Methods

Connecting active to passive fluorescence with photosynthesis: a method for evaluating remote sensing measurements of Chl fluorescence

Troy S. Magney¹, Christian Frankenberg¹,², Joshua B. Fisher¹, Ying Sun¹,³, Gretchen B. North⁴, Thomas S. Davis⁵, Ari Kornfeld⁶ and Katharina Siebke⁷

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; ²Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; ³School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, NY 14853, USA; ⁴Biology Department, Occidental College, Los Angeles, CA 90041, USA; ⁵Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523, USA; ⁶Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA; ⁷Heinz Walz GmbH, Eichenring 6, Effeltrich 91090, Germany

Author for correspondence:
Troy S. Magney
Tel: +1 818 364 3266
Email: Troy.S.Magney@jpl.nasa.gov

Received: 2 February 2017
Accepted: 14 May 2017

Key words: Chl fluorescence, fluorescence spectra, gross primary production, leaf level, photosynthesis, pulse-amplitude modulation (PAM), remote sensing, solar induced Chl fluorescence (SIF).

Introduction

The fate of photons absorbed by foliar pigments ultimately determines a leaf’s capacity for photosynthesis. Upon being absorbed by a Chl molecule, a photon can follow three alternative pathways: photochemistry, heat loss (nonphotochemical quenching, NPQ), or Chl fluorescence (ChlF), all leading to the de-excitation of Chl (Kitajima & Butler, 1975; Genty et al., 1989). During photosynthesis, the yields of photochemistry, NPQ, and ChlF are changed by feedback mechanisms that regulate the rate of electron transport (Govindjee, 1995), and the complex relationships among these three pathways makes predictions of one yield (i.e. photochemistry) from another (i.e. ChlF) challenging. Despite the close connection among ChlF, photosynthesis, and NPQ, their respective yields can only be unequivocally inferred when one or more of these three processes are inhibited. Pulse-amplitude modulation (PAM) fluorimetry is among the most widely used techniques to selectively open and close photosystem II (PSII) reaction centers to determine the photosynthetic quantum yields of absorbed photons (Krause & Weis, 1991; Bilger et al., 1995).

Despite the popularity of PAM fluorimetry, the interpretation of such measurements is not straightforward (Logan et al., 2007; Kalaji et al., 2014). When the assumptions underlying PAM measurements are met, the technique can be applied widely at the leaf scale to track variation in the light reactions of photosynthesis (Maxwell & Johnson, 2000; Baker, 2008; Murchie & Lawson, 2013). PAM fluorescence is most often used to assess the efficiency of PSII photochemistry, which correlates strongly with CO₂ fixation (Genty et al., 1989; Edwards & Baker, 1993).

Summary

- Recent advances in the retrieval of Chl fluorescence from space using passive methods (solar-induced Chl fluorescence, SIF) promise improved mapping of plant photosynthesis globally. However, unresolved issues related to the spatial, spectral, and temporal dynamics of vegetation fluorescence complicate our ability to interpret SIF measurements.
- We developed an instrument to measure leaf-level gas exchange simultaneously with pulse-amplitude modulation (PAM) and spectrally resolved fluorescence over the same field of view – allowing us to investigate the relationships between active and passive fluorescence with photosynthesis.
- Strongly correlated, slope-dependent relationships were observed between measured spectra across all wavelengths (Fₖ, 670–850 nm) and PAM fluorescence parameters under a range of actinic light intensities (steady-state fluorescence yields, Fₛ) and saturation pulses (maximal fluorescence yields, Fₘ). Our results suggest that this method can accurately reproduce the full Chl emission spectra – capturing the spectral dynamics associated with changes in the yields of fluorescence, photochemical (ΦPSII), and nonphotochemical quenching (NPQ).
- We discuss how this method may establish a link between photosynthetic capacity and the mechanistic drivers of wavelength-specific fluorescence emission during changes in environmental conditions (light, temperature, humidity). Our emphasis is on future research directions linking spectral fluorescence to photosynthesis, ΦPSII, and NPQ.
However, this relationship breaks down in C₃ leaves when photospiration occurs, the Mehler reaction is altered, or nitrate/sulfate is reduced (e.g. Fryer et al., 1998; Logan et al., 2007). The widespread use of PAM ChlF in photosynthesis research triggered interest in using remote sensing techniques to passively detect ChlF under solar illumination, so-called solar-induced Chl fluorescence (SIF; Meroni et al., 2009; Porcar-Castell et al., 2014 for reviews). In principle, SIF is proportional to the product of F_s (steady-state fluorescence yield, in PAM notations) and absorbed photosynthetically active radiation (aPAR), but an absolute calibration between the two metrics can be difficult as PAM measurements perform well for relative measurements but are not optimized for absolute radiometrically calibrated radiances. For example, deriving parameters related to electron transport (PSII efficiency) from PAM fluorescence requires a saturating light pulse (>5000 μmol m⁻² s⁻¹) to temporarily close PSII reaction centers, and a weak and pulsed modulating light beam (ML; Duyssens, 1979) to track steady-state fluorescence yields. This method is not feasible from passive remote sensing platforms, limiting the information content of SIF in contrast to PAM measurements.

There are several challenges associated with the passive retrieval of ChlF compared with PAM. First, the SIF signal is small compared with the incoming solar irradiation and the reflectivity of terrestrial vegetation in the 650–850 nm range (1–5% of reflected light; see review by Meroni et al., 2009). Second, because the ChlF emission spectrum overlaps with Chl a,b absorption spectra, up to 90% of red fluorescence photons can be reabsorbed by leaves (Gitelson et al., 1998; Lichtenhalter et al., 1998). Third, estimating wavelength-specific reabsorption and emission is complicated by the spectrum of the incoming light source, which often differs between the light-emitting diode (LED) source for PAM measurements and direct sunlight for SIF. The emission spectrum of the light source allows photons to penetrate into different leaf and canopy layers, resulting in wavelength-dependent scattering, absorption, and reabsorption throughout the canopy (Buschmann & Lichtenhalter, 1998; Vogelmann & Evans, 2002; Van Wittenbergh et al., 2014, 2015). Moreover, the contribution of fluorescence differs between photosystems I (PSI) and PSII in that the contribution of PSI fluorescence is not affected by photochemical quenching as it lacks the back-transfer mechanisms of excitation into the antenna system (Franck et al., 2002; Hasegawa et al., 2010). PSI is also assumed not to be affected by NPQ, while PSII contributions to both red and far-red fluorescence are very dynamic (Genty et al., 1990; Pfundel, 1998; Franck et al., 2002). Lastly, changes in the ChlF emission spectrum during a saturation pulse, which drives the extrapolation of many PAM fluorescence parameters related to photosynthetic efficiency (quantum yield of photosystem II, ΦPSII) and stress (i.e. NPQ), are largely unknown (Franck et al., 2002). Taken together, this makes validation of the SIF signal using PAM measurements challenging as a result of sampling inconsistencies in the spectral, temporal, and spatial domains.

Ground validation of remote sensing SIF signals often includes PAM measurements on individual plants taken within the sensor field-of-view (FOV), which are then averaged and extrapolated to the canopy scale (i.e. Louis et al., 2005; Pérez-Priego et al., 2005; Rascher et al., 2009; Zarco-Tejada et al., 2013). With increased mechanistic rigor, several pioneering studies have sought to connect PAM and spectral fluorescence in both time and space; for example, Moya et al. (2004) compared leaf-level active and passive fluorescence measurements (760 nm) during a dark–light transition and observed a strong linear relationship between the two ($R^2 = 0.99$). Amorós-López et al. (2008) demonstrated the ability of an instrument to simultaneously measure PAM and spectral ChlF (760 nm) over a diurnal cycle in an attempt to validate the Fraunhofer Line Discriminator principle (FLD, Plascky & Gabriel, 1975) as a means of estimating fluorescence yield. Subsequently, Cendrero-Mateo et al. (2016) compared active and passive ChlF measurements at different temporal and spatial scales using a FluoWat leaf clip (Alonso et al., 2007; Van Wittenbergh et al., 2014), which is able to measure the whole ChlF emission spectrum using a short-pass filter (<650 nm). They found that the relationships between passive and active ChlF were significant at the leaf scale but that complexities remained when results were extrapolated across an entire growing season and from leaf to canopy scales. Recently, Atherton et al. (2016) simultaneously measured ChlF using PAM and a spectrometer over a nearly identical leaf FOV and concluded that the wavelength-specific information of ChlF emission was an important factor for understanding the physiological mechanisms driving steady-state ChlF yield.

Despite the difficulties associated with the passive retrieval and interpretation of ChlF, substantial progress in the remote sensing of SIF has been made over recent decades at a range of scales (e.g. Gamon et al., 1990; Zarco-Tejada et al., 2003, 2012; Moya et al., 2004; Meroni & Colombo, 2006; Guanter et al., 2007; Damm et al., 2010; Yang et al., 2015). In these studies, remote sensing instruments that measure SIF have generally presented results from only one or a few wavelengths, as retrievals are often based on narrow atmospheric (O₂-A, O₂-B bands) or Fraunhofer lines (i.e. Meroni et al., 2008; Cheng et al., 2013; Yang et al., 2015). Frequently, this has limited current studies to the c. 687 and 760 nm spectral ranges, which have been shown to provide important information on plant stress, though more research along these lines is needed (Aç et al., 2015). A more complete understanding of the full ChlF emission spectrum across a range of vegetation conditions is particularly important given the recent interest in sampling the entire ChlF spectrum as proposed by the European Space Agency’s fluorescence explorer (FLEX) mission concept (Drusch et al., 2016). Part of the motivation behind the FLEX mission and the increasing interest in SIF is the rapidly increasing number of studies linking remotely sensed SIF from a single wavelength to gross primary photosynthesis (GPP) derived from eddy covariance flux towers (Walther et al., 2015; Yang et al., 2015; Wood et al., 2016; Verma et al., 2017). While these studies are promising, the direct link between spectral ChlF and concurrent measurements of CO₂ exchange at the leaf level has not been established. To obtain information more directly on plant–atmosphere CO₂ exchange, measurements of leaf-level gas exchange using infrared gas analyzers (IRGAs) have been widely used to infer rates and mechanics of photosynthesis (Long & Bernacchi, 2003). Unlike PAM fluorescence measurements, which
typically probe only a small leaf area (<1 cm²) in the top few layers of chlorenchyma, gas exchange techniques measure CO₂ flux over an integrated area across the thickness of a leaf. Together, gas-exchange measurements and PAM fluorescence can be used concurrently to investigate discrepancies between net CO₂ assimilation (Aₙₐₑₜ) and electron transport rates (ETRs) (e.g. Flexas et al., 1999), mesophyll conductance rates (e.g. Flexas et al., 2008), and variations in quantum yields of photochemistry, fluorescence, and heat dissipation.

Linking passively and actively induced ChlF and leaf-level gas exchange in both time and space could help to reveal the mechanisms underpinning the strong empirical association between remotely sensed SIF and GPP across a range of scales (i.e. satellite; Joiner et al., 2011, 2013; Frankenberg et al., 2011; Guanter et al., 2012, 2014). For example, to better understand the relationships between SIF and GPP, including where the two processes converge and diverge, variations in NPQ must be taken into account. Through concurrent measurements of the yields of photochemistry (PAM), CO₂ exchange, and spectral ChlF radiances, we can explore the true information content that lies in the SIF signal. To accomplish this, we augmented a commercial gas-exchange and PAM instrument with a spectrometer system to measure absolute ChlF emissions across the entire 650–850 nm range. Here we place an emphasis on the methodology and suggest future research directions using results from a small dataset.

Materials and Methods

Instrument setup

The portable GFS-3000 gas-exchange and fluorescence system (Heinz Walz GmbH, Effeltrich, Germany) was slightly modified by using a spectrometer; a bundled fiberoptic (connecting the PAM fluorescence module and the spectrometer); an increased cuvette entrance hole to fit the wider bundled fiberoptic firmly into the leaf cuvette; and a short-pass filter below the incident light source (Fig. 1). These modifications, and the specifications of each instrument component are discussed later.

PAM fluorescence module

The manufacturer-provided fiberoptic PAM-Fluorimeter 3050-F was used to determine ChlF parameters (Heinz Walz GmbH; Fig. 1a). The PAM-Fluorimeter 3050-F includes a blue (LED) modulating light (ML) with peak emission of 450 nm (Supporting Information Fig. S1). The blue LED also drives the saturating pulse, which emitted a consistent 6000 μmol m⁻² s⁻¹ for 0.8 s for all measurements. The PAM-Fluorimeter 3050-F has only two modulation frequency settings (low, 10 Hz; high, 500 Hz). The modulation frequency was set to ‘high’ (500 Hz) in an attempt to capture the ML dynamics with the spectrometer.

Fig. 1 Schematic of leaf-level measurement system. (a) Typical pulse-amplitude modulation (PAM) fluorescence trace during initial exposure to light. Note that the colors (blue and pink) represent the color of the light that is driving the signal even though all PAM parameters are computed from a blue light-emitting diode (LED). (b) Basic schematic of the infrared gas analyzer (IRGA) with a trace of a light response curve (showing net photosynthesis) under exposure to actinic light (similar in time to (a)). (c) Diagram of the leaf chamber, insertion of the fiberoptics from PAM and spectrometer (QE Pro), and the representative colors of light being emitted by the PAM and actinic LEDs. Note that the actinic LED light source is 90% red LEDs and 10% blue LEDs, and is somewhat attenuated by the short-pass filter (showing a slightly lighter ‘pink’ color beneath filter). A photosynthetically active radiation (PAR) sensor is placed at the leaf surface, and the coupled PAM and QE Pro foreoptic is c. 2 mm from the leaf surface. (d) Spectral fluorescence curves associated with Fₘₐₓ and Fₘₐₘ (driven by blue light) and Fₙₐₜ₂ (driven by actinic LEDs) and corresponding times shown in the fluorescence trace in (a).
because when the ML light was set to 'low' (10 Hz) it was not possible to spectrally resolve the ML beam (see the Discussion section and the Supporting Information). The integration time for our spectrometer (minimum 8 ms) could not be matched with the modulation frequency of the LED, which did not allow us to measure the modulated emissions directly. However, by turning the ML beam on and off, we were able to detect the overall faint differences even at a 10 ms integration time (6 ± 1 binary units at 740 nm). The ML photosynthetically active radiation (PAR) at a 2 mm distance from the foreoptic to the leaf was 15 μmol m\(^{-2}\) s\(^{-1}\) under 'high-frequency' mode. The PAM-Fluorimeter uses a long-pass filter (RG645) with > 95% of the signal coming from beyond 645 nm (Fig. 1a). Before leaf insertion into the cuvette, a zero-offset was established using black nonfluorescing foam.

Gas-exchange system

The GFS-3000 uses two calibrated IRGAs to calculate a difference in CO\(_2\) and H\(_2\)O concentrations in a reference and a sample cell during measurements (Long & Bernacchi, 2003; Fig. 1b). The IRGAs were used to compute net CO\(_2\) assimilation (\(A_{net}\)), stomatal water vapor conductance (\(g_{s(H2O)}\)), transpiration rate (\(E\)), vapor pressure deficit (VPD), and intercellular CO\(_2\) mole fraction (\(ci\)) over a 5 cm\(^2\) rectangular leaf area (size of leaf adapter) according to manufacturer specifications (GFS-3000 Handbook, 7th edition © 2012; Heinz Walz GmbH). When ambient air was not used as the air flow intake, gas consisting of 2% O\(_2\) and 98% N\(_2\) was applied via a regulator and hose connected to the air intake for light response curves, and the flow rate was maintained at 750 μmol s\(^{-1}\) for all samples.

Light source and leaf chamber

The actinic light source was the manufacturer-provided LED 3040-L, which consists of a bank of 24 red and two blue LEDs (Figs 1c, S1; 90% red emission centered at 640 nm, and 10% blue emission with a peak wavelength of 470 nm; Heinz Walz GmbH). A homogeneous light distribution across the laminar leaf surface is assumed to be ± 20%. The actinic light source is capable of a range from 0 to 2000 μmol m\(^{-2}\) s\(^{-1}\) PAR. A small fraction of the light was attenuated by a short-pass filter which was affixed directly above the glass window on the leaf chamber to block incoming light transmission > c. 675 nm (Fig. 1c). The short-pass filter is a fused silica 50-mm-diameter filter with a 690–1000 nm rejection wavelength range, a > 91% 350–661 transmission wavelength range, and an optical density of 4 (Edmunds Optics, Barrington, NJ, USA; stock no: 84-726 (as of 29 August 2016)). PAR measurements at the leaf level were made directly above the leaf as shown in Fig. 1(c). Because no transmission data were collected, we were unable to compute the true aPAR and we assume an absorption coefficient \(k\), where \(k\) is a commonly used leaf absorption coefficient, 0.84 (Baker, 2008; Tubuxin et al., 2015).

The 1.5-mm-diameter fiberoptic cable from the PAM fluorimeter was affixed to three 200 μm fibers (one fiberoptic cable) connected to the spectrometer and was sealed with a black rubber coating to prevent light transmission along the optical path. The bundled foreoptic (Fig. 1c) was in a steel housing which was inserted firmly into the leaf chamber (to prevent air leakage from the chamber) at an angle of c. 60° and a distance of c. 2 mm to the leaf to approximate nadir without shading the FOV, and ensure complete light saturation from pulses.

Spectrometer

Spectral radiant energy fluxes were measured using a QE Pro high sensitivity spectrometer (Ocean Optics, Dunedin, FL, USA; Fig. 1d). The detector covers 474–858 nm at 3 nm spectral resolution with a spectral sampling of 0.35 nm. Absolute calibration of the QE Pro spectrometer was done using an integrating sphere and a reference ASD spectrometer (Analytical Spectral Devices Inc., Boulder, CO, USA) at the Jet Propulsion Laboratory in Pasadena, California. In addition, we verified that detector non-linearity across the signal intensities we typically observe was < 1% and could thus be ignored in our study. Therefore, a linear calibration factor after subtraction of the dark current readout was used. Spectra were measured at an interval of 10 ms (integration time) and 20 spectra were co-added, resulting in a stored data record every 0.2 s. These integration and averaging times were chosen to avoid optical sensor saturation at the highest light intensities and to provide an unbiased data point during the middle of the saturation pulse (0.8 s).

Experiment design

Four light response curves were generated for two leaves (one from Acer palmatum Thunb. and one from Quercus lobata Née). Mature leaves were collected from the south-facing side of irrigated trees on the California Institute of Technology campus (Pasadena, CA, USA). Terminal branches of five to six leaves were clipped with shears and the stem of the branch was immediately placed and recut under water before being moved to a completely dark room for > 2 h to facilitate dark adaptation. For both species, a mature terminal leaf attached to the stem was used to generate a light response curve in ‘nonstressed’ conditions (controlled cuvette conditions, leaf temperature at 25°C; relative humidity (RH) at 60%: Table 1). Aside from modifications made to the leaf chamber environmental conditions, consistent alternating current (AC) power to the instruments and room temperature (24°C) were maintained for the duration of the experiment.

The light response curves and subsequent time for each light regime of Q. lobata were as follows (in μmol m\(^{-2}\) s\(^{-1}\) PAR): 50 (9.5 min), 100 (9.5 min), 200 (9.5 min), 400 (10.5 min), 600 (11.5 min), 900 (11.5 min), 1200 (11.5 min), 1500 (11.5 min). For A. palmatum, each light regime was shortened by 2 min (light response curves are shown in Fig. S2). Following generation of the initial light-response curve in ‘nonstressed’ conditions, the leaf was kept in the cuvette (to ensure the same spectrometer and PAM FOV), the LED light source was turned off, and temperature was increased to 40°C and H\(_2\)O concentration reduced to 13% RH within the chamber (Table 1). Following another > 2 h dark-adaptation period, an identical light-response curve was
generated under the ‘stressed’ condition. Throughout the course of each light response curve, PAM F_t and gas-exchange data were collected in synchrony every 5 s, and saturation pulses (F_m) were recorded every 30 s (Atherton et al., 2016). The clock from the PAM/gas-exchange instrument and QE Pro were synced for ease of data analysis. A complete time series of the PAM and spectral fluorescence for both species and conditions are shown in Fig. S3. This experimental procedure was similar for both A. palmatum and Q. lobata except for two differences: the Q. lobata samples were run under low O$_2$ (2% O$_2$ and 98% N$_2$) air conditions inside the cuvette to inhibit photorespiration and improve the interpretation of quantum yields; and we included an ML beam test (hereafter, ‘ML-on–off test’) to directly compare fluorescence parameters derived from the ML beam alone (as with traditional PAM F_t measurements, shown in the Figs S4, S5).

Analysis of PAM and fluorescence spectra

It is important to note the fundamental differences between F_t from the spectrometer and F_t from PAM. F_t is the absolute radiant energy flux of ChlF as derived from remote sensing platforms (Eqn 1):

$$F_t = a\text{PAR} \times \Phi F \times e_j$$ \hspace{1cm} \text{Eqn 1}

where ΦF is the probability an absorbed photon will be fluoresced and escape the leaf/canopy, and e_j is the probability a fluoresced photon will have wavelength lambda. Because every F_j retrieval is not from direct sunlight in this study (i.e. SIF), but a combination of blue (10%) and red (90%) LEDs, we use F_j notation to describe all spectrally resolved fluorescence retrievals. By contrast, F_t from PAM can be expressed as:

$$F_t = a\text{PAR}_{ML} \times \Phi F \times e_P$$ \hspace{1cm} \text{Eqn 2}

where $a\text{PAR}_{ML}$ is the absorbed radiant energy from the blue modulating light, and e_P is the integral of e_j from the PAM long-pass filter (95% > 645 nm). Eqns 1 and 2 are simplified models as both e and ΦF are dependent on the spectral shape of both the illumination source and photochemical status of the plant (for more detailed models see Porcar-Castell et al., 2014, e.g. Eqn 20).

There are several key differences between PAM fluorescence parameters and the spectrally resolved data. Apart from F_t being analogous to a numerical derivative of spectrally integrated F_t with respect to changes in aPAR, it should be noted that both are driven by different light sources in our setup, which requires future changes to enable a more direct comparison. All PAM measurements are derived solely from blue LED emission, for both the ML beam (F_t) and the saturation pulses (F_m, Fig. S1), whereas, in the case of $F_{m,t}$, the measured fluorescence spectra are driven primarily by blue light, but with an added c. 0–25% influence from the actinic light, depending on actinic light intensity. F_t, on the other hand, is driven by the actinic light source LEDs only. An additional consideration is that spectral data are integrated every 10 ms but coadded over a much shorter time span (0.2 s) than the ML beam, which produces a data record every 2 ms at 500 Hz and is averaged over 5 s intervals. With a 10 ms integration time for the QE Pro and a 500 Hz PAM frequency, five pulses of measuring light are enough to separate the spectra induced by the ML beam and the actinic light (Figs S4, S5). Ideally, full control of the ML beam frequency allows synchronization between the two instruments.

Fig. 2 conceptually diagrams the beginning of each light response curve, and resulting data from the QE Pro (F_t) and PAM fluorimeter (F_m, F_m', F_t).

At the beginning of each light response curve, the ML was turned on to derive a minimal ChlF yield (F_m, in Fig. 2b,c, when photosystem reaction centers are assumed to be completely open). After 15 s of ‘ML-on’, the first saturation pulse was applied and F_m from the PAM and spectra ($F_{m,t}$) were derived (Fig. 2a). During this initial pulse of light (F_m), it is assumed that reaction centers are effectively closed, thus enabling inference of maximal ϕPSII. Fifteen seconds following the initial saturation pulse, the actinic light was turned on to 50 μmol m$^{-2}$ s$^{-1}$ PAR (Fig. 2b,c). Following 15 s of actinic light exposure, subsequent saturation pulses were applied every 30 s throughout the light response curve to determine maximum Chlα fluorescence yield in the light-adapted state (F_m' and $F_{m,t}'$) (Fig. 2a). Upon each transition to increased light, a reduced immediate fluorescence quenching efficiency could be observed – the ‘Kautsky’ effect (Fig. 2b; Kautsky & Hirsch, 1931).

Every data record from the spectrometer is output and averaged or indexed during analysis. To compare data between PAM/gas-exchange and spectra, F_t was averaged over the identical 5 s PAM/gas-exchange data record. To compare F_m values between PAM and spectra, we subtracted F_t immediately before the

Table 1 Summary of sampling conditions during each light response curve

<table>
<thead>
<tr>
<th>Species</th>
<th>Condition</th>
<th>T (°C)</th>
<th>RH (%)</th>
<th>CO$_2$ (ppm)</th>
<th>H$_2$O (ppm)</th>
<th>O$_2$ (%)</th>
<th>ML test?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer palmatum</td>
<td>Nonstressed</td>
<td>25 ± 0.02</td>
<td>60 ± 1%</td>
<td>380</td>
<td>20000</td>
<td>21.0</td>
<td>No</td>
</tr>
<tr>
<td>A. palmatum</td>
<td>Stressed</td>
<td>40 ± 0.02</td>
<td>13 ± 1%</td>
<td>380</td>
<td>10000</td>
<td>21.0</td>
<td>No</td>
</tr>
<tr>
<td>Quercus lobata</td>
<td>Nonstressed</td>
<td>25 ± 0.02</td>
<td>60 ± 1%</td>
<td>380</td>
<td>20000</td>
<td>2.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Q. lobata</td>
<td>Stressed</td>
<td>40 ± 0.02</td>
<td>13 ± 1%</td>
<td>380</td>
<td>10000</td>
<td>2.0</td>
<td>Yes</td>
</tr>
</tbody>
</table>
maximal $F_{m,k}$ value during the saturation pulse. As the saturation pulse always has the same intensity, and as we subtract $F_{m,k}$ immediately before the pulse, the result is independent of light, similar to an F_{m} yield measurement from PAM. Note that yield computation for $F_{m,k}$ is confounded by differing emission light sources between the red actinic light and blue saturation pulse. The ChlF yield ($\Phi_{F_t,k}$), as shown in Fig. 2(c), is the ratio of fluoresced photons to absorbed photons and is computed according to Table 2 by dividing F_{k} by PAR at the leaf level (α_{leaf} absorption), following the conversion of PAR from $l\text{mol m}^{-2}\text{s}^{-1}$ to $\mu\text{W m}^{-2}\text{s}^{-1}$. Computing spectral fluorescence yields, $F_{m,k}$, and $\Phi_{F_t,k}$, allows for a more direct comparison with PAM F_{m} and F_{t} parameters by accounting for incoming radiant energy fluxes -- with some caveats discussed later. Φ_{CO_2} was calculated by dividing A_{net} ($\mu\text{mol m}^{-2}\text{s}^{-1}$) by leaf PAR ($\mu\text{mol m}^{-2}\text{s}^{-1}$) × k. All PAM fluorescence parameters (Φ_{PSII}, NPQ) were computed according to traditional nomenclature and are provided in Table 2. Additional parameter computations and data from these parameters are shown in the Supporting Information (Table S1; Fig. S6).

SCOPE simulations

As a means for comparison, and to demonstrate the potential for using datasets derived using this method in a radiative transfer modeling framework, we also looked at the relationship between Φ_{F_t} and Φ_{PSII} within the Soil Canopy Observation of Photosynthesis and Energy (SCOPE) model (v.1.61, van der Tol et al., 2014). The SCOPE model simulates leaf and canopy fluorescence, photochemistry, and NPQ, with the sum of the three alternative pathways always equal to 1. In this model, the photosynthesis yield is first computed based on the Farquhar model (Farquhar et al., 1980), then a fluorescence yield is derived based on a parameterization of Φ_{F_t} vs Φ_{PSII} derived from leaf-level PAM fluorescence measurements under different conditions. The model provides two different parameterizations to approximate the likely range that plants will experience in the field (here referred to as SCOPE 1 and SCOPE 2), both of which were used to compare the variation in Φ_{F_t} and Φ_{PSII} with our own data. In this simple example, the default parameters provided in SCOPE v.1.61 were used.
Table 2 Nomenclature for parameters derived from pulse-amplitude modulation (PAM) fluorescence and spectrally derived fluorescence (F_k)

<table>
<thead>
<tr>
<th>PAM parameter</th>
<th>PAM units</th>
<th>PAM calculation</th>
<th>PAM measuring interval</th>
<th>Light source driving F_{PAM} Parameter</th>
<th>Spectral parameter</th>
<th>Spectral units</th>
<th>Spectral parameter calculation</th>
<th>Spectral measuring interval</th>
<th>Light source driving F_j parameter</th>
<th>Traditionally known as</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_m</td>
<td>mV</td>
<td>DC voltage above baseline ($\int\text{mV} > 700 \text{ nm}$)</td>
<td>0.8 s sat. width</td>
<td>Blue saturation pulse</td>
<td>$F_{m,\lambda}$</td>
<td>mW m$^{-2}$ nr$^{-1}$</td>
<td>Maximum F_j recorded during saturation pulse – F_j immediately before each pulse.</td>
<td>0.2 s avg.; 10 ms int.</td>
<td>Blue saturation pulse + actinic light</td>
<td>Maximum Chla fluorescence radiant flux in dark-adapted state (F_m) and in light-adapted state (F_m')</td>
</tr>
<tr>
<td>F_m'</td>
<td>na</td>
</tr>
<tr>
<td>F_t</td>
<td>mV</td>
<td>DC voltage above baseline ($\int\text{mV} > 700 \text{ nm}$)</td>
<td>5.0 s avg.; 1.0 s int.</td>
<td>Blue modulated measuring light</td>
<td>$\Phi F_{t,\lambda}$</td>
<td>(mW m$^{-2}$ nm$^{-1}$)/ (mW m$^{-2}$)</td>
<td>$(F_t)/(k* \text{PAR})$</td>
<td>0.2 s avg.; 10 ms int.</td>
<td>Blue modulated light + actinic light</td>
<td>Solar-induced Chl fluorescence (SIF). In this case, red and blue LEDs.</td>
</tr>
<tr>
<td>Φ_{PSII}</td>
<td>0–1.0, relative yield</td>
<td>$(F_m' - F_t)/(F_m')$</td>
<td>F_t immediately before F_m'</td>
<td>Blue saturation pulse and modulated measuring light</td>
<td>na</td>
<td>na</td>
<td>$(F_m' - F_t)/(F_m')$</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>NPQ</td>
<td>> 0</td>
<td>$(F_m - F_m')/(F_m)$</td>
<td>0.8 s sat. width</td>
<td>Blue saturation pulse and modulated measuring light</td>
<td>na</td>
<td>na</td>
<td>$(F_m - F_m')/(F_m)$</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>

Derivation of parameters, such as absolute units, their calculation, measuring interval (including averaging period (avg.) and integration time (int.), and frequency are provided). F_m, maximal fluorescence yield from PAM; $F_{m,\lambda}$, maximal fluorescence from spectra; F_t, transient fluorescence; $\Phi F_{t,\lambda}$, spectral fluorescence yield; Φ_{PSII}, photosystem II yield; NPQ, nonphotochemical quenching; LED, light-emitting diode; PAR, photosynthetically active radiation; DC, direct current. Note that the rows where ‘na’ is present represent spectral or PAM parameters that cannot be directly compared with each other. Rather, PAM parameters can be estimated by spectral parameters by multiplying the probability that an absorbed photon will be fluoresced at a given wavelength range $\Phi F_{t,\lambda}$ by the probability that a fluoresced photon will have wavelength $\times (\lambda)$ and absorbed light (aPAR), as seen in Eqn 1. An absorption coefficient (k) of 0.84 is assumed in the computation of spectral fluorescence yields.
Results

Relationships between \(F_\lambda \) (spectral) and \(F \) (PAM) parameters

An example of the relationships among PAM yields and spectral fluorescence yield parameters is provided from \(Q. \ lobata \) (nonstressed) in Fig. 3(a,c) and a summary of the wavelength-specific relationships for both species and conditions is shown in Fig. 3(b, d).

Strong linear relationships were observed between all dark- and light-adapted maximal fluorescence yield parameters (\(F_{m,\lambda}, F'_{m,\lambda} \) and \(F_m, F'_m \)) across all wavelengths for each species and condition (0.89 > \(R^2 \) > 1.00; Fig. 3b). The wavelength-specific \(R^2 \) between \(\Phi F_t, k \) and PAM \(F_t \) intensity ranged from 0.73 to 0.95, with consistency in coefficients of determination across all wavelengths, and small decreases at the far ends of the \(F \) emission spectrum (Fig. 3d); however, the slope varied, since it is fully determined by the average spectral shape of the fluorescence emission (according to Eqn 1).

Chlorophyll fluorescence emission spectra, \(F_{m,\lambda} \) and \(F_\lambda \), for both species and conditions during the entire light response curve are shown in Fig. 4.

The absolute magnitude of spectra were considerably higher under nonstressed than stressed conditions for \(F_{m,\lambda}, F'_{m,\lambda} \) and \(F_\lambda \) (Fig. 4). Changes in the magnitude of \(F_\lambda \) throughout each experiment are largely driven by PAR, while the differences in \(F'_{m,\lambda} \) spectra are driven by gradual changes in fluorescence quenching efficiency over time. \(F_{m,\lambda} \) behaves like a fluorescence yield because the saturating pulse is always the same intensity and is subtracted by \(F_\lambda \) measured before the \(F_{m,\lambda} \) measurement.

The relative differences in fluorescence emission under differing light sources, species, stress levels, and over time are shown in Fig. 5.

There are substantial differences between the first ChlF emission peak when observed under blue (Fig. 5a) and red (Fig. 5b) light sources. At increased light intensities, there is a drop in both \(F_{m,\lambda} \) (Fig. 5a) and \(F_\lambda \) (Fig. 5b) in the first emission peak, while the second emission peak remains relatively unchanged; however, the first emission peak is exaggerated as we normalized the data by the maxima near 740 nm. It is also worth noting that the blue and red light were not compared under fair conditions – one is saturating and the other is actinic (see the Discussion section).

As an example of how this work could be used in future applications, we plotted the relative changes in \(F_t \) from PAM and \(\Phi F_t, k \) against \(\Phi Q \), \(\Phi PSII \), and \(\Phi \text{CO}_2 \) from \(A. \ palmatum \) (nonstressed) (Fig. 6).

All example wavelengths changed in a similar fashion to PAM \(F_t \) when compared against \(\Phi Q \) (Fig. 6a), \(\Phi PSII \) (Fig. 6b), and \(\Phi \text{CO}_2 \) (Fig. 6c). However, relative differences were observed in
ΦFt on the order of 10–30% depending on the emission wavelength observed. We overlaid two versions of the ΦPSII vs ΦFt relationship as would be expected from the SCOPE model to show how our data might be used to inform such relationships in a modeling framework.

Empirically derived leaf-level relationships between net photosynthesis (Anet) and steady-state fluorescence radiant energy flux (as would be observed from remote sensing platforms) are provided in Fig. 7.

The relationships among $F_{\lambda,686}$, $F_{\lambda,740}$ and Anet show nonlinear, wavelength, species, and condition-dependent responses to light environment (Fig. 7). For both F_{686} and F_{740}, the stressed treatments show continually increasing F_{λ} after photosynthesis was light-saturated, but at a smaller magnitude than the nonstressed treatments.

Discussion

We modified an existing leaf-level gas-exchange/fluorescence instrument to simultaneously measure PAM fluorescence, spectral radiant fluorescence (F_{λ}), and CO₂ fluxes. Such coincident measurements will help to provide the basis for subsequent studies assessing the impact of changes in the spectral shape of ChlF emission accompanying traditional PAM and photosynthesis measurements. Here we touch on the implications of our findings but place greater emphasis on how our methodology can be improved upon and used in the future with examples from this dataset.

The instrument described here successfully captured the spectral dynamics of steady-state and maximal fluorescence under a range of light conditions (Figs 3–5). Results from this study suggest that while the relationship between spectral ChlF yields and PAM F yields is consistently strong, it is also wavelength-dependent, with the slope following the average shape of the fluorescence emission curve (see Eqn 1). The strength of this relationship is not surprising, considering that PAM fluorescence is derived from a broadband signal; moreover, it is an important consideration for scaling exercises comparing leaf-level based PAM measurements to canopy-level SIF (e.g. Zarco-Tejada et al., 2013). Deriving an F_{λ} value can allow for direct comparisons in absolute radiant energy flux units across species and conditions, by contrast to differences in the magnitude of a unitless (relative) PAM measurement. A desirable future development in the computation of absolute $\Phi F_{\lambda,\lambda}$ and $F_{m,\lambda}$ would be an accurate estimate of aPAR, instead of one based on an approximation of the absorption coefficient, k. To accomplish this, one could place a PAR sensor below the leaf to compute leaf transmission in conjunction with leaf reflectance measurements. Leaf reflectance data could be computed through normalization with a pure reflectance spectra from a white Lambertian diffuser plate (i.e. Spectralon) placed under the foreoptics during a light response curve (as in Magney et al., 2014).

Fig. 4 Maximal fluorescence emission derived from the saturation pulse ($F_{m,\lambda}$ and $F_{m,\lambda}'$) (a–d) and actinic light-induced fluorescence emission (F_{λ}) (e–h) among *Acer palmatum* (blues) leaves under nonstressed (a, e) and stressed (b, f) conditions; and *Quercus lobata* (greens) leaves under nonstressed (c, g) and stressed (d, h) conditions. Color ramp is indicative of incident photosynthetically active radiation (PAR, μmol m⁻² s⁻¹) exposure during light response curve – lighter colors indicate greater PAR, and darker colors represent less incident PAR.
Our results further suggest the importance of quantifying both NPQ and ΦPSII, both of which can alter the yields of Chl fluorescence in different, nonlinear ways (Fig. 6). This example shows that increased NPQ and decreased ΦPSII generally reduce the normalized ChlF yield across the entire spectral range at a similar rate before substantial changes in NPQ, indicating that under low light, changes in the quantum yield of photochemistry and fluorescence are primarily controlled by photophysical quenching (PQ), whereas at higher light, changes in ChlF and ΦPSII are primarily driven by NPQ (Porcar-Castell et al., 2014). The inverted ‘V’ relationship between ΦPSII and \(\Phi_{F_{\text{PSII}}}/F_{\text{t}} \) is shown in Fig. 6(b), although not to the same extent as that observed in Flexas et al. (2002) (SCOPE 1) or van der Tol et al. (2014) (SCOPE 2), which is probably explained by the lack of data representing higher and lower ΦPSII from this example. The two SCOPE parameterizations are based on limited datasets of grapevine plants exposed to drought stress (SCOPE 1) and cotton leaves under a range of temperature conditions (SCOPE 2). The different behaviors of these curves underscore the need for increased datasets – with wavelength dependencies – across a range of species and conditions to drive such models. In addition, samples with different photosynthetic capacities should be measured under a wider range of light, temperature, humidity and CO₂ conditions to further investigate the spectrally dependent nonlinearities amongst ChlF, NPQ, and ΦPSII, and how they might vary with actual ΦCO₂. In the example shown in Fig. 6(c), we observed a saturation and subsequent decrease of ΦCO₂ at c. 600 μmol m⁻² s⁻¹ PAR, while ChlF yield continued to decrease as light intensity increased. Datasets such as this could be important considering modeled CO₂ yields vary with light, atmospheric CO₂, and humidity as typically predicted with the Farquhar–von Caemmerer- Berry model (Farquhar et al., 1980); whereas ChlF yields respond to environmental conditions that affect PQ and NPQ (Porcar-Castell et al., 2014). Beyond this example, with a robust number of samples covering a wide range of conditions, one could compute the full ChlF excitation emission matrix (EMM) to drive radiative transfer models (i.e. van der Tol et al., 2009, 2014; Vilfan et al., 2016). When computing the EMM it is important to consider the spectral shape of the illumination source and the actual number of photons absorbed by the chloroplast (aPAR). Additionally, interpretation of the results could be further improved by including data on plant pigments, where we could observe changes in xanthophyll cycle pigments concentrations under illumination (similar to Magney et al., 2017), permitting better characterization of the interactions among leaf pigment concentrations (particularly Chl) and leaf morphology to better understand the biophysical contributions of fluoresced photons.

Another advantage of this method is the high spectral sampling frequency (such as 0.2 s shown here) to observe the fast-response kinetics of ChlF quenching (Franck et al., 2005; Buschmann, 2007). In our case, we observed a substantial ‘Kautsky effect’ from the A. palmatum samples (Figs 2, S3), which could be attributed to slower reoxidation of plastoquinones in PSI and NPQ at a much greater magnitude than in the low-O₂ treatments involving Q. lobata (Brody & Rabinowitch, 1957). From our limited dataset, we found that the shape of the fluorescence emission curve > 720 nm was relatively stable regardless of illumination over time (Figs 4, 5, S7); however, there were substantial differences in the fluorescence spectrum in the first emission peak (670–720 nm) with increasing PAR (Figs 5, S7). Changes in the shape of the ChlF spectrum shown here could have multiple explanations, including changes in Chl reabsorption or NPQ components during illumination (Lambrev et al., 2010). The development of a method to measure the complete ChlF emission spectrum at high temporal frequencies will enable future...
investigations into wavelength dependencies associated with the suppression of the primary electron acceptor (quinone A) during PQ by PSII, for example. (Franck et al., 2002, 2005; Pedrós et al., 2008).

The emission peak of the illumination source is another key consideration for future studies, particularly among the ML, saturating pulse, and actinic light sources. From Fig. 5, one can deduce that the first emission peak centered at 686 nm appears somewhat more affected but the interpretation of changes in the two fluorescence peaks is complicated by the possibility of light reabsorption within the leaf (Buschmann & Lichtenthaler, 1998; Gitelson et al., 1998). Under white light LEDs or natural sunlight, for example, the fluorescence signal comes from both surface and deeper leaf layers (Vogelmann, 1993; Rappaport et al., 2007) and is thus more likely to be reabsorbed, whereas the blue LED used here primarily affects the upper leaf surface, resulting in a shorter path to escape the leaf without being reabsorbed (Agati, 1998; Vogelmann & Evans, 2002). To complicate matters, there can be gradients of NPQ within a leaf, which might change the distribution of photochemical and fluorescence quenching with leaf depth and thus affect the first fluorescence peak through changes in red ChlF reabsorption (Anderson et al., 1988). Future measurements using different peak emission λ LEDs (i.e. white) and measurements of Φ_{PSII} under natural sunlight are needed and are feasible using a short-pass filter at 675 nm similar to the one described here, provided that incident light is perpendicular to the filter.

Using a white LED approximating solar irradiance for all incoming light sources will require full control over the modulation frequency to optimize integration time and spectral detector

Fig. 6 Relative changes in steady-state fluorescence yields from pulse-amplitude modulation (PAM) (Φ_{PAM}) and spectra (Φ_{686}, 740, 800) against nonphotochemical quenching (NPQ) (a), photosystem II yield (Φ_{PSII}) (b), and CO2 yield (Φ_{CO2}) (c) for *Acer palmatum* (nonstressed) during the course of the light response curve. In (b), results are overlain with modeling results from the Soil Canopy Observation of Photosynthesis and Energy (SCOPE) model using two parameterizations (see the Materials and Methods section; they are called SCOPE 1 and SCOPE 2 here). The PAM and spectral Chl fluorescence yield data are normalized to the maximum during the light response curve. Polynomial models were fitted to all relationships for trend visualization purposes.

Fig. 7 (a, b) Relationships among steady-state spectral fluorescence (Φ_{λ}) and photosynthesis (A_{net}) for wavelengths of 686 nm (a) and 740 nm (b) for both species and conditions. Points are the means of steady-state A_{net} and Φ_{λ} during each light regime and error bars represent ± SE experienced during each light regime.
Methods

sensitivity, and promote temporal synchronization between the spectrometer and ML. To test the ability of the QE Pro to capture the ML signal, we developed a technique (ML-on-off) to derive an F_{ML} solely from the ML beam. This permitted the comparison of ΔF_j from ML-on and ML-off with F_i from PAM, and showed a strong correlation ($R^2 > 0.91$ for all wavelengths; Figs S4, S5). In this study, a relatively high modulating frequency was used for the ML beam (500 Hz) in order to extract a spectral radiance signal, which may create an actinic effect on the leaf despite higher signal-to-noise ratio (Schansker et al., 2006). Ideally, we would synchronize the ML beam with the QE Pro readout to measure the full spectrum induced only by the ML beam. This was beyond the scope of the current study but could be achieved with lower-frequency ML (< 50 Hz) and readout rates as low as 8 ms from the spectrometer. Nonetheless, the results shown in Figs S4 and S5 are promising considering the extremely small contribution of the ML to total actinic light (1.5% at the highest and 30% at the lowest light intensities).

Connecting remote sensing measurements of F_j with gross photosynthesis

At the leaf scale, we demonstrate simple environmentally and species-different relationships between F_j and A_{net} (Fig. 7) for each light response curve in the experiment. In the example shown in Fig. 7, a nonlinear relationship between F_j and A_{net} was observed for both species and conditions, whereby F_j continued to increase after A_{net} reached light saturation (Fig. 7). As has been shown in previous studies (i.e. Flexas et al., 2002), the absolute magnitude of F_j is reduced under stressed conditions, but to a lesser degree than A_{net}, which approached light saturation at increasing light intensities (Figs 7, S2). The nonlinear relationships between F_j and net photosynthesis observed at the leaf scale are to be expected when the capacity for photosynthesis is reached, as the light-dependent reactions associated with photosynthesis produce more ATP and NADPH than can be used by the light-independent reactions for CO_2 fixation; meanwhile, an increased number of photons are absorbed by the chloroplast, resulting in changes in the yields of ChlF and NPQ (Bilger et al., 1995). An improved understanding of the spectral dependency of ChlF and NPQ yields is particularly important with regard to the quantitative treatment of SIF as it propagates from the leaf (van der Tol et al., 2009) to the canopy in radiative transfer models (van der Tol et al., 2014; Zhao et al., 2016). Data collected over a wide range of species and conditions could be used to evaluate and improve the leaf-level parameterization of the ChlF emission spectrum modeled by SCOPE (van der Tol et al., 2014), which is currently a linear combination of the fractional contributions of PSI and PSII derived empirically.

A formal assessment of how the nonlinear A_{net} and F_j relationships may become increasingly linear at larger spatial scales is complicated and has yet to be performed in a quantitatively rigorous manner. Measurements such as those shown here could provide more mechanistic explanations of the linear GPP–SIF relationship observed at the satellite scale (Frankenberg et al., 2011; Joiner et al., 2011; Guanter et al., 2012). Similar to Guanter et al. (2012) and Yang et al. (2015), where F_j was normalized by solar zenith angle to eliminate the aPAR dependence of the SIF–GPP relationship, $\Phi F_{j,k}$ could be used to improve scaling efforts and interpretations of SIF (i.e. Moya et al., 2004; Louis et al., 2005). Methods such as those demonstrated here under varying sun/shade and bidirectional reflectance distribution factor (BRDF) conditions linked with three-dimensional radiative transfer schemes could be used to address such questions (i.e. Hilker et al., 2008).

In this study, we examined the complete ChlF emission spectrum and show small changes in F_j beyond 800 nm, where current instruments such as the Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) can measure SIF (Joiner et al., 2016). Recently, substantial contributions to our understanding of wavelength dependencies and the potential for scaling SIF have been made by studies conducted using airborne instruments, although these studies focused primarily on the 760 and 687 nm wavelengths, suggesting that the ratio of these wavelengths can be used to infer crop stress (Rascher et al., 2015; Wienke et al., 2016). Future work with instrumentation described here should examine wavelengths currently measured from spaceborne platforms (OCO-2, GOME-2, GOSAT) and investigate the ratios between red and far-red fluorescence over a range of environmental conditions and species (see reviews by Buschmann, 2007; Ać et al., 2015). Moreover, a complete understanding of the ChlF emission spectrum is crucial in evaluating how red and far-red fluorescence (and their ratios) can be extrapolated in the context of future instrument development (i.e. NASA OCO-3, ESA FLEX) and SIF interpretation. Not only do studies to this end help to interpret the wavelength dependencies of SIF from spaceborne platforms, but they also provide a better understanding of how SIF magnitude varies according to time of day and environmental conditions.

Acknowledgements

We thank Dr Joseph A. Berry for insightful suggestions on the instrumental setup and experiment design and three anonymous reviewers for their helpful insights. The research was supported by a NASA Postdoctoral Program fellowship award to T.S.M., California Institute of Technology startup funds to C.F., and the Keck Institute for Space Studies. The research was carried out, in part, at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. California Institute of Technology. Government sponsorship is acknowledged.

Author contributions

T.S.M., C.F. and J.B.F. designed the research; T.S.M., C.F. and K.S. modified the original instrument; T.S.M., C.F., G.B.N. and T.S.D. performed the research; T.S.M. analyzed the data; T.S.M., C.F., J.B.F., Y.S., G.B.N., T.S.D., A.K. and K.S. contributed to interpretation of the analyses and writing the paper.
References
questions about in vivo chlorophyll fluorescence: practical issues.

Photosynthesis Research 122: 121–158.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information tab for this article:

Fig. S1 Example spectra from 450 to 850 nm to demonstrate derivation of maximum spectral fluorescence (F_{m}) and steady-state fluorescence (F_{s}) from initial saturating pulse, actinic light, and the modulating light (F_{ML}) for both species and conditions.

Fig. S2 Light response curves for net photosynthesis (A_{net}) and stomatal conductance (g_{s}) for both species and conditions.

Fig. S3 Complete time series of four example spectra showing steady-state spectral fluorescence (F_{s}), spectral fluorescence yield (ΦF_{s}), and maximum spectral fluorescence (F_{m}) overlaid with transient fluorescence intensity (F_{t}) and maximum fluorescence (F_{m}) from pulse-amplitude modulation (PAM) for both species and conditions during a light response curve.

Fig. S4 Conceptual figure showing the derivation of spectral fluorescence emission (F_{m}) from the modulating light (F_{ML}).

Fig. S5 Relationship between transient fluorescence (F_{t}) derived from pulse-amplitude modulation (PAM) and from spectral fluorescence from the modulating light (F_{ML}).

Fig. S6 Conceptual figure expanding Fig. 2, highlighting the derivation of all spectral fluorescence parameters (F_{s}) and pulse-amplitude modulation (PAM) parameters during the full first 14 min of a light response curve.

Fig. S7 Relative differences in spectral fluorescence (F_{s}) emission curves separated by both species and conditions.

Table S1 Nomenclature for additional parameters from pulse-amplitude modulation (PAM) fluorescence and spectrally derived fluorescence

Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the *New Phytologist* Central Office.