (GRA), croplands (CRO), and wetlands (WET). All the relationships are statistically 
significant (p < 0.0001). The units of the RMSE are μmol CO2 m− 2 s− 1. The dashed line is the 1:1 line, and the solid line is the regression line. 
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Fig. 5. Magnitude and spatial patterns of predicted ECOSTRESS GPP at different times of day in summer 2019 across the Central Foothills and Coastal Mountains, 
Central Valley, Sierra Nevada and Coast Range in California. 

Fig. 6. Diurnal cycles of predicted ECOSTRESS GPP (μmol CO2 m− 2 s− 1) for the major biomes including deciduous forest, evergreen forest, mixed forest, cropland, 
wetland, shrubland and grassland. 
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3.2. Diurnal variations of ECOSTRESS GPP across California 

Fig. 5 shows the regional-scale diurnal variations in photosynthetic 
activity for four California ecoregions in summer. Plants started 
photosynthesis at sunrise when solar radiation was available (Fig. 5a). 
The GPP increased in the morning (Fig. 5b–d) with plenty of sunlight 
and favorable temperature and moisture conditions, and then peaked 
around midday (Fig. 5e, f). In the afternoon, the GPP began to decrease, 
and photosynthesis considerably slowed down and approached zero 
after sunset without sunlight (Fig. 5g–i). 

Fig. 5 also distinguishes the change in magnitude of photosynthesis 
for different biomes over the course of the day, and well captures the 
spatial variation of photosynthesis across different ecoregions. The for-
ests located in Coast Range and western Sierra Nevada (higher latitude) 
and croplands in Central California Valley had high productivity during 
the daytime (Fig. 5b–h). This was in stark contrast to the woodlands and 
grasslands in Central California Foothills and Coastal Mountains which 
had consistently lower photosynthesis (less than 10 μmol CO2 m− 2 s− 1) 
throughout the day. The croplands with the highest photosynthetic ca-
pacity were also highlighted, which had particularly high GPP values 
(more than 30 μmol CO2 m− 2 s− 1) from morning to early afternoon 
(Fig. 5c–g), and still maintained moderate GPP value around 20 μmol 
CO2 m− 2 s− 1 in the late afternoon (Fig. 5h). These highly productive 
croplands mainly include rice in northwestern Central Valley and cotton 
in southeastern Central Valley. We also averaged regional GPP for each 
major biome for these nine images at different times (Fig. 6). The 
regionally averaged ECOSTRESS GPP showed clear diurnal variations 
for all the biomes. Forests, cropland, and wetland had higher GPP than 
shrubland and grassland throughout the day. Among forests, evergreen 

forest had the highest productivity, followed by mixed forest and de-
ciduous forest. 

ECOSTRESS-based GPP estimates exhibited overall consistent spatial 
pattern with SIF from OCO-2 and TROPOMI (Fig. 7). Compared with the 
two SIF maps, ECOSTRESS GPP had spatially continuous coverage, and 
could also provide much more spatial details, which allows for exam-
ining photosynthesis at an individual field level and provides more ac-
curate characterization for the transition zones between different 
ecoregions. Although ECOSTRESS GPP exhibited overall consistent 
spatial pattern with SIF from OCO-2 and TROPOMI, SIF indicated higher 
photosynthetic capacity for croplands in the southeastern Central Valley 
relative to other biomes than did GPP. This is likely due to the fact that 
the ecosystems in California tend to have the highest photosynthetic 
activity around noon, while the overpass time of OCO-2 (~12:55 pm) 
and TROPOMI (~12:10 pm) was ~1 h and ~ 1.7 h earlier than that of 
ECOSTRESS (1:54 pm). More importantly, ECOSTRESS-based GPP could 
provide GPP estimates for different times of day, while OCO-2 and 
TROPOMI only provide SIF snapshots for the same time of day. 

3.3. Diurnal variations of ECOSTRESS GPP at the site level 

The predicted GPP driven by ECOSTRESS LST was highly correlated 
with tower GPP for most of the sites (R2 = 0.53–0.96, Table 2). We also 
predicted GPP directly using LST from GOES-R for the seven sites except 
for US-Snf, and found that the performance was very similar to that 
based on ECOSTRESS LST (two rightmost columns in Table 2). The LST 
from ECOSTRESS was strongly consistent with that from GOES-R 
(Fig. S4), although some differences were found for the US-Snf site 
that was surrounded by water within the footprints of GOES-R (2–3 km). 
This suggests that the temporal disagreement in LST between ECO-
STRESS and GOES-R at the site level was negligible and GOES-R LST 
could be used for the training of the GPP model. ECOSTRESS GPP per-
formed the best for cropland and wetland sites, while performed 
moderately for the US-Var site which had smaller diurnal variation of 
GPP during the non-growing season. 

Our predicted ECOSTRESS GPP was able to produce similar shapes of 
diurnal cycle of tower GPP for four flux sites with different land cover 
(Fig. 8). The time of onset, peak, and end of photosynthesis was well 
captured. US-Tw5 (wetland) and US-Bi1 (cropland) maintained high 
photosynthetic activity for a long time during the day (e.g., 9 am – 4 
pm), leading to relatively flat diurnal curves, especially near the peak. 
For US-Ton, a woody savanna site, photosynthesis peaked in the 
morning (about 10 am), and then decreased till the sunset. The ECO-
STRESS GPP captured such two contrasting diurnal changes of photo-
synthesis fairly well, although it showed fluctuations for US-Bi1 (12:00 
pm to 3 pm). For the grassland site - US-Snf (Fig. 8d), the ECOSTRESS 
GPP moderately overestimated the tower GPP, but it still showed 
consistent diurnal variation. Note that the large standard deviation of 
monthly averaged GPP for US-Bi1 resulted from a mix of high and low 
GPP as the leaf area index (LAI) of alfalfa changed quickly during the 
growing season (Fig. 8c). 

3.4. Seasonal variations in diurnal cycling of ECOSTRESS GPP 

The diurnal cycling of tower GPP varied with the seasonal growth of 
vegetation (Fig. 9). For example, at US-Bi2, the green-up of plants began 
around DOY 161 when the maximum GPP in the diurnal cycle signifi-
cantly increased; the peak instantaneous GPP approached to about 15 
μmol CO2 m− 2 s− 1 on DOY 171 (Fig. 9a, b). For US-Bi1, GPP suddenly 
dropped from 30 μmol CO2 m− 2 s− 1 on DOY 291 to near zero after DOY 
292 during autumn senescence (Fig. 9c, d). The predicted ECOSTRESS 
GPP, although not temporally continuous, well tracked the trajectory of 
tower GPP in such two different phenological stages of plant growth. 

For the alfalfa site (US-Bi1), ECOSTRESS GPP captured the multiple 
and periodical harvesting characteristic of alfalfa within one year 
(Fig. 10). The alfalfa had high productivity during DOY 152–159; the 

Fig. 7. Spatial patterns of predicted ECOSTRESS GPP (70 m) at 1:54 pm on 
August 21, 2019 (a), OCO-2 SIF (0.1

◦

) at ~12:55 pm aggregated from June to 
August 2019 (b), and TROPOMI SIF at ~12:10 pm on August 21, 2019 (c: 0.05

◦

; 
d: 0.1

◦

) across California. TROPOMI (740 nm) has higher SIF signal than OCO-2 
(757 nm). The units of GPP and SIF are μmol CO2 m− 2 s− 1 and W m− 2 μm− 1 

sr− 1, respectively. Please note that the difference (~1 h for ECOSTRESS versus 
OCO-2 and ~ 1.7 h for ECOSTRESS versus TROPOMI) in overpass time between 
ECOSTRESS and OCO2/TROPOMI can lead to significant differences in the 
spatial patterns between instantaneous GPP and instantaneous SIF. 
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maximum instantaneous GPP decreased to less than 5 μmol CO2 m− 2 s− 1 

during the period DOY 160–165 from the harvest to the replanting of 
alfalfa, and then increased during the next growth cycle (Fig. 10a). The 
cutting of alfalfa led to an increase in ambient temperature, which was 
revealed by both ECOSTRESS and GOES-R LST (Fig. 10b). 

Finally, we produced instantaneous GPP maps in different seasons to 
examine how instantaneous GPP varied with seasons. ECOSTRESS GPP 
exhibited clear seasonal variations at both midday and afternoon 
(Fig. 11). The majority of the grid cells showed high GPP in early 

Fig. 8. Diurnal cycles of tower GPP and ECOSTRESS GPP for 
(a) US-Tw5, (b) US-Ton, (c) US-Bi1, and (d) US-Snf. Blue 
curves denote averaged hourly tower GPP during August 2018 
(a-c) and June to July 2019 (d); red circles denote estimated 
ECOSTRESS GPP. The predicted GPP was strongly correlated 
with tower GPP: US-Tw5 (R2 = 0.99, p < 0.0001, RMSE = 1.1 
μmol CO2 m− 2 s− 1), US-Ton (R2 = 0.85, p < 0.0001, RMSE =
1.5 μmol CO2 m− 2 s− 1), US-Bi1 (R2 = 0.88, p < 0.0001, RMSE 
= 4.4 μmol CO2 m− 2 s− 1), and and US-Snf (R2 = 0.71, p <
0.0001, RMSE = 4.59 μmol CO2 m− 2 s− 1) (Table 2). (For 
interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)   

Fig. 9. Diurnal cycling of photosynthesis changes with plant phenology at the 
US-Bi1 and US-Bi2 sites. (a-b) show the dynamics of tower GPP, predicted 
ECOSTRESS GPP, and MODIS EVI during the green-up of plants for US-Bi2; (c- 
d) show these three variables during the senescence of plants for US-Bi1. Other 
sites were not included because there were very few or no ECOSTRESS over-
passes during these phenological stages in 2018 and 2019. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 10. Diurnal cycling of photosynthesis changes with the cutting and 
regrowth of alfalfa at the US-Bi1 site. (a) shows the dynamics of tower GPP and 
predicted ECOSTRESS GPP; (b) shows the changes in air temperature and LST. 
The shaded areas indicate the increase in temperature during the period from 
the harvest to the replanting of alfalfa. The predicted GPP on DOY 163 was 
much higher than tower GPP mainly because the 500-m MODIS EVI on that day 
contained information on the crop field in which the tower is located and 
neighboring fields that crops were not yet harvested. 
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summer and continued to increase by August. With the gradual senes-
cence of plants, the GPP showed small or intermediate values in the 
autumn and had the lowest values in winter due to the dormancy of 
deciduous plants. Evergreen forests in Sierra Nevada continued to 
conduct photosynthesis but with substantially reduced rates in the 
winter (Fig. 11d and h). 

4. Discussion 

This study provides the first demonstration of using the new ECO-
STRESS thermal observations for estimating instantaneous GPP over the 
course of the diurnal cycle at regional scales. Previous studies based on 
polar-orbiting satellites such as Landsat, Sentinel, Terra, Aqua, and 
OCO-2 can only estimate GPP at daily or 8-day time steps and coarse 
spatial resolutions (e.g., 1 km) (Running et al., 2004; Xiao et al., 2010; 
Zhao et al., 2005; Li and Xiao, 2019a). The ECOSTRESS-based GPP es-
timates in this study have two significant advantages which raise pre-
vious approaches to the next level: (1) measuring the sub-daily 
variations in ecosystem photosynthesis at the large scale and has the 
potential to extend globally (between 53.6

◦

N and 53.6
◦

S); and (2) 
depicting these variations at a fine spatial resolution (70 m). These were 
realized by an important variable LST provided by ECOSTRESS along 
with other vegetation and instantaneous meteorological variables. 

The ECOSTRESS-based GPP estimates well characterized the changes 
in photosynthetic activity over the course of the diurnal cycle across 
different ecoregions in California. The diurnal variations in GPP were 
driven by environmental (e.g., solar radiation, air temperature, soil 
moisture, VPD) and physiological (e.g., stomatal conductance) factors 
(Damm et al., 2010; Franco and Lüttge, 2002; Paul-Limoges et al., 2018). 
LST measures skin temperature of the surface including soil temperature 
for bare soil and canopy temperature for vegetation, and is a more useful 
measure of physiological activity of canopy leaves than air temperature 
(Sims et al., 2008). LST measured by ECOSTRESS has high spatial res-
olution (i.e., 70 m) at different times of day, and is also physiologically 
related to plant photosynthesis. Specifically, both low and high tem-
perature will affect the enzyme activity (e.g., Rubisco) and intercellular 

CO2 concentration that underlie the photosynthesis process (Ferrar 
et al., 1989; Fredeen and Sage, 1999; Allen and Ort, 2001). High tem-
perature will even lead to a reduction of stomatal conductance to pre-
vent further loss of water through transpiration, but at the expense of 
reduced photosynthesis (Ferrar et al., 1989; Xu et al., 2020). 

The diurnal amplitude of predicted GPP varied with ecosystems. 
Parts of the croplands with the highest instantaneous productivity were 
highlighted by ECOSTRESS GPP maps, which was consistent with the 
recent study that also reported the maximum GPP of some croplands 
during the day across the globe (Bodesheim et al., 2018). Shrubland and 
grassland had lower productivity due to their low vegetation cover or 
LAI. Tower-based GPP confirmed this wide range of photosynthetic ca-
pacity across biomes, indicating that our model was adept at simulating 
the highs and the lows. The predicted GPP, although produced at the 
sub-daily time scale, could also indicate the seasonal growth of plants. 
Plants experience large changes in vegetation structure (e.g., LAI or the 
absorbed fraction of photosynthetically active radiation, fPAR) during 
the critical phenological transition dates (e.g., start or end of growing 
season), which can cause apparent changes in productivity. For the 
harvesting of alfalfa, the cutting could also lead to the increase of 
ambient temperature. The proper use of predictor variables in our model 
including ECOSTRESS LST, vegetation, and environmental variables is 
essential for ensuring the consistency between estimated and tower GPP. 

The ECOSTRESS GPP enables the examination of instantaneous 
physiological variations of plants in response to environmental condi-
tions, such as high temperature, excessive radiation, and water stress. 
These important physiological characteristics would be easily obscured 
when analyses were conducted at daily or monthly scales. Our predicted 
ECOSTRESS GPP successfully produced the different shapes of diurnal 
courses which were in line with corresponding tower GPP. The “midday 
depression” phenomenon was observed at the woody savanna site - US- 
Ton (Fig. 8), which indicated the distinct reduction in GPP (or carbon 
exchange) at midday. This phenomenon was caused by high tempera-
ture and high VPD that was often linked to limited water supply (Damm 
et al., 2010), which led to the closure of stomata to conserve water at the 
expense of reduced carbon uptake. The midday depression was 

Fig. 11. Magnitude and spatial patterns of predicted ECOSTRESS GPP at midday (upper panel) and afternoon (lower panel) in early summer, summer, autumn, and 
winter across California. 
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discussed by previous studies based on in situ observations (Damm et al., 
2010; Lin et al., 2019a; Liu et al., 2017; Paul-Limoges et al., 2018), and 
found for different ecosystems such as grassland, mixed forest, and 
cropland (Damm et al., 2010; Paul-Limoges et al., 2018; Wagle and 
Kakani, 2014). Fig. S6 showed that the decrease of GPP at the US-Ton 
site was followed by the peak of incoming radiation, with progressive 
increase of air temperature and VPD from midday to 4 pm. The midday 
depression was not found for the other three sites with lower tempera-
ture and atmospheric water stresses. The response of photosynthesis to 
temperature was confounded by the covariations in light intensity, air 
dryness, and soil moisture across biomes (Ma et al., 2017). 

Our study well demonstrates the feasibility of using ECOSTRESS 
observations for predicting instantaneous GPP and the ability of ECO-
STRESS based GPP estimates for examining the variations in photo-
synthesis over the course of the diurnal cycle at regional scales. This 
method can also be extended to other regions or even the globe 
encompassing various climatic conditions and ecosystem types. When 
the global ECOSTRESS GPP covering one or two years is available in the 
near future, it will undoubtedly make great contributions to the scien-
tific community. The regional to global ECOSTRESS GPP will be valu-
able for various ecological studies. For example, it can indicate what 
time of the day plants “wake up” to begin photosynthesis and what time 
of the day they “sleep” and stop photosynthesis from space. The ECO-
STRESS GPP can help scientists understand how plants absorb carbon 
dioxide over the course of the day, how the magnitude and shape of 
diurnal course vary across latitude, plant species, and climatic zones, 
and how temperature and water stresses influence photosynthesis 
throughout the day. The instantaneous ECOSTRESS GPP is also essential 
for monitoring the water use efficiency (WUE) of plant throughout the 
day, which partly inspired our research in this study. Combined with the 
instantaneous ECOSTRESS ET (L3 product) (Fisher et al., 2015), ECO-
STRESS GPP can generate ‘real’ instantaneous WUE estimates, and help 
better address the scientific questions of the ECOSTRESS mission. With 
these products, scientists may better understand how plants use water 
for carbon uptake and identify critical thresholds of water use and water 
stress in climate-sensitive biomes globally. These instantaneous prod-
ucts have great potential for informing agricultural irrigation manage-
ment. For example, farmers can adjust the timing and location for crop 
irrigation. It also helps improve the ability of agricultural drought 
monitoring and can point out which areas and which biomes are more 
susceptible to drought. ECOSTRESS GPP for different times of day will 
also be valuable for benchmarking terrestrial biosphere models and 
Earth system models such as the Community Land Model (CLM) (Law-
rence et al., 2019) at the diurnal timescales. 

The combination of high-resolution ECOSTRESS LST (70 m), 
medium-resolution MODIS EVI (500 m), and much coarser ERA5 
meteorological data (0.25◦) in this study estimated GPP effectively for 
different times of day. For a given ECOSTRESS grid cell, the corre-
sponding 500 m MODIS EVI can contain information on not only the 
ECOSTRESS grid cell but also neighboring grid cells that may have 
different productivity, vegetation type, or phenology, likely leading to 
over- or under-estimation of GPP. In future work, finer-resolution EVI 
data from Landsat or Sentinel should be used to improve the accuracy of 
GPP. The overall match of EAR5 with tower measurements (Fig. S2–3) 
showed that the use of coarse-resolution ERA5 data had relatively small 
effects on the accuracy of GPP. However, ERA5 data were simply 
interpolated to 70-m resolution with a bilinear interpolation approach, 
and as a result, the “true” spatial resolution of the resulting GPP esti-
mates is coarser than 70 m. Future work could benefit from downscaling 
EAR5 with a better strategy. A potential strategy is to merge ERA5 with 
Daymet (https://daymet.ornl.gov), a daily, gridded meteorological 
dataset with 1-km spatial resolution, to generate a new dataset with 
hourly time step and 1-km spatial resolution. The hourly meteorological 
data with much finer resolution (e.g., 1 km) and EVI data with fine 
resolution (e.g., 30–70 m) could enhance the spatial details and ensure 
the fine spatial resolution of ECOSTRESS GPP. 

Despite the great potential, the ECOSTRESS GPP enables the moni-
toring of diurnal changes of photosynthesis by pooling together the 
observations at different times of day in multiple days (unusually longer 
than half a month), which is inherently limited by the overpass of 
ECOSTRESS. The variations in instantaneous GPP over such a period can 
be caused by not only the diurnal variations in photosynthesis but also 
day-to-day variations resulting from day-to-day changes in environ-
mental factors (e.g., meteorological variables), LAI, and phenology, 
which will likely complicate the analyses of diurnal variations. As 
mentioned earlier, the geostationary satellites (e.g., GOES-R, Himawari- 
8) can provide temporally dense observations within one day but with a 
coarse spatial resolution. High-frequency GOES-R LST data have 
recently been used to study the diurnal cycling of surface urban heat 
island in Boston (Chang et al., 2021). Synergistic use (i.e., data fusion) of 
LST from ECOSTRESS and geostationary satellites have the potential to 
maintain high resolution in both time and space and thereby better 
monitor the diurnal changes of photosynthesis. The combination of 
ECOSTRESS data with Landsat observations or thermal infrared space-
borne measurements from upcoming missions such as the Surface 
Biology and Geology (SBG) designated observable and Land Surface 
Temperature Monitoring (LSTM) mission from the European Space 
Agency (ESA) is also likely to produce more temporally dense images for 
better monitoring of plant photosynthesis. 

5. Conclusions 

This study is the first attempt to produce instantaneous GPP maps 
with fine spatial resolution (70 m) for different times of day using 
ECOSTRESS observations and to use the instantaneous GPP maps to 
examine the diurnal variations of photosynthesis across biomes at the 
regional scale. We used the instantaneous LST from ECOSTRESS, vege-
tation index from MODIS, hourly meteorological variables from ERA5, 
and land cover from the NLCD dataset along with a data-driven (or 
machine learning) method to predict instantaneous GPP. The predictive 
GPP model performed well for different biomes, with R2 ranging from 
0.80 to 0.90, and RMSE from 0.82 to 4.24 μmol CO2 m− 2 s− 1. The pre-
dicted ECOSTRESS GPP maps well captured the variations of photo-
synthesis over the course of the diurnal cycle, and clearly depicted the 
differences in photosynthetic capacity for different biomes throughout 
the day. The ECOSTRESS GPP also indicated the varying photosynthesis 
of plants during key phenological transition periods. Future work is 
needed to increase the temporal density of the instantaneous GPP esti-
mates for different times of day with more frequent satellite data (e.g., 
geostationary satellites such as GOES-R and Himawari-8) and to 
strengthen the spatial resolution of the GPP estimates with finer- 
resolution EVI (e.g., Landsat, Sentinel) and meteorological reanalysis 
data. ECOSTRESS GPP will have strong potential for ecological appli-
cations. It will be useful for understanding how plants absorb carbon 
over the course of the diurnal cycle. In combination with instantaneous 
ECOSTRESS ET, it will also allow us to how plants use water and how 
plant water use efficiency varies throughout the day. ECOSTRESS GPP is 
also useful for benchmarking terrestrial biosphere and Earth system 
models at diurnal timescales. 
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Taylor, T.E., 2014. Prospects for chlorophyll fluorescence remote sensing from the 
Orbiting Carbon Observatory-2. Remote Sens. Environ. 147, 1–12. 

Fredeen, A., Sage, R., 1999. Temperature and humidity effects on branchlet gas-exchange 
in white spruce: an explanation for the increase in transpiration with branchlet 
temperature. Trees 14, 161–168. 

Gilabert, M., Moreno, A., Maselli, F., Martínez, B., Chiesi, M., Sánchez-Ruiz, S., García- 
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Köhler, P., Frankenberg, C., Magney, T.S., Guanter, L., Joiner, J., Landgraf, J., 2018. 
Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: first 
results and intersensor comparison to OCO-2. Geophys. Res. Lett. 45, 
10,456–410,463. 

Lawrence, D.M., Fisher, R.A., Koven, C.D., Oelson, K.W., Swenson, S.C., et al., 2019. The 
Community Land Model version 5: Description of new features, benchmarking, and 
impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287. 

Li, K., Guan, K., Jiang, C., Wang, S., Peng, B., Cai, Y., 2020. Validation of land surface 
temperature products from MODIS, ECOSTRESS, Landsat, GOES-R, VIIRS and 
Sentinel-3 benchmarked on in situ measurements in the US Corn Belt. In: AGU Fall 
Meeting 2020. AGU. 

Li, X., Xiao, J., 2019a. Mapping photosynthesis solely from solar-induced chlorophyll 
fluorescence: A global, fine-resolution dataset of gross primary production derived 
from OCO-2. Remote Sens. 11, 2563. https://doi.org/10.3390/rs11212563. 

Li, X., Xiao, J., 2019b. A global, 0.05-degree product of solar-induced chlorophyll 
fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11, 
517. https://doi.org/10.3390/rs11050517. 

Li, X., Xiao, J., 2020. Global climatic controls on interannual variability of ecosystem 
productivity: Similarities and differences inferred from solar-induced chlorophyll 
fluorescence and enhanced vegetation index. Agric. For. Meteorol. 108018. 

Li, X., Xiao, J., He, B., Altaf Arain, M., Beringer, J., Desai, A.R., Emmel, C., Hollinger, D. 
Y., Krasnova, A., Mammarella, I., 2018. Solar-induced chlorophyll fluorescence is 
strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First 
global analysis based on OCO-2 and flux tower observations. Glob. Chang. Biol. 24, 
3990–4008. 

Lin, C., Gentine, P., Frankenberg, C., Zhou, S., Kennedy, D., Li, X., 2019a. Evaluation and 
mechanism exploration of the diurnal hysteresis of ecosystem fluxes. Agric. For. 
Meteorol. 278, 107642. 

Lin, S., Li, J., Liu, Q., Li, L., Zhao, J., Yu, W., 2019b. Evaluating the effectiveness of using 
vegetation indices based on red-edge reflectance from Sentinel-2 to estimate gross 
primary productivity. Remote Sens. 11, 1303. 

Liu, J., Chen, J., Cihlar, J., Park, W., 1997. A process-based boreal ecosystem 
productivity simulator using remote sensing inputs. Remote Sens. Environ. 62, 
158–175. 

Liu, L., Guan, L., Liu, X., 2017. Directly estimating diurnal changes in GPP for C3 and C4 
crops using far-red sun-induced chlorophyll fluorescence. Agric. For. Meteorol. 232, 
1–9. 

Ma, S., Osuna, J.L., Verfaillie, J., Baldocchi, D.D., 2017. Photosynthetic responses to 
temperature across leaf–canopy–ecosystem scales: a 15-year study in a Californian 
oak-grass savanna. Photosynth. Res. 132, 277–291. 
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Turner, A.J., Köhler, P., Magney, T.S., Frankenberg, C., Fung, I., Cohen, R.C., 2020. 
A double peak in the seasonality of California’s photosynthesis as observed from 
space. Biogeosciences 17, 405–422. 

Wagle, P., Kakani, V.G., 2014. Environmental control of daytime net ecosystem exchange 
of carbon dioxide in switchgrass. Agric. Ecosyst. Environ. 186, 170–177. 
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