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We explored the potential of Landsat Enhanced Thematic Mapper (ETM+)
imagery to quantify the expansion of planted oil palm area and changes in above-
ground biomass (AGB) in plantation and forest in Sabah, Malaysian Borneo, from
2000 to 2008. For comparison, a classification layer derived from an Advanced
Land-Observing Satellite Phased Array type L-band Synthetic Aperture Radar
(ALOS-PALSAR) Fine Beam Dual (FBD)-polarized mosaic from 2008 was used
for change detection analysis. Field-measured AGB values from 85 ha of forest
and oil palm plantation plots were compared with 12 vegetation indices (VIs) and
four spectral mixture analysis (SMA) derivatives. Correlations against indices using
optical data were higher for oil palm biomass than for forest biomass. Change
detection analysis of forest conversion to oil palm plantation was performed for
areas designated as protected areas, commercial forest reserve and areas with no
forest-use designation. This analysis found an increase in oil palm area of 38%
(1450 km2) and a total decrease in forest area of 13.1% (1900 km2) for the whole
study area from 2000 to 2008. The greatest area of forest loss was in areas not desig-
nated as forest reserve by the Sabah Forestry Department, although some oil palm
expansion was detected in both commercial and protected areas. Using derived
equations for biomass, we estimated that 46.6 Tg of carbon dioxide equivalents
(CO2e) were released in these three forest designations or 53.4 Tg CO2e for the
entire study area due to forest conversion to oil palm. These results are presented
as relevant for on-going efforts to remotely monitor the carbon emission impli-
cations of forest loss as part of the United Nations Framework Convention on
Climate Change’s (UNFCCC’s) proposed mechanism, Reduced Emissions from
Deforestation and Degradation (REDD).

1. Introduction

Southeast Asia is home to 20% of the world’s remaining tropical rainforest, but is
among the regions with the highest rates of deforestation (Geist and Lambin 2002).
Tropical deforestation degrades air quality, reduces biodiversity (Myers et al. 2000),
causes long-term socioeconomic losses and impacts the global carbon cycle (Defries
et al. 2002). Over the last 145 years, it has been estimated that 33.5 Pg carbon (C)
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(122.8 Pg CO2e) has been emitted from forest conversion to permanent agriculture,
and 11.5 Pg C (42.2 Pg CO2e) from forest degradation; carbon accumulation in plan-
tation areas was 1.5 Pg C (5.5 Pg CO2e), primarily since 1980 (Houghton and Hackler
1999). In Asia, 30% of land-cover change was due to direct conversion of intact for-
est to large-scale permanent agriculture, primarily for timber extraction (Chomitz
et al. 2006). Fifty-five studies addressing the drivers of deforestation in Asia were
reviewed by Geist and Lambin (2002), revealing that there was 100% incidence of agri-
culture following deforestation in Asian forests. Rates of deforestation are following
the trends in urban population growth and agricultural commodity exports (Defries
et al. 2010).

Planted hectares of oil palm have been expanding rapidly across Southeast Asia,
especially in Malaysia and Indonesia. Sabah, a state in Malaysian Borneo, has had
a rapid increase in oil palm plantation area over the past 30 years (figure 1) and
is currently the state with the most planted hectares in Malaysia (Malaysian Palm
Oil Board (MPOB) 2008). This large-scale conversion has led to the loss of lowland
Dipterocarp forest (McMorrow et al. 1996) and was a major contributor in con-
junction with El-Niño Southern Oscillation (ENSO) to the rampant forest fires in
1997–1998 (McMorrow and Talip 2001). Although oil palm plantations are peren-
nial crops, they store significantly less aboveground biomass (AGB) than intact and
logged forest, averaging ∼75 Mg C ha–1 (275 Mg CO2e ha–1) over their 25-year life-
time (Murdiyarso et al. 2002, Henson and Chang 2003, Danielsen et al. 2008). Intact
forest and logged forest can have AGB values greater than 250 Mg C ha–1 (917 Mg
CO2e ha–1) or 150 Mg C ha–1 (550 CO2e ha–1), respectively, resulting in a signif-
icant carbon loss due to forest conversion to oil palm plantation. As a result, the
‘carbon debt’ or the time necessary to compensate (by biofuel substitution of fossil
fuel combustion) for the initial carbon loss may be more than 85 years (Danielsen
et al. 2008, Fargione et al. 2008a). Most studies that have estimated this change are
assuming an AGB typical of primary forests prior to conversion; however, the carbon
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Figure 1. Expansion of the planted area of oil palm in Sabah, Malaysia, between 1975 and
2007 (MPOB 2008). The time period of the current study is highlighted.
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3616 A. C. Morel et al.

balance from conversion of severely degraded forest to oil palm plantation can be
much lower. Hence, there is a need to improve the monitoring capability of AGB in
this region to provide better estimates of carbon storage in vegetation. Improving
these estimates will aid in the implementation of the United Nations Framework
Convention on Climate Change’s (UNFCCC’s) proposed Reduced Emissions
from Deforestation and Degradation (REDD) mechanism, which is explored
further in §4.

Oil palms (Elaeis guineensis), as perennial trees, have a canopy structure more simi-
lar to a forest than other agricultural crops; therefore, the remote sensing of oil palms
can be based on methods for forest monitoring (McMorrow 2001). For oil palm,
researchers have used high-resolution (4 m), hyper-spectral (Jusoff and Pathan 2009)
and Landsat Thematic Mapper (TM) imagery to map plantation distributions and/or
ages. Thenkabail et al. (2004) mapped AGB of oil palm plantations and groves using
high-resolution IKONOS imagery in West Africa with reasonable success (coefficient
of determination, R2, values of 0.62–0.72). Relating the reflectance to AGB in tropical
regions has been a challenge to researchers since Sader et al. (1989) attempted to cor-
relate the normalized difference vegetation index (NDVI) derived from Landsat TM
to tropical AGB in Puerto Rico. Since then, monitoring AGB studies have been under-
taken in both temperate (Muukkonen and Heiskanen 2005, Balzter et al. 2007, Zheng
et al. 2007) and tropical (Foody et al. 2003, Lu 2005, Lu et al. 2005) regions using a
variety of sensors. Mapping AGB in tropical regions is challenging due to the complex
canopy structure, predominant cloud cover and dense biomass. Optical data can cap-
ture the canopy in only two dimensions, missing the important sub-canopy structure
(Anaya et al. 2009); therefore, optical approaches have been considered limited for
estimating AGB relative to the Synthetic Aperture Radar (SAR) and light detection
and ranging (LiDAR) (Foody et al. 2001, Patenaude et al. 2005, Gibbs et al. 2007).
These limitations can be ameliorated by using multiple bands, by modelling canopy
‘greenness’ using either vegetation indices (VIs) (Sader et al. 1989, Foody et al. 2001,
Phua and Saito 2003, Zheng et al. 2004, Lu 2005) or spectral mixture analysis (SMA)
(Lu et al. 2004a, Souza et al. 2005). SMA and VIs are preferable for AGB mapping as
they can minimize the influence of topography, soil reflectance and atmospheric atten-
uation (Lu 2006). SMA, in particular, utilizes the benefits of multi-spectral, reflectance
data, providing a spectral signature for different land-cover categories (GOFC-GOLD
2009). To date, SMA has been used mainly for monitoring the occurrence of forest
degradation in real time but has not been related to AGB. This technique may be par-
ticularly useful for estimating AGB of oil palm due to the sub-pixel occurrence of soil
and shade as the canopy closes with age.

This article has three main aims, which are to evaluate the potential of using Landsat
Enhanced Thematic Mapper (ETM+) imagery to (1) differentiate between oil palm
and forest areas using land-cover classification, (2) estimate and map AGB in oil palm
and forest areas using satellite-derived indices and (3) to estimate gross changes in
forest area and/or AGB values due to the expansion of oil palm areas for 2000–2008
inside and outside forest reserves. Advanced Land-Observing Satellite Phased Array
type L-band Synthetic Aperture Radar (ALOS-PALSAR) images are used for clas-
sification comparison. This study will contribute to the literature by applying SMA
analysis for AGB estimation, estimating oil palm biomass from medium (30 m) reso-
lution imagery and attempting to estimate the carbon footprint of oil palm expansion
at the landscape scale using remote sensing.
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2. Materials and methods

2.1 Study site

The study area covered much of eastern, lowland Sabah, where annual precipita-
tion ranges from 2000 to 3000 mm. The climate of the region is influenced by two
monsoons acting in November–March and June–July, with a relative dry season in
April–September, although monthly precipitation levels rarely drop below 100 mm
(Marsh and Greer 1992). Temperatures are typical for a moist, tropical climate, rarely
going below 20◦C or above 30◦C in the lowlands, with an annual mean of 26.7–27.7◦C.
The lowland forest is moist tropical and dominated by the Dipterocarpaceae family,
with over 180 species of this family in Sabah alone (Whitmore 1984). The sampled
forest area ranged from mixed Dipterocarp forest, both protected and logged, heath
forest (a.k.a. kerangas) and some areas of peat swamp forest (see figure 2). Two species,
Acacia mangium and Albizia ferrucania, cultivated in timber plantations were sam-
pled from the Sabah Softwoods Sendirian Berhad (SSSB) site, 70 km north of Tawau.
Plantations of oil palm, E. guineensis, were sampled from Wilmar International
Limited’s (formerly PPB Plantations’) plantations located near Sandakan. Figure 2
shows the sampled forest reserves and the locations of specific plots; however, land-
cover change analysis and biomass estimates were made over a larger area of Sabah
depending on the coverage of Landsat imagery.

2.2 Field data

Over 100 ha of ground data were analysed for this study collected during 2007 and
2008 across lowland Sabah. Stratified sampling was performed by disturbance level

Plot locations across sabah
No designation
Class I – Protection forest reserve
Class II – Commercial forest reserve
Class III – Domestic forest reserve
Class IV – Amenity forest reserve
Class V – Mangrove forest reserve
Class VI – Virgin jungle reserve
Class VII – Wildlife reserve
Parks
SAFODA
SSSB

Wildlife parks

N

Figure 2. Forest reserve types for Sabah, Malaysian Borneo, and location of sampled forest
and plantations. Black crosses indicate transects, black squares refer to square plot sites and red
squares designate oil palm plots sampled for this study.
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3618 A. C. Morel et al.

(high, medium and low) across forest types (listed above) and year of logging activity in
lowland Dipterocarp forest (e.g. 1970, 1988–1989, 1995–1996, 2000–2002, 2003–2006,
2007) in order to sample a suitable range of AGB estimates, although it was not pos-
sible to take into account the intensity of logging as these data were not available.
Sampling of oil palm plantation was stratified by age, across four age classes; however,
all plots were located in a region of similar management, limiting their applicability
for representing non-industrial oil palm areas. These data were collected as line tran-
sects (20 m × 250–1200 m), 0.25 ha (50 m × 50 m) square plots and 1 ha square
plots (100 × 100 m). While line transects were not directly comparable to a pixel as
a primary sampling unit, they did provide a measure of forest heterogeneity in a site.
For line transects, tree measurements were made for all trees that met the minimum
size requirements within 10 m of either side of a straight line following a cardinal
direction. These measurements were grouped into sub-plots every 10 m along the line
for per-hectare biomass estimates to be calculated at a number of different scales (see
figure 3). For all measurements, trees were identified to species or genus, in order to
estimate wood density. Height measurements were taken for a subset of trees in a plot
or transect and then estimated for all trees using a plot-specific generated, allometric
equation related to diameter at breast height (DBH). Due to cloud cover and gaps
in post-2003 Landsat ETM+ scan-line corrector (SLC)-off data, not all ground plots
were usable. Therefore, only 85 ha of field data were used for analysis, listed in table 1
by land-cover classification and per-hectare biomass estimates.

Per-hectare AGB estimates were derived for trees with ≥10 cm DBH using the
allometric equation for moist, tropical forest from Chave et al. (2005):

Continue for 250 m,
500 m or 750 m

10 m

10 m 10 m

Figure 3. Schematic for line transect sampling. Measurements were made 10 m either side of
a 250–750 m long line transect. Markers were placed every 10 m along the line and all tree
measurements were grouped by marker (tree images from Börner et al. (2010)).

Table 1. Analysed field data plot areas classified by biomass value.

Land-cover class Biomass (Mg C ha–1) [CO2e] Area (ha)

Intact forest >250 [> 917] 21.6
Logged forest 150–250 [550–917] 29.4
Degraded forest/mature plantation 10–150 [37–550] 29.4
Immature oil palm plantation < 10 [< 37] 5
Total 85.3
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AGB = ρe(−1.499+2.148InD+0.207InD2−0.02081InD3), (1)

where ρ is the species-specific (e.g. Shorea hypoleuca) wood density taken from the
literature (Brown 1997, ICRAF 2008) and D is the measured DBH. AGB estimates for
oil palm plantations were derived from field measurements and equations developed
by Corley and Tinker (2003), which involved the combining of trunk and frond AGB
estimates per palm and summing them for a hectare estimate. The following three
equations were used for these estimates:

AGBtrunk = 100π(rz)2hρ, (2)

where r is the radius of the trunk (in cm) without frond bases, z is the ratio of the trunk
diameter below frond bases to the measured diameter above frond bases (estimated to
be 0.777 from sampled trunks), h is the height of the trunk (in m) to the base of the
fronds, ρ is the trunk density (in kg m–3) dependent on the age, x, in years of the palm:

ρ = (0.0076x + 0.083)
100

, (3)

AGBfrond = 0.102Id + 0.21, (4)

where l is the length of the petiole (in cm) and d is the depth of petiole (in cm). The
petiole of the most recently cut frond was measured for each palm to generate this
estimate.

2.3 Imagery

There are several optical and radar sensors that have been assessed for monitoring
AGB. The Landsat series of sensors provide the longest continuous data set of sur-
face reflectance of any sensor and, therefore, are useful for land-cover change analysis.
Landsat imagery has a resolution of 30 m, which is a reasonable grain size for esti-
mating the forest cover (Hansen et al. 2008, Zheng et al. 2008). The key challenges to
using Landsat imagery are atmospheric correction, cloud frequency, intervals between
sampling and image gaps due to sensor malfunction. These challenges are specifically
addressed in this article. We were unable to locate Landsat TM images, which did not
have the added problem of gaps, for the same time period due to limited archiving of
this data set (USGS 2003).

Four Landsat ETM+ scenes were required to include all field plots, comprising
paths 116 and 117 and rows 56 and 57. Due to the largely aseasonal climate, ‘cloud-
free’ images were collected across an entire year to generate one annual composite.
Annual composites were created for 2000 and 2008 from 3 to 4 images per scene
depending on availability. Gap-filling of the 2008 mosaic with 2003 data was consid-
ered but not performed due to the time difference and the speed of land-cover change
in this region. Ninety-metre digital elevation data were taken from the Shuttle Radar
Topographic Mission (SRTM) (USGS 2006), registered to each Landsat scene and
resampled to 30 m resolution.
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3620 A. C. Morel et al.

Finally, a two-class classification image for 2008 derived from ALOS-PALSAR
Fine Beam Dual (FBD) imagery was used for comparison with Landsat ETM+
classification and for subsequent change analysis.

2.3.1 Image preprocessing. Landsat digital numbers (DNs) were corrected to
ground reflectance using the LandCor atmospheric correction framework developed
by Zelazowski et al. (2011). The method performs pixel-by-pixel corrections using
the 6S radiative transfer code (Vermote et al. 1997), which generates specific look-
up tables for relevant aerosol, water vapour and altitude conditions. For diurnal
aerosol and water vapour estimates, images of the Moderate Resolution Imaging
Spectroradiometer (MODIS) joint Atmosphere Product Level 2 (MODATML2) were
acquired for each date of a collected Landsat scene. Date-specific relationships
between atmospheric pressure (modelled from the SRTM digital elevation data) and
the atmospheric aerosol or water vapour content were generated. The MODATML2
is a product from the Terra platform and, therefore, has a data set running from 13
October 2000.

Unfortunately, in 2003, the Landsat ETM+ SLC malfunctioned and subsequently
all captured images have lost 22% of their land-cover data due to widening horizontal
gaps ranging from 2 to 14 pixels (Zhang et al. 2007). There are methods to infill the
missing data; however, regardless of the correction method used, the applicability of
Landsat ETM+ for spatially explicit monitoring of forest change has been severely
compromised (Trigg et al. 2006). We attempted to gap-fill using several images from
the same year; however, gap-filling was less effective from the centre to the edge of the
scene due to the widening gaps in each image. We considered gap-filling using data
from an historical SLC-on image (before May 2003) and either a segment-based or a
histogram-based correction (Wulder et al. 2008). However, due to the significant time
period between 2003 and 2008, attempts at filling in the 2008 data proved unsuccess-
ful and were deemed unnecessary for initial evaluation of this monitoring method.
Instead, cloud-free pixels were combined from all images of the same year to provide
a reasonable, in-filled composite for each scene. The best pixels were selected using
Band 1 and NDVI, to remove cloud pixels and choose higher vegetation values across
images.

To improve classification accuracy, eight scenes of ALOS-PALSAR FBD imagery
were acquired, processed to σ 0 (power) values and 30 m resolution as well as terrain
corrected using the Alaska Satellite Facility’s (ASF’s) Mapready software and a 90 m
SRTM digital elevation model (Jarvis et al. 2006). The images were then orthorectified
to Universal Transverse Mercator (UTM) projection using Landsat ETM+ imagery,
with a root mean square error (RMSE) of < 0.65 Landsat pixels. Finally, a three-
pixel, enhanced Lee filter was applied to reduce speckle in the images (Lee 1980).
For maximum likelihood classification (MLC), a three-band image consisting of the
bands HH, HV and a ratio of HV/HH (to reduce topographic effects) was analysed.
Half of the oil palm and forest points were used as training data and the other half for
evaluating the accuracy of the MLC method.

2.3.2 Vegetation indices. An extensive literature review was performed to iden-
tify existing VIs and select a subset, based on their characteristics (e.g. dominance
in the literature, number of bands used, sensitivity to atmospheric attenuation), for
this study. Table 2 lists the indices chosen, their equations and reference. NDVI is
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Monitoring aboveground biomass in Sabah, Malaysia 3623

among the most widely used VI in the remote-sensing literature due to its reduction
of topographic effects and its normalized linear relationship between the red (R) and
near-infrared (NIR) reflectance bands (Silleos et al. 2006). Although it has not been
found to be a reliable VI for mapping areas of dense biomass (e.g. tropical forest)
(Sader et al. 1989, Huete et al. 1997, Foody et al. 2001, Lu et al. 2004b), it has been
included for comparison.

The two NDVI variants in table 2 are intended to improve the problem with sat-
uration of the VI in the case of dense vegetation (Ünsalan and Boyer 2004) and
reduce the issue of background effects, such as soil, by using the short-wave infrared
(SWIR) bands (Heiskanen 2006). The corrected normalized difference vegetation
index (CNDVI) is one of the best performing VIs in temperate settings (Zheng et al.
2004), chiefly when it is possible to separate areas by structural characteristics (e.g.
hardwoods and conifers). This is not always possible in tropical areas where species
composition is particularly complex, but analysis was performed separately for forest
and oil palm areas. The soil-adjusted vegetation index (SAVI) and perpendicular veg-
etation index (PVI) are best able to reduce background effects (Lu et al. 2004b), with
the former performing best with dense vegetation due to its wide dynamic range and
lower sensitivity to atmospheric attenuation (Mcdonald et al. 1998). Both have been
described by Jackson and Huete (1991) as distance-based VIs, whereby the scatter of
R and NIR reflectance in a 2D space is used by the VI to include the ‘distance’ of the
pixel reflectance from bare soil. The use of the ‘soil line’ is most explicitly utilized in
PVI. Two soil lines were used to generate the PVI: PVI1 used the equation derived for
each scene, while PVI2 used the relationship developed by Heiskanen (2006). Finally,
the infrared index (IRI) was included because McMorrow (2001) found that the inclu-
sion of the SWIR band had the strongest correlation with oil palm stand age. All
VIs were generated for each scene and their values extracted for all plot sites that did
not fall in a gap or a cloud pixel in order to be correlated with biomass estimates.
These equations were solved for AGB resulting in the use of equation (5) for mapping
biomass:

AGB = e(
v1−b

m ), (5)

where VI refers to the pixel value of the index, b is the intercept and m is the slope of
the derived logarithmic regression between AGB and reflectance.

2.3.3 Spectral mixture analysis. In addition to comparing biomass relationships
with generated VIs, SMA was performed on each composite. The principal of SMA
is that the spectral signature of each pixel within a scene is a weighted mixture,
often assumed to be linear, of component endmembers or ‘pure pixels’ (Huete 1986).
Equation (6) describes the model:

dik =
n∑

j = 1

rijcjk, (6)

where dik is the measured spectra for spectral mixture k in waveband i, n is the number
of endmembers in the mixture, j is the number of the endmember, rij is the reflectance
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3624 A. C. Morel et al.

from endmember j in waveband i and cjk is the weighted contribution from endmem-
ber j for spectral mixture k, which must sum to one. The primary endmembers used for
vegetation mapping are green vegetation (GV), non-photosynthetically active vegeta-
tion (NPV), shade (S1) and soil (S2) (Roberts et al. 1993, Souza et al. 2005); however,
SMA has been performed with fewer endmembers (Lu et al. 2004a). SMA has been
used successfully for mapping land-cover change (Anderson et al. 2005, Ferreira et al.
2007), canopy damage due to selective logging (Asner and Heidebrecht 2002, Souza
et al. 2005, Broadbent et al. 2006) and regeneration of forest due to succession (Hall
et al. 1991) in the tropics. It has also been paired with MLC to improve land-cover
classification accuracy (Lu et al. 2004a).

The four endmembers described above can be combined to calculate the normalized
difference fraction index (NDFI), which is defined by the group GOFC-GOLD (2009)
as the most reliable method for mapping areas of degraded forest and canopy damage.
It has not been used previously for estimating carbon stocks. Once the spectral end-
members of a scene have been found and fraction images for each generated, the GV
image is normalized to the shade image (equation (7)):

GVshade = GV
(1 − S1)

. (7)

Once a new fraction image, GVshade, has been generated, the NDFI can be calculated
using equation (8):

NDFI = GVshade − (NPV + S2)
GVshade + NPV + S2

. (8)

For this study, the four endmembers were extracted using the Sequential Maximum
Angle Convex Cone (SMACC) algorithm available in the Environment for Visualizing
Images (ENVI) 4.6 software (ENVI: Research Systems, Boulder, CO, USA), which
automatically identifies a specified number of extreme pixels from the data’s spectral
cloud. The four endmembers representing GV, non-photosynthetic vegetation, shade
and soil were chosen by their spectra and are presented in figure 4. The spectral signa-
ture of GV and non-photosynthetic vegetation can be differentiated by the disparity
in reflectance ‘peaks’ between the red and NIR bands. The non-photosynthetic vege-
tation spectra exhibit higher reflectance in the red region, due to a lack of chlorophyll.
The shade spectra show little reflectance in any wavelength. This automatic method
did have a difficulty in sensing soil pixels, as the resulting soil spectra is not as bright
in the shorter wavelengths as expected; however, it does show increasing reflectance
with longer wavelengths (e.g. NIR and SWIR bands). Again, NDFI values and val-
ues for its components (GV, GVshade, non-photosynthetic vegetation and shade) were
extracted for each plot site. Analysis performed on both NDFI and VIs required tak-
ing the means of all pixels within a plot area in order to reduce noise from pixel
heterogeneity. Correlations were performed between land-cover data and the loga-
rithm of biomass estimates generated from 1 ha plot estimates. Finally, RMSEs were
calculated for significant relationships to assess their efficacy in predicting AGB, and
biomass maps were attempted from the most significant relationships with oil palm
and forest AGB.
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Figure 4. Spectral signatures for the four endmembers of vegetation, generated by ENVI’s
SMACC algorithm. (a) The typical spectral signature for non-photosynthetic vegetation (e.g.
reflection in the red band), (b) the typical spectral signature for green vegetation, (c) the spectral
signature for soil, though with lower than expected reflectance in the visible spectrum, and (d)
the spectral signature for shade.

2.3.4 Land-cover classification. Classification of vegetation into structural types
before estimating AGB is often necessary, due to the different behaviour of these sur-
faces with optical reflectance data and their ability to store biomass (Anaya et al.
2009). We applied both unsupervised (k-means) and supervised (maximum likelihood)
classification techniques followed by a decision-tree classifier to improve final classifi-
cation layers in mountainous regions. The k-means unsupervised technique is based on
the establishment of an initial set of land-cover classes with pixels classed iteratively,
keeping class means within a set standard deviation (Tou and Gonzalez 1974). The
MLC algorithm is a parametric, supervised classification technique that assumes equal
probability of a pixel’s class, unless separate class weightings are assigned (Hagner
and Reese 2007). When analysing noisy, SLC-off Landsat data, MLC can be the bet-
ter technique, as well as reducing the number of land-cover classes to improve overall
accuracy (Bédard et al. 2008).

Unsupervised (k-means) and supervised (MLC) classifications were performed
using all six bands of the 2000 and 2008 composites. Both classifications used three
land-cover classes, with intact and logged forest combined from table 1, and two
classes, only oil palm and forest. For unsupervised classification, ten classes were iden-
tified before being combined into either three or two classes. Because the majority of
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3626 A. C. Morel et al.

field plots were within two scenes ((1) path 17, row 56 and (2) path 117, row 57),
only classifications of these images are presented. The ground points were initially
split evenly between training and testing of the MLC algorithm; however, due to the
range of reflectance values for each land-cover type and the reduced number of usable
ground points, only using half of the available points resulted in an overestimate of
forest areas. Therefore, all points were needed for training and testing, thereby reduc-
ing the reliability of this sensor for land-cover classification. For comparison, an MLC
classification of oil palm and forest pixels was performed on a 2008 mosaic of SAR
data from the ALOS-PALSAR sensor over the same region. This layer produced a
more reliable classification of mountainous areas (due to using a ratio of the two
polarized bands HH/HV to reduce topographic effects). Due to poor classification
accuracy in mountainous areas in Landsat scenes, a decision-tree classifier was used to
change areas likely misclassified as oil palm to forest where the slope was greater than
25◦ and altitude was greater than 500 m and where areas in forest reserves had been
classified as forest in the 2008 ALOS-PALSAR layer. Finally, all classifications were
automatically segmented with ENVI to remove erroneously classified pixels within
large areas of forest or oil palm. Confusion matrices were derived for each layer using
a pixel-to-pixel sampling protocol.

The more accurate of the two 2008 classification layers was used to select pixels
from the 2000 composite that had changed from forest to oil palm plantation and to
estimate the AGB of that pixel in 2000 and 2008. Images were resampled to 100 m
resolution using ENVI’s orthorectification module before AGB estimates were calcu-
lated, to more closely approximate 1 ha AGB calculations. Gross changes in AGB were
estimated by subtracting per pixel AGB estimates in 2000 and 2008; however, to calcu-
late differences in oil palm and forest AGB, values were converted to CO2 equivalents
(CO2e) due to their different carbon content values. Oil palm has a carbon content of
45% of dry biomass and forest wood is often approximated as 50%. The conversion of
carbon to CO2e is accomplished by multiplying by the molar ratio of 44/12.

3. Results

Forest plots and oil palm plantation plots (collected at 0.25 ha) were analysed
separately, with significant linear regression results for all VIs (table 3). The best per-
forming VIs were CNDVI, which had the widest dynamic range, while PVI1, PVI2
and the atmospherically resistant vegetation index (ARVI) exhibited slight, bimodal
distributions (results not shown), indicating these indices are discerning differences in
land cover. Also, PVI1 and PVI2 had identical R2 values, showing that the slope of the
soil line was not important to derive for each image; however, the inclusion of the soil
line itself appears to be well suited for monitoring oil palm plantations. Surprisingly,
IRI did not exhibit a significant relationship with oil palm biomass, as it had been
included specifically for its inclusion of SWIR shown to have a strong relationship
with oil palm age (McMorrow 2001). RMSE values reveal the poor predictive power
of these VIs for AGB estimates in forest; however, RMSE values in oil palm planta-
tions were reasonable (although 35 Mg ha–1 can constitute from 30% to 100% of AGB
values in oil palm plantations, depending on age).

The same analysis as above was performed for the SMA technique, NDFI and three
of its components (table 4). The soil abundance image was not analysed as it had
very few values in the plot areas and, as discussed above, had analytical limitations.
In forest plots, the NPV component exhibits the strongest relationship with biomass,
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Monitoring aboveground biomass in Sabah, Malaysia 3627

Table 3. R2 and RMSE values for linear regression analysis of each VI to the logarithm
of biomass for all oil palm plots and 1 ha forest plots.

Oil palm plots Forest plots

Vegetation index R2 RMSE R2 RMSE

AFVI5 – – – –
AFVI7 – – – –
ARVI 0.69∗∗ 34.8 – –
CNDVI 0.61∗∗ 35.6 0.15∗∗ 1777.4
EVI – – – –
LNDVI – – – –
NDVI – – 0.06 1778.7
PVI1 0.76∗ 35.9 0.08∗ 1778.1
PVI2 0.76∗ 36.0 0.08∗ 1778.3
SAVI – – – –
SR – – 0.12∗∗ 1779.8
IRI – – – –

Note: All reported numbers are significant with ∗ and ∗∗ indicating p-values of 0.01
and 0.001, respectively.

Table 4. R2 and RMSE values for linear regression analysis of NDFI and each NDFI
component to the logarithm of biomass for all oil palm plots and 1 ha forest plots.

Oil palm Forest

NDFI and components R2 RMSE R2 RMSE

NDFI 0.58∗∗ 32.4 0.16∗∗ 1763.1
GV 0.41∗ 34.7 0.09∗ 1769.7
NPV 0.78∗∗ 35.3 0.22∗∗ 1771.2
Shade 0.80∗∗ 35.5 0.17∗∗ 1771.6

Note: All reported numbers are significant with ∗ and ∗∗ indicating p-values of 0.01
and 0.001, respectively. Bold numbers indicate strongest relationships used for AGB
estimates.

and NDFI and the shade component exhibit similar significance. NDFI endmembers
perform much better in the oil palm plots, though GV was the poorest performing
endmember, in forest and oil palm plots. These RMSE values were similar to VI results
for oil palm plantations and forest plots, respectively, with NDFI producing the lowest
errors of all SMA derivatives. NPV and shade were the best endmembers to describe
biomass in forest and oil palm plantations, respectively (figure 5). The relationships
were perhaps due to the simple canopy structure of an oil palm monoculture exhibiting
increasing shade fractions with greater canopy closure and, for forest, visible non-
photosynthetic vegetation decreasing with increasingly dense forest. The equations
used for subsequent AGB calculations in units of CO2e ha–1 were (the subscripts are
self-explanatory)

AGBforest = 0.5
(

44
12

)
e(

NPV−0.13297
−0.0086681 ). (9)
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Figure 5. Linear regressions for NDFI components and the logarithm of AGB. (a) The
relationship between forest AGB and non-photosynthetic vegetation and (b) the relationship
between oil palm AGB and shade.

AGBoil_palm = 0.45
(

44
12

)
e
(

S1−0.5877
0.029436

)
. (10)

As mentioned above, two classification techniques were used on the 2008 composite,
though only the two-class MLC results for the Landsat ETM+ and ALOS-PALSAR
mosaics are presented (figure 6). The 2008 Landsat image had a classification accu-
racy of 69.7% and κ (kappa coefficient) of 0.21, after segmentation, compared to an
accuracy of 97.0% and κ = 0.64 in the SAR image (see table 5). For both layers,
the user’s accuracy for oil palm classification was significantly lower than for forest,
54.5% and 54.0%, respectively for the Landsat and ALOS scene. This is due to the
high commission rates, or false positives, of areas classified as oil palm in both layers.
Classification using three classes had significantly lower accuracies and, therefore, are
not presented or used. Supervised and unsupervised classification of the 2000 imagery
were performed using 2008 field plots; therefore, it was not possible to differenti-
ate forest plots by AGB values, but instead classification using only two classes was
accomplished. After segmentation and the decision-tree classifier, the classification
accuracy was 74.1% and κ = 0.24. However, this classification seemed to misclas-
sify many forest areas (particularly mountainous ones) as oil palm; by assuming that
areas classified as forest in the 2008 SAR within areas designated as forest were also
forest in 2000, classification accuracy was improved to 97.8% and κ = 0.87 (figure 7).
For this layer, the classification of oil palm had a high producer’s and user’s accuracy,
compared to the 2008 classification layers presented above.

Change detection was performed between the two MLC classification layers, in
areas designated as commercial or protected forest reserve and land areas with no
formal designation. The areas without a formal forest designation by the state may be
zoned for agriculture or urban development, and therefore, highly likely to be planted
with oil palm. The results of these two analyses are presented in table 6, which show
an overall decrease in the forest area of 13.1% (1935 km2) and an increase in oil palm
area of 38% (1450 km2). However, the errors in these estimates are revealed through
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Figure 6. Map of vegetation cover in 2008 for the study area derived from supervised maxi-
mum likelihood classification with two land-cover classes for Landsat imagery (overall accuracy
69.7% and κ = 0.21) (a) and for ALOS-PALSAR FBD imagery (overall accuracy 97.2% and
κ = 0.65) (b).

Table 5. Assessment of classification accuracy for each classification layer.

Landsat (2008) ALOS (2008) Landsat (2000)

Confusion matrices results Oil palm Forest Oil palm Forest Oil palm Forest

Producer’s accuracy (%) 89.1 68.5 100.0 97.0 97.8 97.8
User’s accuracy (%) 54.4 99.9 54.0 100.0 81.5 99.8
Overall accuracy (%) 69.7 97.0 97.8
Kappa coefficient 0.21 0.64 0.87

the producer’s and user’s accuracies discussed above. Analysis of the classification lay-
ers’ confusion matrices indicates that some areas of oil palm have been misclassified
in both layers and, therefore, overestimated for the year 2008.

Areas without a formal designation exhibited a 55.2% (1780 km2) decrease in for-
est and a 40% increase in oil palm (1290 km2). Forest losses in both protected and
commercial forest reserves were significantly lower, 3.7% and 8.6%, respectively, with
increases in oil palm area of 79 and 80 km2, respectively. While noteworthy, most of
this conversion is focused in one or two reserves, or else is the result of some oil palm
cultivation along the edges of designated forest reserves (especially if forest reserve
borders were not 100% accurate). The areas of change are presented in figure 7. While
the area analysed is a subset of Sabah’s total area, this estimated increase in oil palm
area is similar to the MPOB’s statistics (see figure 1), which report an increase in oil
palm area of 33% over the same time period for all of Sabah (compared to the 38%
increase reported here for a subset of the state of Sabah).

D
ow

nl
oa

de
d 

by
 [

Je
t P

ro
pu

ls
io

n 
L

ab
or

at
or

y]
 a

t 1
4:

35
 0

6 
Fe

br
ua

ry
 2

01
2 



3630 A. C. Morel et al.

0 10 20 40 60 80
km

0 10 20 40 60 80
km

No data

Legend

Oil palm

Forest loss

Forest

NN

(b)(a)

Figure 7. (a) Supervised maximum likelihood classification for 2000 Landsat mosaic, hilly
areas corrected to ALOS-FBD SAR forest area, for two classes (overall accuracy 97.8% and
κ = 0.87) and (b) change in forest and oil palm area between 2000 Landsat and 2008 ALOS-
FBD SAR classifications. The areas indicated as forest and oil palm in the change image did
not change from 2000 to 2008, whereas yellow indicates areas of forest converted to oil palm.
See figure 2 for protection or management status of each forest area.

Using equations (9) and (10) and resampled 100 m resolution imagery, AGB values
were calculated for change pixels (e.g. pixels classified as forest in 2000 and oil palm in
2008) using shade and NPV fraction images derived from Landsat ETM+. As RMSE
values were very high for forest AGB, the values presented in table 7 are only rough
estimates, with considerable errors reported. The total change in AGB, which includes
carbon sequestration by oil palms, was estimated to be 53.4 Tg CO2e for the entire
study area or 46.6 Tg CO2e within the three areas of forest designations analysed
separately. Calculations were also performed of solely forest carbon ‘lost’ since 2000
as policy proposals regarding biofuels do not intend to include carbon sequestration
from palm plantations in land-use change estimates, in which case a total of 68.4 Tg
CO2e were released. Finally, for comparison with previous carbon debt analyses, aver-
age hectare values were calculated for changes in AGB values, forest and oil palm AGB
estimates for the three different forest designations. Again, the range of estimates was
too large to make any reliable conclusions; however, their implications are discussed.

4. Discussion

This study presented analysis of 12 VIs and the first use of the GOFC-GOLD-
endorsed NDFI for estimating AGB in tropical forests. Most VIs poorly described
forest AGB; however, background effects, such as soil reflectance and atmospheric
attenuation, by using the blue or SWIR bands, were important factors to include. The
most consistent VI was CNDVI, which has been successfully used for mapping tem-
perate AGB, especially after vegetation was separated by structure (Zheng et al. 2004).
NDFI and its components provided a stronger relationship in forests than other VIs,
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Table 7. Estimates of aboveground carbon changes from shade and NPV biomass equations for
oil palm and forest pixels, with very high standard deviation values.

Factor
Total (incl. other

designations) No designation
Commercial

reserve Protected area

Change in
aboveground
carbon 2000–2008
(Tg CO2e)

−53.4 −46.2 −0.3 −0.1

Forest carbon loss
from 2000
(Tg CO2e)

−68.4 −59.5 −3.2 −0.2

Mean hectare forest
carbon 2000
(Mg CO2e ha–1)

394.2 ± 334.4 394.5 ± 334.3 452.1 ± 326.7 497.2 ± 318.6

Mean hectare oil
palm carbon 2008
(Mg CO2e ha–1)

86.2 ± 114.0 87.6 ± 112.6 407.0 ± 294.1 268.8 ± 288.2

Mean hectare
change in carbon
2000–2008
(Mg CO2e ha–1)

−308.0 ± 346.1 −306.5 ± 345.4 −45.1 ± 32.6 −228.1 ± 359.7

although it appeared to be limited by high saturation in the GV fraction image; this
measure should be explored further in other AGB monitoring studies (Souza et al.
2005, GOFC-GOLD 2009).

Better correlations for mapping AGB in this region have been found using an artifi-
cial neural network (ANN) using all Landsat TM bands (Foody et al. 2001); however,
this method of analysis relies on extensive training data and the results for one image
may not be applicable for images from previous years. Therefore, as this study was
focused on estimating the change in AGB, an ANN approach was not pursued. The
RMSE values for both VIs and NDFI components were similar and unreasonably
large for modelling forest AGB. Therefore, efforts to quantify the changes in AGB are
meant to be illustrative rather than definitive.

Nevertheless, two of this article’s three aims have been accomplished. While not as
effective without SAR data, Landsat ETM+ is able to differentiate between oil palm
areas and forested areas. Without using the SAR classification layer as an additional
information input, areas with significant topography as well as areas of mature oil
palm plantations and degraded forest were misclassified. The latter finding is consis-
tent with McMorrow’s (2001) study where she found estimating stand age of oil palm
the most difficult for mature plantations. However, high commission rates indicate
that the differentiation between forest and oil palm can be further improved. This is
likely to be due to the SAR layer exhibiting similar backscatter for swamp forest and
oil palm plantation. Therefore, future studies in this region will need adequate ground
points of both land covers. While AGB values in forest are poorly modelled, AGB val-
ues in oil palm plantation exhibited high levels of correlation to several VIs and SMA
derivatives. The shade fraction provided the most significant relationship, making it
the strongest candidate for modelling oil palm AGB. Therefore, this study does show
that Landsat ETM+-derived indices are able to produce similar, if not more signifi-
cant, correlations with oil palm AGB than high-resolution (e.g. 4 m) imagery, such as
IKONOS analysed by Thenkabail et al. (2004).
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To select the forest and oil palm pixels to be analysed, change detection analysis
was used to estimate forest loss. Compared to state-wide MPOB (2008) statistics (see
figure 1), the combined SAR and Landsat analysis appeared to provide a reasonable
estimate of oil palm expansion. Due to the significant increase in classification accu-
racy after correcting misclassified oil palm pixels with SAR data, it appears necessary
to combine these data sets for reliable change detection. On the other hand, as SAR
data are unable to discern AGB in oil palm plantations (Morel et al. 2011), SMA
of Landsat ETM+ provides a useful means of estimating this parameter. This data
set could be combined with SAR-based forest AGB estimates for a complete AGB
map of this study area; however, as the ALOS-PALSAR sensor has only been in orbit
since 2006, it provides little opportunity for meaningful historical estimation of AGB
changes at present. As a result, this analysis was attempted with Landsat ETM+ data;
however, in future, this analysis would be improved as a hybrid approach.

The NPV fraction saturates in areas of high biomass; therefore, it is unlikely that it
will ever be able to reliably estimate AGB values in dense forest. Undisturbed forests
in this region can reach AGB values of 400–500 Mg dry biomass ha–1 (730–900 Mg
CO2e ha–1) (Yamakura et al. 1986, Murdiyarso et al. 2002, Paoli et al. 2008, Slik
et al. 2010), with even logged areas maintaining AGB values greater than 200 Mg ha–1

(or 360 Mg CO2e ha–1) (Morel et al. 2011), although Foody et al. (2001) measured
logged forest AGB values as low as 64 Mg ha–1 (or 118 Mg CO2e ha–1). This analysis
indicates that forest areas replaced by oil palm have similar AGB values to logged
forest, far below the intact forest AGB values. This is not surprising, as these planted
areas generally follow timber extraction and/or forest degradation due to other causes
(Chomitz et al. 2006); therefore, studies that have assumed AGB values for relatively
undisturbed forest (Danielsen et al. 2008, Fargione et al. 2008b) may be overestimating
the emissions that can be attributed directly to oil palm expansion.

This study is directly relevant to the on-going development of the UNFCCC’s
REDD mechanism, designed to harness carbon payments for forest conservation.
Uncertainty in forest degradation monitoring is particularly problematic for the imple-
mentation of REDD. Hence, there remain several challenges for reliable monitoring of
this mechanism, in terms of both technical (Patenaude et al. 2005, Gibbs et al. 2007,
Olander et al. 2008) and political barriers (Venning 2010). However, this study con-
tributes to the remote-sensing field by exploring the application of the SMA-derived
index, NDFI, for estimating changes in forest AGB, which has been advocated by the
GOFC-GOLD. While measured forest plots in this study may have saturated the sig-
nal with high AGB values, change estimates suggest much of the forests in this region
are degraded and further estimates to monitor this phenomenon would be valuable.
Finally, reporting requirements for the sustainability rules of the European Union’s
Renewable Energy Directive (EU 2009) do not allow the inclusion of carbon sequestra-
tion by biofuel feedstock crops, such as oil palm. However, the calculations presented
in table 7 reveal there is a significant discrepancy if oil palm carbon is not included.
Whether or not this indicates an overestimation of carbon emissions appears to be
primarily a political decision.

From this analysis, it is clear that the majority of emissions from forest conversion
to oil palm plantation in Sabah occurred in areas not designated to remain forest
by the state. This would indicate that governance of these forest reserves has been
relatively robust. While the detection of some oil palm in commercial forest reserves
and protected areas is somewhat alarming, their respective contributions to emissions
from land-use change in the region are very small. Also, as vectors of forest reserve
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boundaries may not be precise, it would be necessary to verify on the ground whether
areas converted to oil palm were planted illegally before too many conclusions can be
drawn.

5. Conclusions

The results of this study suggest Landsat ETM+, on its own, is not an ideal sensor
for monitoring changes in AGB, particularly in the dense, tropical forests of Borneo.
One of the major limitations is due to the gaps resulting from the SLC failure as well
as the inherent limited ability of an optical sensor to perceive sub-canopy structure,
such as biomass. Monitoring of biomass of oil palm areas, on the other hand, was sig-
nificantly better, with NDFI and its components providing slightly better models for
AGB. For forest, VIs and SMA techniques offered little analytical value for this study.
The combination of optical data and SAR data produced the most robust estimate
of land-cover change for years before the launch of ALOS-PALSAR (pre-2007), indi-
cating that monitoring of total land-cover change can be attempted, although future
studies in this region would benefit from initial state forest AGB estimates from SAR
data instead of Landsat NDFI components.

This study has produced estimates of emissions from forest conversion to oil palm
plantation; however, these are only meant to illustrate both the range of AGB values
captured across land-cover types and the relatively low AGB values in forest being
converted to oil palm plantations. Belowground biomass has not been quantified, nor
have areas of peatland, which are uncommon in Sabah. However, as estimates of emis-
sions from land-use change need to be improved, particularly for this region, methods
that account for changes in soil carbon and land-cover monitoring that differentiates
forest on mineral and organic soils will be needed.
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