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Abstract
Weexamined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes
from1982 to 2010 usingmultiple estimates from remote sensing-based datasets and process-oriented
land surfacemodels. A significant increasing trend of ET in each hemisphere was consistently revealed
by observationally-constrained data andmulti-model ensembles that considered historic natural and
anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal
variations in ET.Globally, rising CO2 ranked second in thesemodels after the predominant climatic
influences, and yielded decreasing trends in canopy transpiration and ET, especially for tropical forests
and high-latitude shrub land. Increasing nitrogen deposition slightly amplified global ET via enhanced
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plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial
analysis, wereminor globally, but pronounced locally, particularly over regions with intensive land-
cover changes. Our study highlights the importance of employingmulti-streamET and ET-
component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic
cycle.

1. Introduction

Intensified global hydrological cycle has been observed
and modeled during the past few years (Hunting-
ton 2006, Gerten et al 2008, Wang et al 2010, Durack
et al 2012, Douville et al 2013, Sterling et al 2013, Wu
et al 2013, Gedney et al 2014). Terrestrial evapotran-
spiration (ET) is arguably the central component of
this changing hydrologic cycle, and functions as a vital
link between energy, water and carbon cycles, thereby
having important implications for the availability and
usage of fresh water resources by humans and
terrestrial ecosystems (Seneviratne et al 2006, Tren-
berth et al 2009, Fisher et al 2011, Wang and
Dickinson 2012).

Natural environmental factors (e.g. precipitation,
temperature, incident solar radiation, soil moisture,
wind and atmospheric teleconnections) regulate ET
and its variability across different terrestrial ecosys-
tems (Teuling et al 2009, Jung et al 2010, Wang
et al 2010, Vinukollu et al 2011, Zhang et al 2012, Mir-
alles et al 2014). These natural controls and limita-
tions/co-limitations of ET are scale-dependent. Their
mechanistic understanding is very important to pre-
dict the tendency and variability of ET (Wang and
Dickinson 2012). Human-induced land use/land
cover change, ground water withdrawals, and irriga-
tion can directly alter the amount and timing of ET by
modifying the local water and energy balances (Piao
et al 2007, Gerten 2013, Leng et al 2013, 2014a, 2014b,
Lo and Famiglietti 2013, Sterling et al 2013, Lei
et al 2014c). Human activities that contribute to green-
house gas emissions, atmospheric nitrogen deposition
(NDE), and ozone pollution can also alter ET indir-
ectly through changes in physiological, structural and
compositional responses of plants (Gedney et al 2006,
Betts et al 2007, Sitch et al 2007, Cao et al 2009, Leakey
et al 2009). Discriminating these anthropogenic per-
turbations from natural factors is expected to increase
in importance as anthropogenic transformation of the
Earth System becomes more pervasive (Seneviratne
et al 2010, Gerten 2013).

Based on mechanistic and empirical algorithms
that are driven by remotely sensed observations, a
variety of globally gridded diagnostic ET products
have been compiled and evaluated in recent years
(Willmott et al 1985, Fisher et al 2008, Jiménez
et al 2009, Jung et al 2009, Sheffield et al 2010, Zhang
et al 2010b, Miralles et al 2011, Mueller et al 2011,
Vinukollu et al 2011, Zeng et al 2012, Schwalm

et al 2013). These gridded ET estimates offer crucial
sources and benchmarks for quantitative investiga-
tions of historical ET dynamics over the land surface.
However, the accuracy of these observation-based ET
products has yet to be reconciled due to limitations in
underlying hypotheses and errors in input datasets
(Mueller et al 2011, 2013, Polhamus et al 2012). More-
over, due to their reliance on the satellite observations,
these datasets offer a limited historical temporal
record that encompasses only a few decades (Badgley
et al 2015).

To predict future changes in ET patterns, process-
based simulation and understanding of the magni-
tudes, mechanisms and interactions that control his-
torical ET dynamics will be required and should be
within uncertainty of both historical and present-day
observations. Mechanistic land surface models
(LSMs), driven bymeasurement-based environmental
properties, are useful tools for the detection and attri-
bution of natural and anthropogenic effects on ET
dynamics. For the past decade, global factorial LSM
experiments have been conducted and analyzed by dif-
ferent modeling groups to investigate the separate
effects of environmental stresses on land surface and
subsurface runoff, river flow, ET and water use effi-
ciency (Gedney et al 2006, 2014, Piao et al 2007, Shi
et al 2011, 2013, Tian et al 2011, Liu et al 2012, Tao
et al 2014). The role of climate impacts on these hydro-
logic variables has been characterized predominantly
across different regions of the globe. The relative role
of natural environmental change versus anthro-
pogenic activities, however, wasmodeled to be hetero-
geneous and geographically dependent. Nevertheless,
due to large differences in initial model conditions,
driver data, and complex parameterizations that gov-
ern models, the simulated ET was demonstrated to
vary in magnitudes and responses across models at
both temporal and spatial scales (Wang et al 2010).

To disentangle these differences in simulated ET
patterns and the relative role of model sensitivity and
structure, the experimental setup and boundary/
initial datamust be similar among different participat-
ing models. We leveraged the controlled factorial
experiments and model simulation protocol from the
Multi-Scale Synthesis and Terrestrial Model Inter-
comparison Project (MsTMIP) (Huntzinger
et al 2013). Further, we synthesized a global ET time
series (1982–2010) based on a diverse set of diagnostic
ET products (table 1), and the methodology reported
recently inMueller et al (2013). The partitioning of ET
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Table 1.Overview of the diagnostic ET datasets used for themerged ETof this study, and the simulated ET fromMsTMIPmodels. Factorial results of theMsTMIPmulti-model are ALL: the impact from all historical forcing factors, CLI: the
impact fromhistorical climate only, OTH: all anthropogenic impacts, CO2: the historical CO2 impact only, NDE: the historical nitrogen deposition impact only, LUC: the historical land use/land cover change impact only, Y: the
availability of ET simulation for the particular impact, andN: the non-availability of ET simulation for the particular impact.

Group Name Algorithm Spatial resolution Precipitation data Time period Citation

GLEAM Modified Priestley–Taylor 0.25°×0.25° GPCPCMORPH 1982–2010 Miralles et al (2011)
CSIRO Modified Penman–Monteith 0.5°×0.5° SILO 1984–2005 Zhang et al (2010b)
MPI Empirically derived fromFLUXNET 0.5°×0.5° GPCC 1982–2008 Jung et al (2009)
NTSG Modified Penman–Monteith 0.5°×0.5° GPCC 1983–2006 Zhang et al (2010a)

Diagnostic ET PRUNI (3 sets
of data)

Penman–Monteith/Priestley–Taylor

(ISCCP, AVHRR, SRB)
0.25°×0.25° Sheffield

et al (2006)
1984–2007 Sheffield et al (2010)

PT-JPL Modified Priestley–Taylor 0.5°×0.5° Not required 1984–2006 Fisher et al (2008)
UDEL ModifiedThornthwaite water budget 0.5°×0.5° GHCN2 1980–2008 Willmott et al (1985)
PUB Empiricalmethod (TWSA,CRU) 0.5°×0.5° GRACE 1982–2009 Zeng et al (2012)
AWB Water balance 0.5°×0.5° GPCP 1990–2006 Mueller et al (2011)

Group Name Algorithm Spatial Resolution Time Period Citation CLI LUC CO2 NDE ALL OTH

CLM4 Modified Penman–Monteith 0.5°×0.5° CRUNCEP 1982–2010 Lawrence et al (2007),Mao

et al (2012)
Y Y Y Y Y Y

DLEM Penman–Monteith 0.5°×0.5° CRUNCEP 1982–2010 Tian et al (2011, 2012) Y Y Y Y Y Y

BIOME-BGC Penman–Monteith 0.5°×0.5° CRUNCEP 1982–2010 Thornton et al (2002) Y N N N Y Y

CLASS-CTEM-N+ Modified Penman–Monteith 0.5°×0.5° CRUNCEP 1982–2010 Huang et al (2011), Bartlett
et al (2006)

Y Y Y Y Y Y

CLM4-VIC Modified Penman–Monteith 0.5°×0.5° CRUNCEP 1982–2010 Lei et al (2014a) Y Y Y Y Y Y

ISAM Modified Penman–Monteith 0.5°×0.5° CRUNCEP 1982–2010 Jain et al (1996) Y Y Y Y Y Y

MsTMIPET LPJ-WSL Modified Penman–Monteith 0.5°×0.5° CRUNCEP 1982–2010 Sitch et al (2003) Y Y Y N Y Y

ORCHIDEE-LSCE Modified Penman–Monteith 0.5°×0.5° CRUNCEP 1982–2010 Krinner et al (2005) Y Y Y N Y Y

SiB3-JPL Penman–Monteith 0.5°×0.5° CRUNCEP 1982–2010 Baker et al (2008) Y Y Y N Y Y

SiBCASA Penman–Monteith 0.5°×0.5° CRUNCEP 1982–2010 Schaefer et al (2008, 2009) Y Y Y N Y Y

TRIPLEX-GHG Modified Penman–Monteith 0.5°×0.5° CRUNCEP 1982–2010 Peng et al (2011) N N Y Y Y N

VEGAS Bulk transfer formula 0.5°×0.5° CRUNCEP 1982–2010 Zeng et al (2005) Y Y Y N Y Y

VISIT Penman–Monteith 0.5°×0.5° CRUNCEP 1982–2010 Ito and Inatomi (2012) Y Y Y N Y Y
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(e.g canopy transpiration (Tr) and evaporation from
wet canopy and bare soil (ET–Tr)) and the variation of
those ET components are poorly understood and less
constrained by observations (Lawrence et al 2007,
Jasechko et al 2013, Swenson and Lawrence 2014,
Wang et al 2014). The MsTMIP modeling framework
can advance our understanding of trends in ET by pro-
viding predictions of the individual ET components.
In this study, we thus further investigated the con-
tribution of individual influencing factors to the spa-
tial and temporal characteristics of these ET
constituents.

2.Datasets andmethods

We created a merged diagnostic ET data (DIA) from
11 long-term diagnostic datasets, all based on different
assumptions and constrained with extensive in situ
observations or satellite retrievals or both (table 1).We
remapped the monthly raw datasets from their origi-
nal spatial resolutions to the half-degree resolution of
the model output from 1982 through 2010 based on
data availability. Following Mueller et al (2013), we
applied both physical and statistical constraints for
quality control and bias corrections. For the physical
constraint, we developed a dataset of seasonal net
radiation maxima using the surface radiation budget
(SRB3.0) datasets (Gupta 1983). We then excluded
grid points with values exceeding net radiation max-
ima by more than 25%. The outliers were identified as
values that exceed ±3 standard deviations (Wee-
don 2011). Then the median values of these quality-
controlled multiple ET estimates were treated as the
merged product, and were comprehensively com-
pared with the LSM results in this study. As shown in
figure S1, the annual anomalies of the previously
synthesized ET in Mueller et al (2013) are well within
the spread of this newly-merged diagnostic data
product. This updated product however, provides
longer-term dynamics and is more amenable for
studies atmulti-decadal timescales.

To isolate the contributions of environmental dri-
vers tomulti-year ET variations, we utilized the factor-
ial ET simulations from the MsTMIP data archive.
Driven by the same environmental forcing (climate
variability and trends, rising atmospheric CO2 con-
centrations causing fertilization and reducing stomatal
opening, nitrogen deposition, land use/land cover
change, and soil texture and vegetation types), these
state-of-the-art LSMs were employed to identify the
principal drivers of interannual variability and multi-
decadal changes of ET. Because the evaporation com-
ponent for canopy and soil, and the snow sublimation,
were not separately archived in the standard model
outputs in the MsTMIP I protocol (Huntzinger
et al 2013, 2015), we included all relevant available
outputs, namely the ET, Tr and the total evaporation
(ET–Tr). Four model experiments: (1) SG1 (time

varying climate), (2) SG2 (time-varying climate and
land use change history), (3) SG3 (time-varying cli-
mate, land use, and atmospheric CO2), and (4) BG1
(time-varying climate, land-use, atmospheric CO2 and
nitrogen deposition), were analyzed to quantify the
effects of each environmental forcing factor on the
study variables for the years 1982 through 2010. The
transient simulations began in 1901, turning on one
time-varying driver at a time. Simulations BG1 or SG3
were used to address the combined impacts from var-
ious historical forcing agents formodels with (BG1) or
without (SG3) an explicit nitrogen cycle. Simulation
or simulation differencing was used to quantify the
contribution to ET and ET component changes from
climate change (CLI) (derived from SG1), land use/
land cover change (LUC) (derived fromSG2-SG1), ris-
ing atmospheric CO2 (CO2) (derived from SG3-SG2),
NDE (derived from BG1-SG3), or all forcing (ALL)
(derived from BG1 or SG3) (table 1). To account for
the overall effects from human activity (OTH), we
derived the human-induced ET to be the difference
between the BG1 and SG1 or SG3 and SG1
simulations.

Annual cropland area and total tree coverage infor-
mation for the 1982–2010 period were derived from
themerged product of the SYNergetic land coverMAP
(Jung et al 2006) and the annual time series of the land
use harmonization data (Hurtt et al 2011). Additional
details on the aforementioned driver data and experi-
mental design can be found inWei et al (2014a, 2014b)
andHuntzinger et al (2013, 2015).

Growing season ET generally dominates the
annual sum over the vegetated area of land (Wang
et al 2007).We focused our analysis on growing season
ET for all observational and modeled data. The
dynamic annual growing season information, used to
mask the monthly ET between 1982 and 2010, was
first determined from the global inventory modeling
andmapping studies normalized difference vegetation
index (NDVI3g) dataset (Pinzon and Tucker 2014)
using a Savitzky–Golay filter (Chen et al 2004, Jonsson
and Eklundh 2004). It was then refined by excluding
the freeze period identified by the Freeze/Thaw Earth
System Data Record (Kim et al 2011, 2012). In parti-
cular, the growing season of tropical rainforests was set
to 12months and it started in January.

3. Results

Across the globe, statistically significant increasing
trends of ET were recorded from 1982 to 2010 in the
observation-based ET estimates (DIA) (1.18 mm yr−2)
and modeled ET from the ALL simulation
(0.93±0.31 mm yr−2) (figures 1 and S2, and table
S1). Significantly positive annual correlations between
the simulated ALL ET and the observed ET were
obtained, particularly in the Northern hemisphere
(NH) (Land: R2=0.58, p<0.01, NH: R2=0.72,
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p<0.01, and the Southern hemisphere (SH):
R2=0.46, p<0.01). The simulated multiyear
increasing trend and interannual variability of the ALL
ET were mainly explained by the CLI ET. In contrast,
the overall human-induced OTH ET was predicted to
decrease somewhat, and to exhibit relatively small
interannual variations.

Spatial analysis of linear trends of ET for the
merged observation product revealed remarkably
consistent increasing tendency over most continents
(figure 2(a)). Local hotspots of reduced ET were diag-
nosed to occur in the arid regions of Western North
America, central Africa, Northern China and South-
eastern Asia. By contrast, the modeled changes of ALL
ET underestimated the magnitude of ET changes in

EasternNorth America andWestern Europe, andmis-
sed the ET decreases in central Africa. But the place-
ment of increasing or decreasing trends in ALL ET
largely agreed favorably with those of the observed ET
trends, indicating the suitability of examining multi-
year ET trends using the all-factor simulations.

Spatial patterns of ET changes that are consistent
between the ALL and CLM estimates confirm the
dominance of climate forcing in explaining annual ET
trends (figures 2(b), (c) and 3(a)). This dominant cli-
matic response of ET trends was chiefly associated
with concurrent annual precipitation changes (spatial
R2=0.34 for ALL ET and precipitation trend, and
spatial R2=0.30 for CLI ET and precipitation trends,
respectively, P<0.01), and tended to show large

Figure 1.Time series of annual anomalies of growing season ET (mm yr−1) over (a) the globe, (b) theNH, and (c) the SH from1982 to
2010. Solid lines are themedian values of themerged ET (ET_DIA, black),MsTMIP ETof ALL (ET_ALL, red), CLI (ET_CLI, blue),
andOTH (ET_OTH, green). Shaded areas indicate the ET range of independentMsTMIPmodels.
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spatial heterogeneities of sign and magnitude
(figure 4(a)). The spatial dominance patterns based on
the partial correlations among the total growing sea-
son ET, precipitation, temperature and incident solar
radiation affirmed that for the MsTMIP models,
annual precipitation drove not only the interannual
variability of ET, but primarily accounted for the mul-
tiyear ET trends over most land areas (figures 4(e) and
(f)). Combined anthropogenic effects tended to
decrease ET, most notably in Northeastern North
America, Western Amazon, Northwestern Europe
and tropical Asia (figure 2(d)). These effects were sub-
ject primarily to the net physiological and structural

impacts of CO2 concentration on the growth of plants
in ecosystems (figures 2(e), 3(d), S2 and S3(a)).

Increasing nitrogen deposition led to increasing
leaf area index (LAI) (figures 4(b) and S3(b)), and con-
sequently to enhanced terrestrial ET, particularly over
South America, Africa and Southeastern China
(figures 2(f) and S2). The areas undergoing strong
increase in forest fraction and decrease in cropland
fraction, such as in central Eastern North America and
central Europe, clearly showed increasing annual ET
(figures 2(g), 4(c) and (d)). In contrast, regions with
evident loss of trees, such as Eastern China and South-
eastern South America, show a downtrend of annual

Figure 2. Spatial distribution of the linear trends in ETmedian values (mm yr−2) for (a)ET_DIA, (b)ET_ALL, (c)ET_CLI, (d)
ET_OTH, (e)CO2 (ET_CO2), (f)NDE (ET_NDE), and (g) LUC (ET_LUC) from1982 to 2010. The stippled areas represent the trends
are statistically significant (P<0.05), and the insets show the frequency distribution of the corresponding change.
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ET. Compared to the CO2 and nitrogen deposition
effects, however, the effect of LUC on land ET was
important locally. Relatively large uncertainties from
the LUC were also found between individual models
(figures S2 and S6).

Trends for the Tr and total ET–Tr were dominated
by the climatic changes across various continents. For
Tr, 85.4% of the study area was impacted by the cli-
matic changes, and 88.7% for ET–Tr (figures 3(b), (c),
S4(a)–(f)). Congruent with the response of ET changes
to rising CO2 (48.4 ppm during the period
1982–2010), most areas, especially these regions cov-
ered by tropical broadleaf evergreen trees and high
latitude shrubs, showed decreasing Tr. This is due to
the CO2-induced reduction in stomatal conductance
overwhelming the LAI-induced increase of canopy
evaporation and transpiration under elevated CO2

concentration (figures 3(e) and S4(j)). On the other
hand, CO2 fertilization would enhance canopy LAI
through increasing photosynthate allocation to leaves,
and caused more canopy transpiration and evapora-
tion than the reduced transpiration by CO2 physiolo-
gical effects, especially over dry areas with sparse
vegetation (e.g. the Western North America, central
Eurasia, and Australia) (figures S3(a) and S4(j)).
Reversed ET–Tr trends in these arid regions imply that
decreasing soil evaporationwas the dominant factor in
changing ET–Tr (figures S4(j)–(l)). Formost areas that
showed decreasing Tr but increasing ET–Tr under
CO2 enrichment, the augmented evaporation of inter-
cepted rainfall and increasing soil evaporation may
have been coincidental.

Increasing ET caused by nitrogen deposition was
due to enhanced Tr (figures 2(f), S4(m) and S5). A
decrease of ET–Tr caused by the nitrogen deposition
effect, as seen in central North America and in Wes-
tern Europe, was due to reduced soil evaporation
(figures S4(n) and S5). The latter is a consequence of
the increasing LAI providing more shade and so

reducing solar energy for soil evaporation. In addition,
the increasing Tr further depleted soil water, which
reduced soil evaporation. In the evergreen broadleaf
forests of the Western Amazon and Congo basin,
nitrogen deposition and higher LAI resulted in
increasing canopy evaporation. The increase in canopy
evaporation more than offset the decrease in soil eva-
poration and hence dominated the increasing ET–Tr
and even the nitrogen-induced increase in total ET
(figures S4(m)–(o)).

LUC led to a decreasing trend in Tr across densely
inhabited regions that had experienced substantial
land use perturbations (e.g. clearing trees for crops)
during the study period. These occurred mainly in
Southeastern South America and the Eastern China
(figures 4(c), (d), S4(p) and S5). Tr trends showed a
general negative sign over central Eastern North
America and Western Europe, where croplands had
been replaced mainly by forests and woodlands. This
reduction of Tr with reforestation implies that the tree
species that replaced the crops had lower stomatal
conductance than the crop species, the younger and
smaller trees of the returning forests had lower LAI
than the croplands they replaced, or the available soil
water for plants decreased because of the removal of
irrigation. These aspects deserve further study.

4.Discussion

Between 1982 and 2010, the observation-based and
simulated ALL ET consistently showed a significantly
increasing trend across the globe. These findings are
consistent with previous studies, which reported an
intensified global hydrological cycle in response to
global warming following the Clausius–Clapeyron law
(the relationship between equilibrium water vapor
pressure and temperature, about 7% per °C of
warming) (Held and Soden 2006), as well as increasing

Figure 3. Spatial distribution of the dominant drivers for the ET, Tr andET–Tr changes for the period 1982–2010. (a)–(c)Dominant
drivers for the ET, Tr and ET–Tr trends of the ALL results, and (d)–(f) dominant drivers for the ET, Tr and ET–Tr trends of theOTH
results.
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importance of the radiative component of ET (John-
son and Sharma 2010). Climatic factors accounted for
much of the spatial and temporal variations in
terrestrial ET, Tr and ET–Tr. This supports previous
studies regarding the prevalent climatic mechanisms
controlling the long-term ET trends such as tempera-
ture, precipitation, soil moisture, energy and internal
climate variability (Teuling et al 2009, Jung et al 2010,
Wang et al 2010, Vinukollu et al 2011, Zhang
et al 2012, Ukkola and Prentice 2013, Miralles
et al 2014).

In our study, the rising atmospheric CO2 con-
centration, as tested by model factorial experiments,
induced an overall suppression of Tr and hence a gen-
eral decreasing ET. Our results further suggest that the
sign of change and regional pattern of these CO2 phy-
siological effects on ET were moderated by changes in
LAI. The overall response of ET was eventually deter-
mined by the balance among the changes of Tr,
canopy evaporation and soil evaporation. These
results are consistent with modeled and observed
plant physiological responses to the increase of CO2

concentration in the atmosphere (Betts et al 2007,

Leakey et al 2009). They also reiterate previous find-
ings that show the concurrent physiological and struc-
tural responses of vegetation to rising CO2, and
associated hydrological effects (Gedney et al 2006,
Leipprand and Gerten 2006, Ainsworth and
Rogers 2007, Betts et al 2007, Kurc and Small 2007,
Piao et al 2007, Cao et al 2009, Leakey et al 2009, Lei
et al 2014b).

Simulation experiments that consider NDE
showed enhanced global LAI as a result of increasing
nutrient availability (figures 4(b) and S3(b)). The
nitrogen-induced enhancement of canopy Tr and
canopy evaporation, however, was regionally offset by
decreasing soil evaporation, and led to lower ET for
the nitrogen fertilization effect. Nonetheless, miner-
alized nitrogen in the rooting system was governed by
not only the amount of deposited N, but also by leach-
ing and denitrification, which are affected by environ-
mental conditions (Hovenden et al 2014). This
highlights the necessity of better understanding the
interactions among these environmental drivers, and
the underlying mechanisms responsible for biogeo-
chemical and hydrologic cycles.

Figure 4. Spatial distribution of trends in (a) precipitation (PRE,mm/yr−2), (b)nitrogen deposition (NDE,mg N m−2 yr−2), (c)
fractional tree coverage (TREE,%/yr−2), and (d) fractional crop coverage (CROP,%/yr−2) over the period 1982–2010, and spatial
distribution of dominant climatic variable (precipitation, temperature (TEM) and incident solar radiation (RAD)) responsible for (e)
ET variability, and (f) both variability and trend. For (e), the dominance was derived by comparing theR2 of the partial correlations
between detrended ET and individual climatic factor. For (f), the dominancewas derived by comparing theR2 of the partial
correlations between un-detrended ET and individual climatic factor. Both (e) and (f) share the same color legend in (f).
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Previousmodeling studies (Boisier et al 2012, 2014,
Shi et al 2013, Sterling et al 2013, Tao et al 2014) agree
with our results that anthropogenic activities modified
ET and its components locally, and human-induced
LUC effects tended to counteract each other at a global
scale. We found large uncertainties associated with
LUC impacts among the MsTMIP LSMs, particularly
over the NH and areas having marked land cover con-
versions. Though based on the same merged LUC
dataset, different LSM groups prescribed the dynamic
evolution of plant functional types with model-spe-
cific classifications (Wei et al 2014a, 2014b). The sensi-
tivity of biophysical and biogeochemical processes to
the reconstructed historical scenario of LUC, more-
over, varied considerably from model to model
(Huntzinger et al 2013). For example, for the SIB3-JPL
models, abnormally higher LUC ET was simulated
over the NH and global land compared to that of other
models (figure S6). In SIB3-JPL, ET is a function of
stomatal conductance and is sensitive to changes in
photosynthetically active radiation (PAR). In LUC
simulations, plant functional type changes over time,
but the PAR is prescribed from present day NDVI cli-
matology and is thus fixed to modern vegetation. This
can lead to a bias in gross primary production in cases
where grasslands are converted to forests, since the
NDVI and resulting fraction of incident PAR absorbed
by green leaving in the canopy (fPAR) are calculated
from a modern day forest ecosystem but used to esti-
mate stomatal conductance and ET for the historical
grassland it replaced. The sensitivity to land-use
change and cultivated ecosystems (e.g., irrigated crop-
lands) reinforce the need for better LUC characteriza-
tion, improved parameterization of ET in croplands,
and the development of forcing datasets (e.g., PAR)
that are not artificially dependent upon land cover.
Improvements in these areasmay help reduce the large
inter-model spreads in the responses of ET to LUC.

Quantitative estimation of ET partitioning has
been refined recently, but information on long-term
variations and the precise drivers of each ET compo-
nent are lacking (Jasechko et al 2013,Wang et al 2014).
By using a multi-model ensemble, we assessed the
annual trends of the Tr and ET–Tr over nearly three
decades, and further estimated their spatial-temporal
responses to various environmental stresses. These
modeled results, however, remain rather uncertain
without observational constrains that are sufficiently
long and representative. Comprehensive synthesis of
long-term observation-constrained ET components is
needed to improve our understanding of the control-
ling mechanisms, and to better characterize the parti-
tioning schemes.

5. Conclusions

The relative contribution of climate and anthropo-
genic activities to the spatio-temporal changes in ET

was quantitatively characterized with the newly-
merged ET and multifactor ensemble simulations
from MsTMIP. In the LSMs, climate, CO2, nitrogen
deposition, and land use impacts were separated
experimentally to determine the ET variations
between 1982 and 2010. Climate, and in particular,
changes in precipitation, was the dominant control of
multi-year ET trends and variability. The overall CO2

physiological and structural effect induced decreasing
plants transpiration and the total ET, especially in
areas where vegetation was dense. Compared to
climate change and the elevated CO2 effects, the
impacts of nitrogen deposition and land use change on
ET were less important and acted locally. Other
detailed explorations are needed, such as the imple-
mentation of more compelling statistical techniques
and fully-coupled modeling systems (Douville
et al 2013, Wu et al 2013, Gedney et al 2014) to detect
and attribute the natural and anthropogenic effects on
ET with more certainty. ET-related feedback studies
are also required to account for land-atmosphere
interactions and anthropogenic impacts in the inte-
grated earth system models (Seneviratne et al 2010,
Bond-Lamberty et al 2014, Collins et al 2015) and to
understand future trajectories of drought (Sheffield
et al 2012, Zarch et al 2015). Given that human
activities continue to grow and intensify in the
Anthropocene Epoch, we emphasize utilizing multi-
stream datasets and multi-modeling frameworks to
better diagnose and project anthropogenic influences
on terrestrial ET, hydrologic cycle and overall climate
change.
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