
 on October 8, 2018http://rstb.royalsocietypublishing.org/Downloaded from 
rstb.royalsocietypublishing.org
Research
Cite this article: Luo X et al. 2018 The

impact of the 2015/2016 El Niño on global

photosynthesis using satellite remote sensing.

Phil. Trans. R. Soc. B 373: 20170409.

http://dx.doi.org/10.1098/rstb.2017.0409

Accepted: 3 September 2018

One contribution of 22 to a discussion meeting

issue ‘The impact of the 2015/2016 El Niño on

the terrestrial tropical carbon cycle: patterns,

mechanisms and implications’.

Subject Areas:
ecology, environmental science

Keywords:
ENSO, gross primary productivity, solar-induced

fluorescence

Authors for correspondence:
Xiangzhong Luo

e-mail: xzluo@lbl.gov

Trevor F. Keenan

e-mail: trevorkeenan@lbl.gov
& 2018 The Author(s) Published by the Royal Society. All rights reserved.
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.

figshare.c.4229402.
The impact of the 2015/2016 El Niño on
global photosynthesis using satellite
remote sensing

Xiangzhong Luo1,2, Trevor F. Keenan1,2, Joshua B. Fisher3,
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The El Niño-Southern Oscillation exerts a large influence on global climate

regimes and on the global carbon cycle. Although El Niño is known to be

associated with a reduction of the global total land carbon sink, results

based on prognostic models or measurements disagree over the relative

contribution of photosynthesis to the reduced sink. Here, we provide an inde-

pendent remote sensing-based analysis on the impact of the 2015–2016 El

Niño on global photosynthesis using six global satellite-based photo-

synthesis products and a global solar-induced fluorescence (SIF) dataset.

An ensemble of satellite-based photosynthesis products showed a negative

anomaly of 20.7+1.2 PgC in 2015, but a slight positive anomaly of

0.05+0.89 PgC in 2016, which when combined with observations of the

growth rate of atmospheric carbon dioxide concentrations suggests that the

reduction of the land residual sink was likely dominated by photosynthesis

in 2015 but by respiration in 2016. The six satellite-based products unani-

mously identified a major photosynthesis reduction of 21.1+0.52 PgC

from savannahs in 2015 and 2016, followed by a highly uncertain reduction

of 20.22+0.98 PgC from rainforests. Vegetation in the Northern Hemisphere

enhanced photosynthesis before and after the peak El Niño, especially in

grasslands (0.33+0.13 PgC). The patterns of satellite-based photosynthesis

ensemble mean were corroborated by SIF, except in rainforests and South

America, where the anomalies of satellite-based photosynthesis products

also diverged the most. We found the inter-model variation of photosynthesis

estimates was strongly related to the discrepancy between moisture forcings

for models. These results highlight the importance of considering multiple

photosynthesis proxies when assessing responses to climatic anomalies.

This article is part of a discussion meeting issue ‘The impact of the 2015/

2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms

and implications’.

1. Introduction
The biosphere of the Earth currently functions as a net carbon sink that offsets

around 30% of anthropogenic CO2 emissions [1]. The ability to predict carbon

sink dynamics is thus essential to understanding the future evolution of a chan-

ging climate. Multiple streams of evidence from atmospheric CO2 observations

[2], ground biomass measurements [3,4], remote sensing (RS) [5,6] and Dynamic

Global Vegetation Models (DGVMs) [1,7] unanimously suggest the terrestrial
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carbon sink has been increasing thanks to the effect of elevated

CO2 [7,8] and prolonged vegetation growing seasons [9].

Meanwhile, their estimates of year-to-year variation of the

terrestrial carbon sink differ markedly [10]. Since the land–

atmosphere CO2 flux in tropics contributes the majority of

the variability in the terrestrial carbon cycle [11–13], El Niño-

South Oscillation (ENSO), a key mode that alternates the

tropical climate between dry and wet states, provides a critical

opportunity to study carbon cycle variability. El Niño impacts

the tropical terrestrial carbon cycle through temperature [14],

droughts [15], fires [16] and tree mortality [17]. In addition,

El Niño influences the global climate and places a large con-

straint on the carbon cycle of extratropical regions through

teleconnections [18,19].

In the El Niño phase, tropical regions experience

anomalously high temperatures and low precipitation. High

temperatures can either suppress photosynthesis [20] or

enhance respiration [21] to reduce the terrestrial carbon sink,

while changes in hydroclimate can affect the local sensitivities

of photosynthesis and respiration to temperature [22,23].

Though it is known that El Niño is linked to reduced net eco-

system productivity (NEP), attribution to specific carbon

processes responsible remains challenging [24], particularly

in terms of the relative contribution of changes in gross

primary productivity (GPP), ecosystem respiration (Reco),

autotrophic respiration of vegetation (Ra), heterotrophic

respiration (Rh) and net primary productivity (NPP) (NEP ¼

GPP 2 Reco ¼ GPP 2 Ra 2 Rh ¼NPP 2 Rh).

At the global scale, Jones et al. [25] used a general circulation

model HadCM3LC to find that El Niño reduced NEP by

1.8 Pg yr21 per 8C rise in the tropical Pacific sea surface tempera-

ture, and GPP, Ra and Rh contributed 33%, 25% and 42% to the

decrease, respectively. In comparison, Cavaleri et al. [26] reported

that GPP, Ra and Rh contributed 55%, 11% and 34% to the NEP

reduction in a tropical forest during the 1997–1998 El Niño,

respectively, using multiple ground-based measurements.

Some studies running a prognostic DGVM VEgetation–

Global–Atmosphere–Soil (VEGAS) reported different results,

where NPP and Rh accounted for 68–75% and 25–32% of the

NEP decrease in tropics, respectively [11,27]. In addition, a

recent study reported that El Niño not only reduced GPP in tro-

pics but also enhanced GPP in temperate regions of South and

North America, through analysing the teleconnection between

an ensemble of GPP of nine DGVMs and ENSO [18]. The

ENSO—carbon response is also dependent on the distinct charac-

teristics of each El Niño. For example, a recent study using the

DGVM VEGAS and atmospheric inversions suggested that

decreased GPP dominated the NEP reduction during the 1997–

1998 El Niño, but increased Reco dominated in 2015–2016; in

2015–2016, GPP of tropical Africa was reported to have increased

and compensated the decrease of GPP over other tropical regions

[28]. Therefore, it is still challenging to attribute the NEP decreases

during El Niño to specific carbon processes.

While many studies rely on DGVMs and their ensemble to

study the impact of El Niño, RS-based proxies of GPP provide a

potential independent constraint for impact assessment. RS indi-

ces, including Normalized Difference Vegetation Index (NDVI)

and Enhanced Vegetation Index (EVI), and RS-derived biophysi-

cal variables, including Leaf Area Index (LAI) and a fraction of

Absorbed Photosynthetic Active Radiation (fAPAR), have been

extensively used to estimate NPPand GPP [7,29,30]. Some studies

have looked into the relationship between ENSO and satellite-

based photosynthesis. Hashimoto et al. [31] found the interannual
variability of NPP derived from an Advanced Very High Resol-

ution Radiometer (AVHRR) light use efficiency (LUE) model

was significantly related to ENSO during 1982 to 1999, particu-

larly at low latitudes. Gonsamo et al. [19] further reported that

ENSO strongly influenced NPP anomalies at the continental

scale but exerted a weak control at the global scale, using a 30

years NDVI sequence as a proxy for NPP, while Ballantyne

et al. [32] examined MODerate resolution imaging spectroradi-

ometer (MODIS) GPP and found that high temperatures in El

Niño years were more likely to enhance global Rh while GPP

was relatively unaffected. Each of these studies, however, derived

their conclusions from only one GPP proxy, without considering

how results were influenced by proxy choice.

Solar-induced fluorescence (SIF) are photons in the wave-

length around 660 to 800 nm that are emitted through the

de-excitation of excited leaf chlorophyll molecules, which are

simultaneously responsible for providing energy to photo-

synthesis [33]. SIF has spurred intense interest in the carbon

research community in recent years, because several groups

have found significant correlations between satellite-measured

SIF and ground-based estimates of GPP [34,35]. SIF is therefore

regarded as another benchmark to evaluate the variability of ter-

restrial GPP. Currently, multiple global SIF observations are

available, including the Global Ozone Monitoring-2 (GOME-2)

sensor onboard the Meteorological Operational Satellites

MetOp-A and MetOp-B, the Greenhouse Gases Observing Satel-

lite (GOSAT) and the Orbiting Carbon Observatory-2 (OCO-2).

Some groups have exploited SIF for El Niño studies: Liu et al.
[24] employed GOSAT SIF along with column CO2 fraction

observed by GOSAT and OCO-2 in tropical forests to find that

the 2015–2016 El Niño reduced NEP in spatially different

ways: the NEP reductions in Amazon, tropical Africa and tropi-

cal Asia were driven by decreased GPP, increased Reco and wild

fires, respectively. A recent study found Amazon ecosystems

experienced an 8.2% decrease in photosynthesis during the

drought of 2015–2016 El Niño, using GOME-2 SIF as an indi-

cator for photosynthesis [36], though a later study suggested

the SIF decrease is an artefact [37]. As a direct proxy of photo-

synthesis, SIF products can provide new understanding with

respect to the impacts of El Niño at various scales.

Here, we assess the impact of the 2015–2016 El Niño event

on global photosynthesis using a suite of six different RS GPP

products and a SIF dataset. Using an ensemble of RS GPP pro-

ducts can minimize the inherent uncertainty associated with an

individual model that may or may not be an outlier of a com-

munity of models. The 2015–2016 El Niño was one of the

strongest El Niño events on the record since the late twentieth

century, with extreme heat and drought being reported

in many tropical regions [38,39]. It lasted around 15 months

from March 2015 to May 2016, with the peak appearing

around October 2015 to February 2016 [40]. It provides a rare

window where multiple satellite observations and RS GPP

products overlapped with an El Niño event.
2. Material and methods
(a) The MODerate resolution imaging spectroradiometer

gross primary productivity products (collection 55
and 6)

The MODIS GPP product is the first operational, near-real-time

estimate of GPP for the vegetated land surface. It adopts the

http://rstb.royalsocietypublishing.org/
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LUE theory proposed by Monteith [41,42] to calculate GPP as a

product of absorbed photosynthetic radiation (APAR) and a con-

version efficiency, 1:

GPP ¼ 1�APAR ¼ 1� fAPAR� PAR,

where 1 is prescribed using a biome-specific lookup table and

constrained by air temperature and vapour pressure deficit

(VPD) for suboptimal climatic conditions [43]. PAR is photosyn-

thetic active radiation, and fAPAR is the fraction of absorbed

PAR derived from MODIS NDVI.

The Numerical Terradynamic Simulation Group (NTSG) at the

University of Montana provides a version of MODIS GPP (MOD17

collection 55) for ecological studies, which rectifies the underesti-

mation of GPP incurred by cloud-contaminated fAPAR pixels in

the near-real-time MODIS GPP product (MOD17 collection 5)

[29]. NTSG uses National Centers for Environmental Prediction

(NCEP) Reanalysis II (http://www.ntsg.umt.edu/project/modis/

mod17.php) to drive the GPP algorithm and has been updated

to 2015. This product is denoted as MODIS-c55 in this study. It

is provided at a monthly step and 0.58 resolution.

We also used a new release of MODIS GPP (MOD17 collection

6) from 2001 to 2016, with an original resolution of 500 m and a

time interval of 8 days. We upscaled the product to 0.58 resolution

and a monthly step. This product is denoted as MODIS-c6 in this

study. PAR and other surface meteorological variables provided

by the Global Modeling and Assimilation Office (GMAO) are

used to simulate MODIS-c6 GPP. The MODIS-c6 GPP was gener-

ally 5–10 PgC yr21 smaller than the MODIS-c55 GPP, which was

also noted in Zhang et al. [44]. The direct effect of CO2 fertilization

on 1 is not considered in MODIS-c55 and MODIS-c6 [45].

In order to extend the MODIS-c55 GPP to 2016, we used a

simple ratio method to extrapolate 2016 MODIS-c6 GPP into

2016 MODIS-c55 GPP pixel by pixel. The ratio for each pixel

was acquired based on the 2015 MODIS-c55 and MODIS-c6

GPP, assuming the systematic difference between the GPP of

MODIS-c55 and MODIS-c6 in 2016 resembled that in 2015 the

most. This method can cause an uncertainty of 1.6 PgC for the

extrapolated 2016 MODIS-c55 GPP if choosing a different year

to calculate the ratios.

(b) Vegetation photosynthesis model
Similar to the MODIS GPP model, the vegetation photosynthesis

model (VPM) is developed based on LUE theory [46]. The VPM

updates the biome-specific lookup table used by the MODIS

model and uses EVI as a proxy to calculate fAPAR, in an attempt

to account for the effect of leaf chlorophyll rather than just leaf

quantity [46]. Like most LUE-based models, VPM does not expli-

citly consider the effect of CO2 fertilization in the model [45].

VPM uses air temperature from the NCEP Reanalysis II [44]

gridded meteorological dataset and a satellite-derived Land Sur-

face Water Index (LSWI) [47] to constrain 1. VPM GPP is

available from 1980 to 2016 at 0.58 and a monthly resolution.

(c) Breathing earth system simulator
Breathing earth system simulator (BESS) is a satellite-driven diag-

nostic model built on the enzyme kinetic framework designed by

Farquhar et al. [48] to estimate global GPP and evapotranspiration

[49,50]. BESS integrates algorithms for atmospheric radiative trans-

fer, two-leaf canopy radiative transfer, photosynthesis and surface

energy balance with a wide range of MODIS products, including

physical variables (i.e. MODIS aerosol, cloud, atmospheric profile

(e.g. VPD) and land surface temperature (LST)) and biophysical

variables (i.e. LAI and clumping index). BESS considers the

effect of CO2 fertilization by using spatially and temporally vary-

ing atmospheric CO2 in the model. In this study, the BESS model

used air temperature acquired from ERA Interim (ERAI). Two

snapshot estimates (Terra and Aqua) of GPP were upscaled
to daily sums using a simple cosine function [51]. We used

the BESS GPP products from 2000 to 2016 at a monthly and 0.58
resolution (http://environment.snu.ac.kr/bess_flux/).

(d) Photosynthesis-respiration model
The photosynthesis-respiration (PR) model is an LUE model devel-

oped from first principles of the photosynthetic theory [52]. It

applies the least cost and the coordination hypotheses to convert

the popular biochemical photosynthesis model [48] into an LUE

form [7,53]. The effect of CO2 fertilization on GPP is explicitly con-

sidered in the PR model. In this study, the PR model uses fAPAR

derived from AVHRR third generation NDVI by Global Inventory

Modeling and Mapping Studies (GIMMS) [54], following Keenan

et al. [7]. The meteorological forcings for the PR model, including

total photosynthetic active radiation, air temperature and water

vapour potential, were provided by the Climate Research Unit

(CRU) at a monthly and 0.58 resolution [55].

(e) Boreal ecosystem productivity simulator
Boreal ecosystem productivity simulator (BEPS) is a terrestrial bio-

sphere model built on the enzyme kinetic framework designed by

Farquhar et al. [48], to estimate global carbon fluxes and evapotran-

spiration [56,57]. BEPS integrates algorithms for two-leaf canopy

radiative transfer, photosynthesis, surface energy balance and

soil water regime with satellite-derived biophysical variables (i.e.

LAI and clumping index) [58]. The effect of CO2 fertilization on

GPP is explicitly considered in BEPS. In this study, we used a ver-

sion of BEPS run at the daily step [56]. The meteorological forcings

for the BEPS model are daily maximum temperature, minimum

temperature, precipitation, radiation and relative humidity

acquired from CRU-NCEP. We used the BESS GPP estimation

from 2000 to 2016 at a monthly and 0.58 resolution.

( f ) Solar-induced fluorescence
We collected four SIF datasets for this study, namely, GOME-2

onboard MetOp-A (GOMEA) and onboard MetOp-B (GOMEB),

GOSAT and OCO-2. GOMEA ranges from January 2007 to Decem-

ber 2016, GOMEB ranges from March 2013 to December 2016,

GOSAT ranges from April 2009 to May 2016 and OCO-2 ranges

from September 2014 to December 2016. OCO-2 SIF was pro-

cessed from OCO-2_L2_Lite_SIF (V8r) and GOSAT SIF was

processed from ACOS_L2_Lite_FP (V7.3). Monthly SIF 0.58gridded

data were generated by averaging observations in its latitude and

latitude bounds for each 0.58 pixel for both OCO-2 and GOSAT.

All flags were applied before processing the gridded data for quality

control. GOMEA and GOMEB SIF were processed from GOME-2

v. 2 (V27) 740 nm terrestrial chlorophyll fluorescence data from

MetOp-A and MetOp-B. Its monthly SIF data products were then

generated by cropping land area and pixel values were capped

between 0 and 3 mW m22 nm21 sr21 for quality control. Only

GOMEA SIF is long enough for analyzing interannual variations

in this study.

(g) Gridded meteorological datasets
RS GPP models were driven by gridded meteorological datasets of

different types, including CRU, CRU-NCEP, NCEP Reanalysis II

and ERAI. Along with these datasets, we also assessed the tempera-

ture, precipitation, VPD and PAR records from the Modern-Era

Retrospective analysis for Research and Applications (Version 2;

MERRA2) and the Tropical Rainfall Measuring Mission (TRMM),

to support an attribution analysis of the potential difference

between RS GPP estimates. Among these gridded datasets, NCEP,

ERAI, MERRA2 are reanalysis, CRU is based on in situ observations,

TRMM is an RS product, and CRU-NCEP is a combination of reana-

lysis and observations. ERAI and CRU were downloaded at 0.58;
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TRMM was at 0.25� 0.258 and we downscaled it using average

values within each 0.58 cell; MERRA2 was at around 0.58 � 0.68
and was converted to 0.58 � 0.58 using nearest neighbour interp-

olation. NCEP and CRU-NCEP were interpolated from 1.8758 �
1.8758 to 0.58 � 0.58 using linear interpolation. All meteorological

datasets are temporally aggregated to the monthly step.

(h) Plant functional types
In order to explore the ecoregion-specific response to El Niño, we

used the plant functional types (PFTs) classified by the MODIS

Land Cover maps [59] curated at 0.58. For each 0.58 grid cell,

we used the PFT that was most prevalent during the period

2000–2012. The acronyms for PFTs used in this study are EBF

(evergreen broadleaf forest), DF (deciduous broadleaf forest

and deciduous needleleaf forest), ENF (evergreen needleleaf

forest), MF (mixed forest), CRO (cropland), SAV (savannah and

woody savannah), GRA (grassland), SH (closed shrubland and

open shrubland) and WET (wetland).

(i) Global carbon budget
We used global carbon budget data from the Global Carbon Pro-

ject [1] to quantify the total carbon sink reductions in 2015 and

2016. The Global Carbon Project dataset is a compilation of esti-

mates of all major components of the global carbon budget,

based on the combination of observations, statistics and model

estimates. In this study, NEP was estimated from the residual

of fossil fuel emission, land use change, atmospheric CO2

growth and the ocean sink.

( j) Statistical analysis
Anomalies of RS GPP and SIF were calculated using the mean GPP

or SIF of the available years of each dataset as the baseline, except

for the OCO-2 SIF, which only has 2 years of record. We further

detrended each dataset to remove the effects of factors other than

climate (i.e. CO2 fertilization and growing season changes) on

carbon uptake, using background linear trend of the dataset as

the baseline. Detrended SIF also removed the artefact degradation

in SIF signals from GOME-2 [37]. Note that the detrended anomaly

is relative to the linear trend, and therefore is sensitive to the period

chosen to define the trend. Here we used all available records (less

than 18 years) of each product to quantify its respective linear

trend, but acknowledge that the use of a longer timescale could

potentially affect the results. In addition, using an ensemble of

RS GPP products allows for the quantification of uncertainties

and identification of mean behaviour of RS products.

We used one-tailed Student’s t-test to quantify the significance

of GPP changes during the El Niño event, by detecting whether the

ensemble of detrended RS GPP anomalies (n ¼ 6) is statistically

larger or smaller than 0 ( p , 0.05). If the null hypothesis is rejected,

then we regard the model ensemble as identifying a significant

GPP anomaly, and the members of the ensemble are consis-

tent with each other because their anomalies are likely in one

direction. Based on the detrended anomalies of GPP and SIF, we

further calculated the Z score for each product using the equation:

z ¼ (x 2 m)/s, where x is a variable, m and s are the mean and the

s.d. of the variable. We used the Z score to evaluate the consistency

and inconsistency between models.
3. Results
(a) The impact of El Niño on global gross primary

productivity
In order to assess the extent of the response in an individual

time period, it is necessary to characterize background
variability and baseline GPP. All RS GPP products except

MODIS-c55 demonstrated continuously increasing trends

from 2000 to 2016 ( p , 0.05) (figure 1a). The slopes of the

trends were 0.41+0.11, 0.48+0.16, 0.62+0.10, 0.06+0.09,

0.30+0.13 and 0.41+0.09 PgC yr22 for the PR model, BESS,

BEPS, MODIS-c55, MODIS-c6 and VPM, respectively. Mean-

while, GOMEA and GOMEB SIF showed negative trends,

due to a known issue of instrument degradation onboard the

GOME-2 [60]. GOSAT SIF did not show a statistically signifi-

cant trend during 2007 to 2015. OCO-2 has been operating

for a short period since late 2014, but it captured an increase

in global SIF from 2015 to 2016 (figure 1a).

To explore the impact of El Niño on GPP, we detrended

the annual GPP to remove the impact of CO2 fertilization,

lengthening growing seasons and the long-term climate trend.

The six RS GPP products displayed different magnitudes of

background variability (figure 1b): the s.d. of detrended GPP

anomalies from the largest to the smallest was 1.41 PgC yr21

for BESS, 1.02 PgC yr21 for the PR model, 1.01 PgC yr21

for MODIS-c6, 0.95 PgC yr21 for BEPS, 0.85 PgC yr21 for

VPM and 0.75 PgC yr21 for MODIS-c55. GOMEA SIF, the

only long-term SIF product available during El Niño, had a

background variability of 0.063 mW m22 nm21 sr21. The

detrended GPP anomalies of the six RS products and

the detrended SIF anomaly of GOMEA followed a Gaussian

distribution ( p , 0.05, Shapiro–Wilk test [61]).

We found large discrepancies between model estimates on

the global impact of El Niño at the annual scale (figure 1b;

electronic supplementary material, figure S1). In 2015, the

detrended GPP anomalies from different models ranged

between 21.98 and 20.43 PgC, with the exception of the VPM

model, which showed a strong positive detrended anomaly of

1.51 PgC. In 2015, the model ensemble was 20.7+1.2 PgC. In

2016, GPP estimated from different models distributed in a

wider range from 21.00 to 1.15 PgC, with the ensemble mean

of 0.05+0.89 PgC. In 2016, The PR model and the VPM

model showed negative detrended GPP anomalies, BESS

and MODIS-c6 showed positive anomalies and BEPS and

MODIS-c55 showed almost neutral anomalies (figure 1b).

To put our calculation of GPP anomalies into the context

of the global carbon cycle, we calculated the anomalies of

NEP as the residual of anthropogenic emissions, atmospheric

growth and ocean sink [1] and detrended the NEP anomalies

from 2000 to 2016 to remove the long-term trend of increasing

uptake. In 2015 and 2016, the detrended NEP anomalies

were 21.16+ 0.47 PgC and 21.38+0.87 PgC, respectively

(electronic supplementary material, figure S2). Using the

ensemble mean of detrended GPP and NEP anomalies, we

found that the GPP accounted for 60% of the NEP reduction

in 2015, but made no contribution to the NEP reduction in

2016. This implies that an increase in Reco and biomass burn-

ing likely dominated the reduction in the carbon sink in 2016.

(b) Regional distribution of gross primary productivity
anomalies in the El Niño years

Although the detrended anomalies of the RS GPP products

differed at the global scale, significant anomalies were evi-

dent using the ensemble of GPP products at some regions

(figure 2). The ensemble of RS GPP identified significant

changes in photosynthesis (one-tailed t-test, p , 0.05) over

53% and 52% of the vegetated land surface in 2015 and

2016, respectively (figure 2c,d). The RS GPP ensemble mean

http://rstb.royalsocietypublishing.org/
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identified significant photosynthesis changes over large areas

in the Southern Africa, Australia, temperate Eurasia and

North America and small parts of the eastern Amazon.

Meanwhile, the ensemble of RS GPP products cannot provide

reliable estimates over some key regions such as the rainfor-

ests in west Amazon and tropical Asia. If we only consider

the pixels that show significant GPP anomalies, the ensemble

means of global GPP detrended anomaly were 20.76+0.45

and 0.51+0.61 PgC in 2015 and 2016, respectively, again

suggesting the different response of photosynthesis to

El Niño in 2015 and 2016.

The map of GOMEA SIF anomalies identified hotspots of

GPP anomalies that are similar to the ensemble mean of RS

estimates (figure 2). Both SIF and the ensemble mean of

RS estimates indicated that southern Africa, eastern Australia

and central Europe in 2015 and Western Australia, India and

central Africa in 2016 experienced reductions in photo-

synthesis. However, for some regions, such as tropical

America, SIF demonstrated a rather different landscape of

anomaly than the RS ensemble mean. Overall, the global dis-

tribution of SIF detrended anomalies (figure 2e,f ) was

significantly correlated to the detrended anomalies of GPP

ensemble, with spatial correlation coefficients of 0.26 and

0.27 in 2015 and 2016 ( p , 0.05), respectively.

At the regional scale, our results showed marked GPP

reductions in Africa and savannahs (SAV) during the 2015–

2016 El Niño, which was unanimously supported by all RS

models and SIF (figure 3). In 2015, all continents except

North America and Asia showed negative GPP anomalies.
With the evolution of the El Niño event, global photosynthesis

increased in 2016 except for a persistent large drop in Africa.

The total GPP decrease contributed by Africa was around

21.24+0.33 PgC, more than double the South America GPP

decrease (20.55+0.72 PgC). In both years of El Niño, we

found that the majority of GPP decrease came from savannahs,

whose contribution (21.1+0.52 PgC) surpassed the highly

uncertain GPP reduction of evergreen broadleaf forests (EBF)

(20.22+0.98 PgC). Meanwhile, the GPP of grasslands

(GRA) and croplands (CRO) increased considerably by

0.33+0.13 PgC and 0.14+0.17 PgC in 2015–2016, respect-

ively. PFTs other than SAV, EBF, GRA and CRO showed

almost neutral changes in GPP during the El Niño event

(figure 3).

EBF showed the largest uncertainty in estimated GPP and

the least percentage of consistent pixels (34%) where RS

models showed anomalies of the same directions (figure 4).

By contrast, the anomalies from the ensemble of RS models

were consistent on over 50% of the area for other PFTs,

especially for SAV, GRA and CRO where the consistent percen-

tage was around 60%. Therefore, using the ensemble of RS

models is more robust for SAV, GRA and CRO than for EBF.

By only considering the consistent pixels, the ensemble

means of RS models for each region or PFT showed similar

magnitude and direction of anomalies to their counterparts

for all pixels, but with substantially smaller uncertainty

(figure 4). This indicates that the influence of inconsistent

pixels was muted in our analysis by using ensemble means.

In addition, the detrended anomalies of SIF also tracked the
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ensemble mean of RS models, corroborating the GPP changes

identified by the ensemble mean of RS models.

(c) Seasonal variation of remote sensing gross primary
productivity anomalies

The 2015–2016 El Niño lasted 15 months and gradually

modulated global climate regimes. The photosynthesis

activities of different PFTs were therefore subjected to the

developmental stages of El Niño and showed temporally

varying anomalies (figure 3).

In the early stage of El Niño (March 2015 to September 2015),

we found that SAV and GRA in the Southern Hemisphere

showed GPP reductions, while forests in the Northern Hemi-

sphere demonstrated some increases of GPP (figure 3).

Entering the peak of El Niño (October 2015 to February 2016),

more PFTs in the Southern Hemisphere decreased GPP, with

EBF and SAV having the largest GPP reductions. Meanwhile,
the Northern Hemisphere photosynthesis was almost neutral

except for slight reductions from some regions (i.e. CRO in Asia

and EBF in North America). After the peak El Niño (February

2016 and after), Southern Hemisphere photosynthesis gradually

recovered to the baseline, except for the persistent GPP decreases

in SAV and SH. At the same time, the Northern Hemisphere veg-

etation experienced large GPP increases, spanning most PFTs.

Overall, photosynthesis in the Southern Hemisphere decreased

during the whole period, primarily contributed by SAV and

EBF, while photosynthesis in the Northern Hemisphere

increased, mainly before and after the peak of El Niño.

In most regions, GOMEA SIF corroborated the seasonal

patterns of RS GPP ensemble mean (figure 4). The most

consistent temporal patterns between SIF and RS GPP ensem-

ble mean were found in SAV (0.79+0.11), SH (0.78+0.11)

and ENF (0.77+0.17), and Australia (0.82+0.11), while

the least consistent temporal patterns were found in South

America (0.51+ 0.17) and EBF (0.30+ 0.32).
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(d) Drivers for the difference between remote sensing
gross primary productivity

While we used the ensemble mean of RS estimates to detect the

impact of El Niño, we noted that large inter-model variation of

GPP products limited the detectability of GPP anomalies at

some regions or PFTs (i.e. EBF). Inter-model variation for

EBF GPP (18 g C m22 yr21) was almost the same magnitude

as the natural variability of EBF GPP (22 g C m22 yr21). Our

result showed that the large variation in the ensemble was

usually driven by some unique simulations from one or two

models, such as VPM for EBF and CRO, BEPS for SH and PR

for ENF (figure 5). Models tended to show convergent per-

formance in some regions, particularly in SAV, GRA and

Australia. The detrended SIF was not significantly ( p , 0.05)

different from the detrended anomalies of most RS models

(figure 5).

The six RS models assessed used different meteorological

datasets and RS inputs to simulate GPP, the variations of

which can propagate into the inter-model variation of annual

GPP (sGPP). We found that sGPP tended to increase

with the inter-dataset variations of annual precipitation (sPP;

p , 0.01, r ¼ 0.94) and annual mean PAR (sPAR; p , 0.05,

r ¼ 0.71) (figure 6), suggesting that the choices of precipitation

and PAR sources contributed to the difference between GPP

estimates of different models. Even though precipitation

demonstrated the strongest explanatory power for sGPP

among all variables, we noted that only one model (BEPS) in

our ensemble explicitly used precipitation as an input. Mean-

while, five members of our ensemble, including MODIS-c55,

MODIS-c6, the PR model, BESS and BEPS explicitly used

VPD or relative humidity in the models. However, we found

a much weaker correlation between the inter-data variation

of VPD (sVPD) and sGPP ( p . 0.1, r ¼ 0.32) than between
sPP and sGPP, suggesting that precipitation impacts GPP

not only by VPD but also by other terms related to precipita-

tion (i.e. soil moisture, cloudiness). In addition, we found the

choice of vegetation indices (VI) for the RS models played a

positive but non-significant role in explaining sGPP ( p . 0.1,

r ¼ 0.56), suggesting that the different proxies used for

fAPAR resulted in smaller changes in GPP than moisture

conditions and PAR in the RS models examined.
4. Discussion
El Niño influences the natural variability of the terrestrial

carbon sink through modulating global climate regimes.

The impact of El Niño on photosynthesis and the contri-

bution of the changing photosynthesis to the known

reduction of the terrestrial carbon sink are highly uncertain.

Using six RS photosynthesis products and a SIF dataset,

this study found that the 2015–2016 El Niño drove a negative

GPP anomaly of 20.70+1.20 PgC in 2015 and a slight posi-

tive anomaly of 0.05+ 0.89 PgC in 2016. According to the

ensemble mean of RS models, the GPP reduction accounted

for 60% of the NEP reduction in 2015 but also implies a domi-

nant role of increasing Reco and potentially wild fires in

reducing NEP in 2016 [16,24]. Savannahs’ photosynthesis

decreased the most by 21.1+0.52 PgC, followed by a very

uncertain GPP reduction of 20.22+0.98 PgC from EBF.

The Northern Hemisphere GPP increased before and after

the peak El Niño, contributed mostly by grasslands (0.33+
0.13 PgC). RS GPP ensemble showed consistent anomalies

over about 60% of savannah grassland and cropland regions,

but models diverged over key ecoregions like tropical forests.

SIF datasets corroborated the temporal patterns of the ensemble

mean GPP in most regions except EBF.
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Our results show that the RS GPP products unanimously

identified a strong reduction of GPP in Africa during the

2015–2016 El Niño. African biomes contributed a negative

anomaly of 21.24+0.33 PgC in 2015 and 2016, surpassing

the GPP anomalies of other regions. However, this result

contradicts a recent study that suggested an increase

of respiration and fires drove down NEP in tropical Africa

(158 N–158 S) during the 2015–2016 El Niño, with GPP
remaining unchanged [24]. Differences in the choice of base-

lines may explain the contrasting results: in this study, we

used the linear trend of the 17-year period from 2000 to 2016

as the baseline to calculate the natural variability of GPP; Liu

et al. [24] used one year, 2011 (a strong La Niña year), as the

baseline to calculate the anomaly of GPP. We also found a lim-

ited contribution of African tropical ecosystem GPP when

using 2011 as a baseline (figure 7). By using 2011 as the

http://rstb.royalsocietypublishing.org/
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baseline, the positive impact of the GPP increasing trend can

offset the negative impact of El Niño on GPP, and affect the

interpretation of El Niño impacts. We suggest that El Niño

impact assessment studies should be done using a well-charac-

terized long-term baseline estimate of GPP, instead of one

representative year. This result also highlights a large impact

of the 2015–2016 El Niño on savannah ecosystems (figures 3

and 4) and echoes the reported dominating role of arid and

semi-arid regions in influencing the inter-annual variability

of the land carbon sink [13,62].

Even though our results provide an ensemble mean that can

be used to detect regional anomalies of GPP, the large diver-

gence between RS GPP models or between models and SIF

over EBF points out the complexity of this PFT. In this study,

we found that the divergence between RS GPP models was sig-

nificantly related to the divergence between precipitation

datasets of various sources, as the impact of precipitation on

GPP was either explicitly (e.g. BEPS) or implicitly considered

in models via VPD (e.g. MODIS, BESS), soil moisture (e.g.

VPM) or cloudiness (e.g. BESS). Precipitation datasets disagreed

the most in the tropics during the 2015–2016 El Niño event

(figure 6, electronic supplementary material S3), consequently

leading to the largest uncertainty of GPP estimates in tropical

regions. A recent site-level study [63] and a global-scale study

[64] echo our results by suggesting that the different represen-

tation of water stress in seven LUE GPP models explained

most of the inter-model variation, whether water stress was rep-

resented by VPD, evapotranspiration or a proxy of soil water

content in those models. We acknowledge that a comprehensive

analysis of sGPP and the inter-dataset variation of climate vari-

ables requires a complete archive of original inputs of all

models, which was beyond the scope of this study. The incom-

pleteness of the original inputs may affect thesPAR–sGPP and

sVPD–sGPP relationships we investigated (figure 6). Never-

theless, the large sGPP emphasizes the importance of

considering an ensemble of multiple RS models in order to

account for the inherent uncertainty associated with individual

model projections. We also suggest that further studies test

whether members of the ensemble provide equally valid esti-

mates, as we found several models differed significantly from

the others (i.e. the VPM model in EBF; figure 5).

In addition, we found that SIF was only weakly correlated

with the ensemble mean of GPP in EBF (figure 4), which seems

consistent with a recent study reporting a decoupling of

decreasing SIF and increasing NDVI over the Amazon rainfor-

est [36]. However, several results of this study project doubt on

the so-called decoupling issue. First, the weak correlation

between SIF and ensemble mean GPP was likely caused by

the unique performances of just one or two models, while

the GPP anomalies of most models actually varied in the

same direction as SIF anomalies (figure 5). Second, after remov-

ing the long-term trend of VI (i.e. NDVI, EVI and fAPAR), we

found the anomalies of VIs were actually negative in the tropics

in 2015 and 2016 (electronic supplementary material, figure

S3), in contrast to what was previously reported [36]. The

degradation of GOMEA SIF may also confound the anomalies

of SIF detected [37], but we found the negative anomalies of

GOMEA SIF persisted even after we removed the artefact

(figure 5). Overall, we found SIF, VIs and GPP estimates in

most cases demonstrated negative anomalies in the tropics,

calling into question a decoupling of SIF and GPP or decou-

pling of SIF and VIs. We acknowledge that our method to

remove the artefact of SIF, though statistically robust (electronic
supplementary material, figure S4), is not a complete solution

to filter noise and degradation of SIF signals. Further studies

on the processing pipeline of SIF data [65] and the mechanisms

underlying SIF [66] are essential to our correct interpretation of

the relationship between SIF and GPP.
5. Conclusion
The 2015–2016 El Niño is one of the strongest El Niño events

in the modern record, rivalling the magnitude of the large

1997–1998 event [16,38]. It provides a unique chance to

study the impact of El Niño on the terrestrial carbon sink in

the satellite-era. Using six RS GPP products and the GOMEA

SIF dataset, we assessed the response of global photosynthesis

to the 2015–2016 El Niño, as well as the spatial and temporal

variations of the response.

At the global scale, our results showed that global photo-

synthesis decreased by 0.70+1.20 PgC in 2015 based on an

ensemble of six RS models. The decrease in GPP accoun-

ted for 60% of the NEP reduction. In 2016, however, GPP

demonstrated a slight positive detrended anomaly of

0.05+ 0.89 PgC, which implies that the large reduction in

the terrestrial carbon sink in 2016 was likely due to increased

respiration and biomass burning.

At the regional scale, the ensemble of RS GPP products

identified significant GPP changes over 50% of the vegetated

land surface. Based on the ensemble mean of RS GPP, we

found that savannah ecosystems decreased photosynthesis

severely in response to El Niño, followed by a highly uncertain

reduction in photosynthesis of EBF. The Northern Hemisphere

GPP increased before and after the peak El Niño period,

especially for grasslands. Despite the consistency of anomaly

directions between ensemble members in many regions, tropical

rainforests estimates showed large variations between the

ensemble members, likely driven by discrepancies between the

moisture forcings for models. The temporal patterns of SIF and

the RS GPP ensemble mean agreed well except in EBF. Further

research on the consistency and inconsistency between various

RS GPP products, on the relationships between SIF and different

RS GPP, and on techniques for estimating tropical forest photo-

synthesis from space, is needed to reduce the uncertainty

associated with global GPP products reported here.
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