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Abstract

Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in

closing the Earth’s carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into

GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in

the remote sensing of solar-induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global

observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of

GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases

Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical

S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of

GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7–
8 Pg C yr�1 from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr�1) and enhanced GPP in tropical

forests (~3.7 Pg C yr�1). This leads to improvements in the structure of the seasonal cycle, including earlier dry sea-

son GPP loss and enhanced peak-to-trough GPP in tropical forests within the Amazon Basin and reduced growing

season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread

of DGVMs) is reduced by 40–70% during peak productivity suggesting the assimilation of GOSAT SIF with models is

well-suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP

response to climate drivers and the potential to constrain predictions of carbon cycle evolution.
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Introduction

Terrestrial carbon sinks absorb approximately a quarter

of anthropogenic emissions but there is much debate as

to whether these sinks will continue to buffer the effects

of increasing carbon emissions and climate change

(e.g., Friedlingstein et al., 2006; Sitch et al., 2008; Knorr,

2009; Arora et al., 2013; Le Qu�er�e et al., 2013). A major

international effort to improve understanding of carbon

cycle processes, under the auspices of the Regional Car-

bon Cycle Assessment and Processes (RECCAP; Sitch

et al., 2013), attempts to constrain regional terrestrial

carbon budgets by reconciling flux estimates from top-

down atmospheric inversions and bottom-up methods

(Canadell et al., 2011). However, caution is needed in

interpreting estimates of net carbon flux. Model inter-

comparisons indicate that estimates of net flux have a

much narrower range than the subcomponent estimates

of gross productivity and respiration, which are large

and uncertain (e.g., Huntzinger et al., 2012). To better

constrain net flux and take full advantage of efforts

such as RECCAP, better evaluation of these gross fluxes

is needed.

Carbon fixation by the terrestrial biosphere, or gross

primary production (GPP), constitutes the largest flux

in the terrestrial carbon balance (Beer et al., 2010). GPP

is controlled by many factors such as climate, distur-

bance history, management practices, water and nutri-

ent availability, soil type, species composition, and

community structure. Most dynamical global vegeta-

tion models (DGVMs) either do not account for all
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these dependencies or have different but plausible rep-

resentations of these underlying processes, leading to

differences in the GPP response to the same climate

forcing (Sitch et al., 2008, 2013; Schaefer et al., 2012).

Given the critical roles of GPP in the global carbon

budget and current model limitations, there has been

much effort to provide empirical based constraints

(Myneni et al., 2007; Suntharalingam et al., 2008; Beer

et al., 2010; Frankenberg et al., 2011; Luo et al., 2012).

Recent advances in the remote sensing of solar-induced

chlorophyll fluorescence (SIF) have opened up a new

possibility to measure the rate of planetary photosyn-

thesis at increasing spatial resolution (down to

~10.5 km diameter in the Greenhouse gases Observing

SATellite (GOSAT)), providing direct seasonal con-

straints on global GPP (Frankenberg et al., 2011; Joiner

et al., 2011, 2013; Guanter et al., 2012; Lee et al., 2013;

Parazoo et al., 2013). SIF is light re-emitted from leaf

chlorophyll during photosynthesis and therefore offers

a direct probe into the photosynthetic process (Flexas

et al., 2002; Rascher et al., 2009; Damm et al., 2010;

Daumard et al., 2010). Near global retrievals of SIF from

GOSAT correlate strongly (r2 = 0.80) at global annual

scale with flux measurements-based GPP extrapolated

globally from the MPI-BGC model (Frankenberg et al.,

2011; Beer et al., 2010; Jung et al., 2011; henceforth G-

mpi) indicating that, on average, most of the photosyn-

thesis that occurs during emissions of SIF also leads to

carbon uptake. Correlation of SIF with satellite fPAR

(r2 = 0.46) and NDVI (r2 = 0.46) are, however, much

weaker (Frankenberg et al., 2011). Consequently, SIF

has demonstrated further skill over classical vegetation

indices in detecting large-scale GPP changes, including

physiological effects of water limitation and tempera-

ture stress (Daumard et al., 2010; Lee et al., 2013).

While previous studies have demonstrated that satel-

lite SIF provides a direct linear predictor of global GPP,

the observed linear relationship is empirical, and fur-

ther studies are needed to better quantify the exact rela-

tionship between SIF and GPP (Maxwell & Johnson,

2000; Lee et al., 2013). This empirical constraint is fur-

ther limited by infrequent sampling in space (from GO-

SAT) and systematic under-sampling in clouds. We

therefore seek an integrated methodology in the esti-

mate of GPP that takes advantage of complementary

information in satellite retrievals and vegetation mod-

els. For this purpose, we use an optimal estimation

framework, which minimizes a cost function that bal-

ances the difference between observed and predicted

values of GPP subject to a priori uncertainty and obser-

vation precision error.

The a priori mean and uncertainty are derived from

an ensemble of independent DGVMs, allowing integra-

tion of a priori knowledge over a wider range of

processes than is possible with a single model and

improving a priori estimates of seasonal GPP. This

methodology is compatible with a variety of model in-

tercomparison studies (e.g., Sitch et al., 2008, 2013;

Huntzinger et al., 2012; Schaefer et al., 2012; Taylor

et al., 2012), and has potential to provide critical feed-

back for models. Here, we evaluate GPP from a consor-

tium of eight DGVMs, herewith referred to as TRENDY

models, used as part of the Global Carbon Project to

examine global annual carbon budgets as well as regio-

nal trends in land carbon sinks over the period 1990–
2009 (http://dgvm.ceh.ac.uk/node/9) (Sitch et al.,

2013).

We identify four primary objectives: (1) establish an

optimal estimation framework that incorporates

DGVM, semi-empirical upscaling (G-mpi) and SIF from

existing and future satellites, (2) evaluate optimal esti-

mates using multiple SIF scaling strategies, data-based

GPP models, and available flux tower data, (3) quantify

the information content of GOSAT data with respect to

a priori uncertainty, and (4) identify biomes and regions

where model predictions diverge from optimal esti-

mates.

Materials and methods

GPP optimal estimation framework

The relationship between a set of GPP observations at a grid

cell location j to a corresponding set of predictions can be

expressed as:

yj ¼ fðbj; jÞ þ �j ð2:1Þ

where yj 2 RNj is a vector of Nj GPP observations,

fðbj; jÞ : R ! RNj a vector of predicted (a priori) GPP values

evaluated at the times and location of observations, and ej
is a vector of error estimates. We define bj 2 R as a grid

cell GPP scaling factor to adjust a priori GPP according to

observations and subject to a priori and observational uncer-

tainties. We can then use a Bayesian optimal estimation

framework that solves for grid-scale GPP by minimizing a

cost function (Cbj ):

Cbj ¼
1

2
yj � fðbj; jÞ
h iT

R�1
j yj � fðbj; jÞ
h i

þ ½bj � bb�2r�2
j ð2:2Þ

where bb 2 R is the a priori scaling factor estimate, Rj 2 RNj�Nj

is the observation error covariance matrix, and r2j is a scalar a

priori scaling factor error. This provides a general framework

in which a collection of observations and uncertainty esti-

mates can be used inform an a priori distribution of GPP.

Here, we seek an estimate of monthly GPP that optimally

accounts for uncertainties in predictions of GPP from

DGVM’s, estimates of GPP inferred from satellite observa-

tions of midday SIF, and relationships between SIF and

GPP. In this case yj represents GPP inferred from satellite

measurements of SIF in one month, f(bj, j) midday GPP
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predictions from DGVM’s and evaluated at the times and

location of inferred GPP, and bj a monthly constant scaling

factor which varies seasonally and spatially. These inputs

are described in more detail in the following sections.

Examples of inferred and a priori midday GPP (yj and f(bj,
j), respectively) at a grid point in North America (120°W,

40°N) are shown in Fig. S1.

Diagonal terms in Rj are equal to midday observation preci-

sion errors derived from GOSAT SIF retrievals (Frankenberg

et al., 2011) and additional error estimates as described below.

We assume that satellite observational errors are uncorrelated

in time and consequently set the off-diagonal terms equal to

zero. r2j , which represents the variance of scale factors pre-

dicted by an ensemble of models, is estimated as

r2j ¼ varðbl;jÞ ¼ var gl;j=gj
� �

ð2:3Þ

where gl,j is monthly GPP from model ensemble member l,

gj ¼ 1
M

PM
l¼1 gl;j ismonthlyGPP averaged across the ensemble of

models,andM is thenumberofmodels.gj isusedthroughout this

study to represent a priorimonthly GPP. For each grid point, the

optimalscalingfactorisfoundbyminimizingthecostfunction

bb j ¼ minb Cbj ð2:4Þ

which can be written in terms of Eqn (2.2) as

bb j ¼ bb þ ðKT
j R

�1
j Kj þ r�2

j Þ�1KT
j R

�1
j ðyj � fðbj; jÞÞ ð2:5Þ

(Tarantola, 2005) where

Kj ¼
@fðbj; jÞ
@bj

ð2:6Þ

represents the gradient or Jacobian of predicted GPP with

respect to the monthly scaling factor.

Uncertainty in the optimal scaling factor is

Ŝj ¼ ðKT
j R

�1
j Kj þ r�2

j Þ�1 ð2:7Þ

with reduction of uncertainty estimated as

errj ¼ 1� ð ŜjÞ1=2ðr2j Þ�1=2 ð2:8Þ

The uncertainty estimates in Eqn (2.7) are defined with

respect to scale factors. We can recast those into uncertainties

in prior and posterior GPP, respectively, as

Qj ¼ �g2j r
2
j ð2:9Þ

bQj ¼ ð�gjbjÞ2Ŝbj ð2:10Þ

Finally, to examine patterns of uncertainty at zonal, regio-

nal, and seasonal scale we estimate the mean uncertainty from

grid to regional scale as

�Q ¼ 1

Nx

Xj¼Nx

j¼1

Qj ð2:11Þ

�bQ ¼ 1

Nx

Xj¼Nx

j¼1

cQj ð2:12Þ

where Nx the number of grid points in a given region. In the

example in Fig. S1, our methodology derives a bj that reduces

a priori GPP by a constant factor, with convergence toward

inferred GPP weighted by a priori and observational uncertain-

ties.

Prior mean and uncertainty

We use monthly averaged GPP output from the TRENDY

project (http://dgvm.ceh.ac.uk) (Sitch et al., 2013) to calcu-

late a priori GPP and uncertainty (f(bj, j) and Pj respectively)

(Piao et al., 2013). TRENDY follows the studies of Le Qu�er�e

et al. (2009) and Sitch et al. (2008) to examine spatial trends

in net land-atmosphere carbon exchange over the period

1990–2009 using a consortium of DGVM’s. Eight of the par-

ticipating models provide monthly output, including TRIF-

FID (Clark et al., 2011), LPJ (Sitch et al., 2003), LPJ-GUESS

(Smith et al., 2001; Ahlstr€om et al., 2012a,b), CLM4-CN

(Thornton et al., 2007), ORCHIDEE (Krinner et al., 2005),

OCN (Zaehle et al., 2010), SDGVM (Cramer et al., 2001), and

VEGAS (Zeng et al., 2005). The models are forced over the

period 1860–2009 at 0.5° 9 0.5° or coarser (Sitch et al., 2013)

using a factorial set of sensitivity simulations. Here, we use

monthly mean GPP output from “S2” simulations forced

with changing (CO2) and climate information from the CRU-

NCEP dataset, representing the combination of CRU TS.3.2

0.5° 9 0.5° monthly climatology and NCEP reanalysis

2.5° 9 2° 6 hour data (http://nacp.ornl.gov/thredds/file-

Server/reccapDriver/cru_ncep/analysis/readme.htm).

The monthly a priori uncertainty in the GPP scaling factor is

estimated from these data using Eqn (2.3). Deriving uncer-

tainty from the spread of DGVMs also provides an estimate of

the structural uncertainty in GPP arising from differences in

model processes such as seasonal phenology and sensitivity to

environmental forcing (e.g., light/water limitation) (Collins,

2007; O’Neill & Melnikov, 2008). In this way, the combination

of prior and posterior uncertainty estimates will help to iden-

tify models and processes that are most consistent with opti-

mal GPP and flux tower data (see below).

To estimate midday GPP at GOSAT overpass time from

monthly TRENDY GPP, we follow a similar approach to Olsen

& Randerson (2004) and distribute monthly GPP according to

3-h downward shortwave radiation flux derived from MER-

RA (Rienecker et al., 2011). We then sample the 3-h GPP near-

est to GOSAT overpass time. We note this technique does not

account for important meteorological effects such as variations

in water availability and that use of MERRA leads to inconsis-

tencies with CRU-NCEP TRENDY forcing. However, MERRA

provides improved resolution of diurnal variations relative to

CRU-NCEP as well as coverage through 2012 (CRU-NCEP

covers through 2010 at the time of this writing), providing a

longer overlap with GOSAT SIF and therefore providing more

robust estimates of seasonally averaged GPP.

To avoid noise driven by interannual variability of GPP in

response to climate (Piao et al., 2013), we average monthly

output from the eight TRENDY models over the period 2000–

2009 to create seasonal climatology. This has little influence on

global GPP, which increases only slightly from

123.59 Pg C yr�1 in 2000 to 125.05 Pg C yr�1 in 2009

(124.77 Pg C yr�1 in 2000–2009 average). Henceforth, the

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 3103–3121
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ensemble average a priori monthly GPP, gj;t, will be denoted as

G-pri. Optimal GPP, denoted as G-opt, is then G-pri multi-

plied by the optimal scale factor (Eqn 2.5). Zonal average

mean and uncertainty of G-pri for the period 2000–2009 are

shown in Fig. S2.

Midday GPP inferred from GOSAT chlorophyll
fluorescence

We estimate midday GPP, denoted as G-sif, from GOSAT SIF

data using the linear scaling technique described in Franken-

berg et al. (2011), which infers GPP magnitude from the slope

between SIF (collected ~1:30 pm local time, units of

W m�2 l�1 sr�1) and G-mpi. In this way, spatial and temporal

GPP variability is constrained globally by SIF observations

while annual magnitude is constrained by semi-empirical

observations (G-mpi = 121.67 Pg C yr�1, ~3% less than the

average of TRENDY models).

We first calculate midday SIF from a single retrieval as the

average of two bands (757 nm and 771 nm) and two polariza-

tions (p and s), with SIF at 771 nm scaled by a factor of 1.8

since it falls farther away from peak emission on the SIF spec-

trum (e.g., Joiner et al., 2011). Single retrievals are aggregated

to 2.5° 9 2° grid cell mean ([SIF], where brackets indicate spa-

tial averages) for each day with 1 or more retrievals. Since

instantaneous measurements of SIF cannot be directly

compared with GPP at global scale due to variability in local

overpass time, length of day, and variations of the solar zenith

angle (SZA), we approximate daily grid cell averaged SIF (SIF,

where overbar represents time averages) by normalizing SIF

as the cosine of the solar zenith angle at overpass time t0 and

integrating over fractional length of day t0 + 1 (Frankenberg

et al., 2011). We note this scaling assumes a linear dependence

of GPP with the incoming radiation during the daily cycle and

does not account for saturation trends of GPP with radiation,

which may lead to overestimates of GPP in pixels with local

overpass close to noon.

Guanter et al. (2012) show that the relationship between SIF

and GPP is sensitive to vegetation type and climate. We

account for this variability by calculating biome-specific

regressions using a modified IGBP classification following

Frankenberg et al. (2011) consisting of needleleaf forests (NF),

evergreen broadleaf (EB), deciduous broadleaf (DB), shrub-

land (SH), savannah (SV), grassland (GR), and cropland (CR).

A map of biome distribution is shown in Fig. 1. We calculate

slope (m) and y-intercept (b) by regressing annual averages of

½SIF� and G-mpi for points with annual 1-r measurement pre-

cision <0.04 W m�2 l�1 sr�1. SIF precision is estimated as

rSIF=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
, where rSIF = 0.5 W m�2 l�1 sr�1 is the retrieval

measurement error (Frankenberg et al., 2011) and N is the

number of samples per 2.5° 9 2° grid cell overpass.

Scatter plots of G-mpi vs. ½SIF� are shown for each

biome in Fig. S3(a–g). High latitude biomes such as NF

and DB have smaller sample size due to limited availabil-

ity of winter observations. Still, the correlation is generally

high for more productive biomes (r ~0.82–0.89) and low

for the least productive biome (r = 0.61 for SH). The slope

is greatest in CR (17.08 � 0.83 gC m�2 d�1/

W m�2 l�1 sr�1), smallest in SH (6.44 � 0.82 gC m�2 d�1/

W m�2 l�1 sr�1), and has a smaller range of variability

across the remaining biomes (13.46 � 0.91 gC m�2 d�1/

W m�2 l�1 sr�1 in GR up to 15.82 � 1.1 gC m�2 d�1/

W m�2 l�1 sr�1 in EB). Biome-specific slopes are smaller

and less correlated compared to global regressions of all

grid points, which produces 553 total samples with slope

of 18.19 � 0.31 gC m�2 d�1/W m�2 l�1 sr�1, and correla-

tion of 0.93 (Fig. S3 h). In particular, the SH slope is less

than half that of other biomes, indicating SIF varies more

strongly relative to G-mpi. The cause of this discrepancy is

unclear from a physiological point of view, but it could

suggest an underestimate of G-mpi for these plant

Fig. 1 Map of biome distribution and flux tower locations (indicated by X), including 49 sites in N. America and Europe and seven

sites in S. America. Biomes are determined from a modified IGBP classification scheme following Frankenberg et al. (2011) and abbrevi-

ated as follows: NF, needleleaf forests; EB, evergreen broadleaf forests; DB, deciduous broadleaf forests; SH, shrublands; SV, savann-

ahs; GR, grasslands; CR, croplands. (Color in the online version)

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 3103–3121
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functional types due to undersampling of SH biomes by

FLUXNET. Biome-specific slopes are used to convert ½SIF�
and uncertainty to daily GPP, which is scaled to midday

GPP using cos(SZA) and length of day. We note that our

optimization algorithm is not sensitive to the use of daily

vs. midday GPP, as long as the conversion from midday

to daily average is consistent between a priori and inferred

GPP. This final result, representing midday inferred GPP

(G-sif), is used to calculate y in Eqns (2.1) and (2.2).

Sensitivity to SIF scaling and observation error

Final estimates of G-opt for this study are based on biome-spe-

cific scaling against G-mpi and three estimates of observation

uncertainty: (1) SIF measurement error, (2) SIF conversion

error, and (3) errors in G-mpi. We acknowledge that estimates

of G-opt are sensitive to SIF scaling strategy, including the set

of grid points chosen for least-squares regressions (e.g.,

biome-specific vs. global points), choice of empirical GPP

model, and observation error. We therefore examine sensitiv-

ity to a set of five different scaling strategies, which are sum-

marized in Table 1 and referred to as SIF1-5 (for reference, our

“best” estimate for this study is SIF4). Most of these details

can be found in Text S2, but we provide a brief analysis here.

Later, in the main results section, we examine the impact of

these choices on G-opt and posterior uncertainty.

In general, global scaling (SIF1) leads to increased magni-

tude of midday G-sif compared to biome-specific scaling

(SIF2-4), consistent with higher regression slopes. The excep-

tion is in the tropics where biome-based estimates are

enhanced due to high y-intercept in EB biomes, which reflects

high empirical GPP (G-mpi) at low values of SIF.

We find a 5–10% increase in midday G-sif uncertainty due

to scaling errors between SIF and GPP when root mean

squared errors in slope and y-intercept (resulting from scatter

in the least squared regression) are added in quadrature to

measurement precision errors (for G-opt, these errors are

incorporated into the SIF observation error covariance matrix).

This enhances midday uncertainty (SIF3) by 0–0.5 gC m�2 d�1

(~5–10%). Uncertainties in G-mpi, which arise from prepro-

cessing of tower CO2 flux measurements, tower representa-

tiveness, flux partitioning into GPP, uncertainties of climate

and remote sensing datasets, and structural uncertainties of

diagnostic models going into G-mpi calculations [Beer et al.

(2010) and Fig. S2], lead to global standard deviation of

8 Pg C yr�1. This uncertainty, which is included in our final

estimate (SIF4), is similar in magnitude to rmse regression

errors (5–10%).

Guanter et al. (2012) show that the relative distribution of

slopes for different biomes is consistent for data-driven GPP

models [G-mpi and MODIS MOD17A2 (Myneni et al., 2007),

denoted G-mod], but with slope more variable and correlation

weaker in G-mod compared to G-mpi. We find a similar pat-

tern, including smaller absolute slopes, consistent with weaker

global GPP (106.5 Pg C yr�1 in 2010 in G-mod compared to

121.2 Pg C yr�1 in G-mpi). Frankenberg et al. (2011) and

Guanter et al. (2012) speculate that different slopes are related

to differences in the structure of each model (in particular, the

use of a biome-specific look-up table for light use efficiency

(LUE) in G-mod) and reduced correlation in G-mod to remote

sensing issues in high cloud regions. The reason for these dis-

crepancies is beyond the scope of this study; the important

point is that scaling of SIF against G-mod (SIF5) reduces mid-

day GPP and uncertainty, which propagates to G-opt and

reduces the overall magnitude of constrained GPP. For this

study, we do not account for uncertainty due to choice of GPP

model; rather, we include estimates of G-opt based on SIF

scaling to G-mod as a reference to evaluate results based on

G-mpi.

Temporal sampling biases in GOSAT

SIF retrievals are screened for scenes with high optical

depth due to difficulty in measuring SIF in the presence of

high scattering of sunlight. While this procedure eliminates

low quality data, regions with high frequency of clouds

and aerosol loading have lower sampling yield (see Fig. 2).

Optimal estimation will find the appropriate balance

between models and SIF data in these regions, but we have

to be aware of possible sampling biases introduced into

optimized GPP related to systematic sampling of clear-sky

conditions, which is expected to cause differences in

observed and expected time averaged GPP due to sensitiv-

ity to total incoming radiation.

We examine clear sky sampling biases by comparing time-

averaged model GPP to satellite subsets based on GOSAT

footprints for each grid cell. We refer to these estimates of

time-averaged GPP as “true” and “observed” GPP (GT and

GO, respectively) to illustrate how clear sky satellite derived

observations may differ from the true mean. Biases are calcu-

lated at monthly scale using 3-hour data from the CASA-

GFED3 vegetation model, a LUE model that estimates GPP

using relationships between LUE and fPAR (van der Werf

et al., 2010; data downloaded from http://nacp-files.nacarbon.

Table 1 Description of SIF scaling strategies. The first row

represents a particular strategy (SIF1-5) based on subsampling

(row 2, biome or global), semi-empirical GPP product (row 3,

G-mpi or G-mod), and observation errors (row 4–5) including

SIF conversion error as quantified by root-mean-squared error

of regression slope and y-intercept (row 4) and uncertainty in

GPP product (row 5) SIF measurement error is included in all

strategies. G-mpi represents flux tower based data from the

MPI-BGC semi-empirical model (Beer et al., 2010). G-mod rep-

resents represent remote sensing data from the MODIS

MOD17A2 product (Myneni et al., 2007).

Scaling strategy SIF1 SIF2 SIF3 SIF4 SIF5

Subsampling Global Biome Biome Biome Biome

Semi-empirical

GPP model

G-mpi G-mpi G-mpi G-mpi G-mod

Scaling error NO NO YES YES YES

NO NO NO YES NO

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 3103–3121
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org/nacp-kawa-01/). GT is taken as the monthly average of all

midday values and GO as the average of midday GOSAT foot-

prints.

GT and GO have high correlation and slope of fit for all bio-

mes (R2 > 0.92, slope ranges from 1.01 to 1.08). Sampling bias,

defined as 100� GO �GT=GT

� �
, are shown as grid-scale and

zonal averages in Figs. S9 and S10 respectively. We estimate

potential grid scale biases during boreal summer (Jun–Aug

2010) ranging from 0% to 10% in the tropics (~3.7% in the

zonal average), 5–15% in mid-latitudes (~4.5% in the zonal

average), and 5–20% at high latitudes (9.8% in the zonal aver-

age). Sampling biases are reduced by 3.2%, 3.7%, and 7.2% in

the tropical, mid-latitude, and high latitude zonal average,

respectively, when retrievals flagged as cloudy according to

simultaneous retrievals of the oxygen A-band are included in

the GOSAT observations. This suggests that these biases are

driven in part by differences in light limitation between clear

and cloudy days.

Low bias in the tropics is consistent with simulations of SIF

in the Soil Canopy Observation of Photochemistry and Energy

Flux (SCOPE) (Van der Tol et al., 2009) photosynthesis model,

which indicate that GPP is weakly sensitive to changes in light

under high light conditions typical of tropical regions (Lee

et al., 2013). In contrast, high latitude vegetation is tempera-

ture- and light-limited, causing increased GPP sensitivity to

synoptic fluctuations. Requiring a minimum threshold of

(a)

(b)

Fig. 2 Maps of total annual GOSAT SIF sampling coverage in 2010, aggregated to 2.5° 9 2° pixels, for (a) all available samples that

have passed quality control (including cloudy scenes with high aerosol optical depth) and (b) fair weather samples only (excluding

cloudy scenes). Cloudy scenes are flagged using simultaneous retrievals of the oxygen A-band. (Color in the online version)
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sampling days for data assimilation can reduce these biases.

For example, sampling bias in NF biomes in mid-latitudes

decreases from 7.3% using a minimum coverage of 1-day per

month to 6.2% using 5 days and 5.6% using 10 days. This ben-

efit is small, however, compared to loss of sampling coverage,

which decreases by 25% in the 5-day minimum and 85% with

10 days. We therefore use a 1-day minimum requirement to

optimize GPP.

Observing system simulation experiments (OSSE)

We use OSSE’s to demonstrate proof-of-concept of our opti-

mal estimation strategy, which aims to retrieve the true state

of monthly GPP and uncertainty from a priori estimates of

GPP (from DGVMs) constrained by midday clear sky observa-

tions and subject to temporal sampling biases and uncertainty

in measurements and models. Before interpreting this satellite

constrained GPP, it is imperative to first understand sensitiv-

ity to changes in model and observational constraints. To this

end, we examine sensitivity of optimal GPP estimates to (a) a

priori constraints of diurnal GPP, (b) observational coverage,

and (c) inclusion of cloudy retrievals. These experiments are

summarized in Table 2.

As in the real world case, a priori GPP and uncertainty are

taken as the ensemble average and standard deviation of

TRENDY models. The true state of GPP, unknown in the real

world, is prescribed artificially in OSSE’s, in this case using

simulated GPP from CASA-GFED3. We then create synthetic

GPP observations by sampling midday GPP from CASA-

GFED3 according to GOSAT v3.3 footprints that have passed

through prior and posterior retrieval screening. This repre-

sents a greatly simplified version of the real world since we

directly observe GPP rather than make inferences from SIF,

and therefore does not require SIF/GPP scaling assumptions

and consequently is not subject to the errors associated with

these assumptions. The synthetic measurement error is taken

from the GOSAT v3.3 SIF retrieval errors. The SIF retrieval

error, 0.5 W m�2 l�1 sr�1, is approximately equal to the aver-

age of global SIF measurements; we therefore set the synthetic

measurement error to the average of global midday GPP sam-

ples. Global OSSE’s are examined for the period 2010 in the

tropics and northern mid-latitudes.

Flux tower data

Eddy covariance flux tower data are described in detail in Text

S5. This analysis uses estimates of GPP from 49 eddy covari-

ance flux tower sites in N. America and Eurasia and 7 sites in

S. America, shown in Fig. 1 and described in more detail in

Table S1. In N. America and Europe, we select only sites that

have at least 12 calendar months of data from 2009 to 2010.

Flux tower data in tropical S. America are limited to the per-

iod 1999–2006 and therefore these comparisons are based on

climatological seasonal cycles. GPP is inferred from observa-

tions of net ecosystem exchange (NEE) and modeled

ecosystem respiration (Reco) as GPP = Reco � NEE (assuming

NEE is negative for carbon uptake) using partitioning tech-

niques based on models of temperature sensitivity (Reichstein

et al., 2005), artificial neural networks (Papale et al., 2006),

and/or light response curves (Lasslop et al., 2010).

For comparison to G-pri and G-opt, we average over multi-

ple flux towers and years to examine seasonal averages. For

N. America and Europe, we group towers by biome, which

yields 12 NF sites, 14 DB sites, 11 GR sites, 8 CR sites, and 4

SH sites spread throughout N. America and Europe from 2009

to 2010. For S. America, we group all available towers

together, and compare to the average from 5 EB and 2 SV sites

from 1999 to 2006. We then compare flux tower data to the

2000–2009 average for G-pri and the 2009–2012 average for G-

opt. Our main findings are not sensitive to averaging period.

Results

Optimal estimation using synthetic GPP (OSSE’s)

Meridional cross sections of simulated (G-sim, black),

prior (G-pri, blue), and optimal (G-opt, red) GPP and

uncertainty are shown along with mean absolute error

(MAE) for G-pri and G-opt (dashed and solid grey lines,

respectively) for July 2010 in Fig. 3. Seasonal distribu-

tions of uncertainty reduction and MAE are shown for

the tropics and northern midlatitudes in Figs. S11 and

S12. Since the true state of GPP is prescribed from simu-

lations of a vegetation model, and therefore perfectly

known, MAE provides a metric to evaluate temporal

sampling bias resulting from the assimilation of clear

sky satellite observations. G-sim and G-pri have similar

spatial distributions, with peak GPP in the tropics and

northern extra-tropics, but different amplitudes, with a

priori amplitude overestimated in the tropics and sub-

tropics and underestimated in the extra-tropics. High

spread among TRENDY models used in the calculation

Table 2 Description of Observation System Simulation Experiment (OSSE) test cases. Rows indicate test case (Test 1–4). Columns

indicate differences in experimental design. Diurnal refers to estimate of diurnal variability (explicitly with CASA-GFED3 or down-

scaled from monthly using MERRA SW). Sampling coverage refers to percent of actual GOSAT retrievals used for assimilation.

Cloud refers to whether retrievals flagged as cloudy are included or not. OSSE results are shown in Fig. 3

OSSE case Test 1 Test 2 Test 3 Test 4

Diurnal CASA-GFED3 CASA-GFED3 CASA-GFED3 MERRA SW

Sampling coverage 10% 100% 100% 100%

Cloud NO NO YES YES

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 3103–3121

GPP INFERRED FROM FLUORESCENCE & MODELS 3109



of G-pri (1-sigma standard deviation among models is

~30–50% in July) creates high a priori uncertainty such

that G-sim lies within the a priori constraint. G-opt and

uncertainty, which are calculated from Eqns (2.4) and

(2.6), are described below.

Test 1. In the first two tests we estimate diurnal GPP

from 3-hour CASA-GFED3, and therefore assume

diurnal GPP is perfectly known. In Test 1, however, we

reduce the total number of observations by randomly

selecting 10% of available synthetic data, effectively

reducing the possible GOSAT sampling constraint by

an order of magnitude. As a result, we see only a slight

reduction (<10%) of MAE of G-opt (dashed grey line in

Fig. 3 and dark blue lines in Figs. S11b and S12b) and

little reduction of uncertainty, ranging from 5% to 10%

in the tropics and subtropics and up to 15% in northern

latitudes.

Test 2. Retaining all available synthetic samples

reduces MAE by ~50–75% in the tropics and subtropics

(highest percent reduction in boreal winter when MAE

(a) (b)

(c) (d)

Fig. 3 Zonal average GPP and uncertainty for July 2010 based on an observing system simulation experiments (OSSE), which tests the

optimal estimation methodology discussed in the main text using simulated GPP and observations. Here, simulated GPP (G-sim, black)

is prescribed from the CASA-GFED3 vegetation model, observed GPP from midday samples of CASA-GFED3 collected from GOSAT

satellite footprints, and prior GPP (G-pri, blue) from the ensemble average of TRENDY models. Optimal estimates (G-opt) are shown in

red. Plots a-d represent four test cases, with each defined according to: (a) a priori estimate of diurnal GPP, (b) percentage of synthetic

GPP observations retained, and (c) inclusion of cloudy retrievals (see Table 1). Grey lines show mean absolute errors of G-pri (solid)

and G-opt (dashed). Blue and red shading represent prior and posterior uncertainty respectively. (Color in the online version)
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is smallest) and 50–100% in the northern extra-tropics.

The magnitude of MAE reduction is similar throughout

the year, with higher percent reductions when MAE is

low (e.g., tropics during boreal winter), highlighting

the importance of an accurate prior. Posterior uncer-

tainty is reduced by 30–45% in the tropics year round,

20–40% in the subtropics with peak reduction in the

summer hemisphere, 30–50% in the extra-tropics up to

40°N during winter and 60°N during summer.

Test 3. In this case, we add samples previously flagged

as cloudy based on high optical depth to examine their

potential impact on the estimate. We do this for two

reasons: (1) to test potential information loss by ignor-

ing GPP under thick clouds, and (2) in preparation for

future instruments such as the Orbital-Carbon-Obser-

vatory 2 (OCO-2) that will have higher resolution sam-

pling footprint and therefore increased potential to

observe through cloudy scenes. Adding these retrievals

in July 2010 increases sampling coverage by ~10–20% in

the tropics, 20–40% in the northern extra-tropics up to

50°N, and effectively doubles coverage at high lati-

tudes. The overall impact of cloudy pixels on G-opt is

fairly small in July 2010, with additional 5–10% uncer-

tainty reduction throughout the year in the tropics and

mid-latitudes. The degree of GPP bias reduction (MAE)

varies between tropical and midlatitudes. It is generally

small in the tropics during late dry season and through-

out the wet season (July–April), but increases to ~30%
from May–June. In northern midlatitudes, it peaks at

~50% during summer but is closer to 10–30% during

shoulder season. These results suggest that information

loss due to clouds is potentially significant. This has

important implications for high-resolution satellites

such as OCO-2 which will have greater odds of sam-

pling in-between clouds and therefore reduced regional

and temporal GPP sampling biases.

This test also reveals a change in the amount of

uncertainty reduction possible after August 2010, when

GOSAT switched from 5-point to 3-point sampling

mode (Crisp et al., 2012). While this switch increases

the number of retrievals per sample, it effectively

reduces sampling coverage in space. As a result, uncer-

tainty reduction, which averages 35–40% in Amazonia

from January–July 2010 in Test 3, drops to 25–30% from

August–December 2010.

Test 4. Test 4 is identical to Test 3 except diurnal GPP is

estimated by downscaling TRENDY monthly GPP

using shortwave radiation from MERRA. Results show

little change in uncertainty reduction at global scale

and GPP bias in midlatitudes. However, mean absolute

error is reduced by 20–50% in the tropics, indication

that our optimization methodology is sensitive to esti-

mates of midday GPP. This issue is particularly rele-

vant in poorly investigated regions as the tropics where

measurement signal-to-noise ratio (SNR) is low and

model estimates of the timing and magnitude of diur-

nal GPP are difficult due to sensitivities to precipita-

tion, temperature, humidity, and soil moisture stress,

and circadian rhythms operating in vegetation (Baker

et al., 2013), whereas here we have only accounted for

effects due to solar radiation. We do not explore this

issue in any more detail in this article, but caution the

reader that future investigation is needed.

Optimal estimates using GPP inferred from GOSAT SIF

Estimates of G-opt in this section are based on SIF4, with

occasional references to other scaling techniques. Fig-

ure 4 shows characteristic annual maps of prior and

posterior GPP, with high annual GPP in the tropics and

reduced GPP toward the poles. GPP patterns in G-opt

are similar to G-pri except with enhanced spatial vari-

ability and pixilation due to assimilation of SIF data. Fig-

ure 5 shows the corresponding reduction of uncertainty

in GPP scaling factor, which is estimated according to

Eqn (2.7). Because sunlight drives photosynthetic activ-

ity and increases sampling coverage, uncertainty reduc-

tion is correlated with sampling coverage and GPP

magnitude. Indeed, comparison with Fig. 2b indicates

that a priori uncertainty is reduced in all regions where

SIF data are collected. Uncertainty reduction ranges

from 30% to 50% in most productive tropical and tem-

perate regions and exceeds 50% during the growing sea-

son in southeast N. America and Europe and during dry

months throughout the tropics. Uncertainty reduction is

much weaker in regions of low SNR where GPP is weak

or zero and SIF error/scatter are high, including tundra

regions (Arctic N. America), deserts (Australia, south-

western S. and N. America, and Gobi, Arabian, and

Sahara), and mountains (Himalayas). Data are generally

discarded or not retrieved in ice-covered regions and

during winter at high latitudes, when reflected sunlight

is weak or zero, explaining why annual uncertainty

reduction is weaker in extra-tropical latitudes.

Uncertainty reduction in GPP scale factor is reflected

in plots of zonal mean GPP and uncertainty (Fig. 6),

where grid scale uncertainty is aggregated zonally

according to Eqns (2.11) and (2.12). The global magni-

tude and spatial distribution of G-opt is highly consis-

tent with G-pri (Global GPP is 127.42 Pg C yr�1 in 2010

in G-opt compared to 124.77 Pg C yr�1 in G-pri in

2009) with high GPP year-round in the tropics and dur-

ing the growing season in northern latitude temperate

regions, indication that the ensemble of TRENDY

DGVM’s provides a reasonable a priori constraint on

GPP spatial distribution.
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Despite similar spatial patterns, there is a substantial

shift in global production from high to low latitudes

compared to DGVMs, with GPP enhancement in the

tropics of 10% in the annual mean and GPP damping

by 10–20% in midlatitudes during the growing season.

This translates to an average increase of production in

the tropics (20°S–20°N) of 3.56 Pg C yr�1 from 2010 to

2012 (3.96 in 2010, 3.65 in 2011, and 3.34 in 2012) and

decrease in northern latitudes (20°N–90°N) of

3.65 Pg C yr�1 (3.81 in 2010, 3.50 in 2011, and 3.39 in

2012). This global shift is independent of model prior

year (i.e., GPP shifts from high to low latitudes for all

year-specific TRENDY priors from 2000 to 2010) but

with magnitude slightly sensitive to model prior year,

with an increasing trend of GPP reduction in high lati-

tudes (3.7 Pg C in 2000 vs. 4.6 Pg C in 2010) and

decreasing trend of GPP enhancement in the tropics

(4.0 Pg C vs. 3.3 Pg C). These results, which require

further investigation, suggest that partitioning of

anthropogenic carbon uptake from northern latitudes

to the tropics may be underestimated by DGVMs.

Comparison to additional SIF scaling strategies listed

in Table 2, and summarized in Fig. S6, shows negligible

sensitivity in the zonal average to changes in

observation uncertainty (SIF2-4), weak sensitivity to

subsampling (SIF1-2; global GPP increases from

(a)

(b)

Fig. 4 Annual maps of GPP in 2010 based on (a) the average from eight TRENDY models (G-pri) and (b) the optimal combination of

TRENDY models and GOSAT SIF (G-opt). (Color in the online version)
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127.41 Pg C yr�1 for biome-specific scaling to

131.82 Pg C yr�1 for global scaling), and high sensitiv-

ity to choice of data-driven GPP (SIF3 vs. SIF5; global

GPP decreases to 119.42 Pg C yr�1). Specifically, scal-

ing SIF to G-mod instead of G-mpi reduces GPP magni-

tude and uncertainty across all latitudes. The

meridional distribution of GPP and uncertainty is

maintained in all cases.

Comparison of individual TRENDY models to prior

and posterior GPP and uncertainty helps identify mod-

els that may be outliers in specific regions and/or

times. Comparison to prior uncertainty, for example,

suggests that CLM4CN and LPJ-GUESS systematically

over- and under-estimate tropical GPP, respectively,

throughout the year relative to the TRENDY ensemble

and G-opt, while Orchidee and LPJ overestimate grow-

ing season GPP in the northern extra-tropics. Optimiz-

ing with SIF data and subsequent uncertainty reduction

tightens the probable range even further, bringing addi-

tional models (e.g., LPJ-GUESS and VEGAS in the

extra-tropics) to the edge of our optimal constraint.

Models will inevitably have different strengths and

weaknesses depending on time of year, region, and

biome type, which is addressed in some detail with

respect to GPP in the Amazon Basin (below). However,

detailed analysis of models and underlying processes is

beyond the scope of this study. The primary goal here

is to present a framework to evaluate these models.

(a)

(b)

Fig. 5 Map of uncertainty reduction (expressed as percentage) of monthly GPP scale factor in 2010 during (a) boreal summer (June–

August) and (b) in the annual average. (Color in the online version)
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Figure 7 shows anomalies of the optimal scale factor

(deviation from the a priori value of unity) during

boreal summer (June-August) at grid and biome scale.

A general pattern emerges at global scale with

increased range of spatial GPP variability compared to

models which correlates to some extent with productiv-

ity, with reduced GPP in northern latitudes in low pro-

ductivity tundra (SH, ~20% decrease at biome scale)

and medium productivity temperate (DB and NF, ~5–
10%) regions and enhanced GPP in high productivity

tropical regions (EB, ~20%). The exception is that GPP

is actually significantly enhanced in low productivity

desert, mountains, and subtropical regions (including

SV, SH, and GR, ~10–20% increase at grid scale).

We also find a tendency for reduced GPP in all bio-

mes with increasing productivity. This is illustrated in

scatterplots of scale factor anomaly and G-pri (Fig. 8).

Although scatter is high, all biomes show tendency for

a decrease in scale factor anomaly with increasing GPP,

with regressions indicating negative anomalies at high

GPP on average in NF, GR, DB, and SH biomes (iso-

lated here to tundra ecosystems north of 50°N).

Prior and posterior uncertainty, also plotted in Fig. 8,

show reduced uncertainty with increasing GPP, indica-

tion corrections are not statistically significant at low

values of GPP. Posterior uncertainty is also high at high

GPP in SH biomes, but the scale factor anomaly is so

high at increasing GPP that this correction becomes

increasingly significant.

High uncertainty in SH biomes is also evident in sea-

sonal plots (Fig. 9), but so is the statistical significance

of this correction, including consistency across all SIF

scaling strategies except SIF1 (global regression, which

is least likely to apply in SH considering the small num-

ber of samples). Corrections at high GPP in NF biomes

are also statistically meaningful (Fig. 8a), but the num-

ber of corrected points is limited. Consequently, sea-

sonal plots (Fig. 9a), which also show a decrease in

G-opt during the growing season, show no significant

difference from G-pri. Seasonal estimates of G-pri and

G-opt are in good agreement in SV and GR biomes

(Fig. 9e, f respectively), with low scatter particularly at

medium and high values of GPP and lack of bias in sea-

sonal averages (Fig. 8e, f respectively). This suggests

low a priori uncertainty due to seasonal agreement

among TRENDY models; nevertheless, the optimal

combination with GOSAT SIF reduces uncertainty in

this estimate.

Seasonal estimates in CR biomes are also in good

agreement (Fig. 9g), but there is significant grid scale

variability at high GPP (Fig. 8g), suggesting TRENDY

models capture the mean behavior of crops but the

combination with SIF data improves spatial and sub-

grid variability. This is especially encouraging consid-

ering most TRENDY models do not explicitly represent

crop functional types, and suggests that crude

representation of crops may be sufficient in terms of the

carbon cycle. We note that estimates based on G-mod

are 10–20% lower but not statistically significant.

The same is true for EB biomes (Fig. 8b), which rep-

resent more productive moist tropical forests in S.

America, Africa, and Tropical Asia. We find a similar

range of variability at high GPP from Dec–Feb (data not

shown) but with high positive bias, explaining

enhanced GPP in January (Fig. 9b). Although still not

statistically different from the prior in the regional aver-

age, corrections of mean GPP, seasonal amplitude, and

seasonal phase in EB biomes represents the most signif-

icant divergence of optimal estimates from TRENDY

models of all biomes analyzed here (including scaling

based on G-mod, though to a lesser extent), and repre-

sents the only case in which the amplitude of temporal

variability implied by models is enhanced by SIF. Given

(a)

(b)

Fig. 6 Zonal average GPP and uncertainty in 2010 for individ-

ual TRENDY models (dashed), ensemble average of TRENDY

models (G-pri, solid blue), and the optimal combination of

TRENDY models and GOSAT SIF (G-opt, solid red), shown for

(a) boreal summer (June–August) and (b) the annual average.

Shading represents prior (blue) and posterior (red) uncertainty.

(Color in the online version)
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that EB biomes are the most productive biomes in the

world, these potential errors in model seasonal cycles

have important implications for interpreting the global

carbon budget. It is therefore critical to evaluate these

estimates against flux tower data, as discussed below.

Comparison to flux tower data

N. America and Europe. Seasonal averages of G-pri and

G-opt are compared against flux tower data (G-ft) from

49 sites in N. America and Europe in Fig. 10. GPP is

grouped by biome type, with flux tower biomes defined

in Table S1. Here we present results in which G-pri and

G-opt are sampled at flux tower pixels since flux tower

sites are generally not representative of the large scale

(e.g., Cescatti et al., 2012). G-pri represents the mean

from 2000 to 2009, G-opt from 2009 to 2012, and G-ft

from 2009 to 2010. We also weigh grid-scale estimates

by fractional biome coverage to help account for sub-

grid heterogeneity, which can be significant especially

in more developed and managed regions such as Eur-

ope. More details on the analysis of flux tower data and

(a)

(b)

Fig. 7 Map of optimized scale factor anomaly (unitless, expressed as deviation from initial value of 1) averaged from June–August 2010

at (a) grid scale and (b) biome scale (according to IGBP biomes in Fig. 1). Negative values indicate that the ensemble average of TRENDY

models overestimate GPP compared to SIF on average (vice-versa for positive values; e.g.,�0.1 meansmodels overestimate GPP by 10%).

(Color in the online version)
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comparison to G-pri and G-opt at different scales is

included in Text S5.

G-pri and G-opt are generally well correlated with G-

ft (R > 0.95 in NF, DB, GR and CR and ~0.60 in SH)

despite the different scales of comparison (e.g., ~1 km

vs. ~200 km), indicating seasonal phase is well repre-

sented by models. Growing season width is reduced in

G-opt in DB and CR biomes and in better agreement

with G-ft. This difference is most noticeable in autumn

as an enhanced rate of decreasing GPP, suggesting

models underestimate the rate of leaf senescence com-

pared to SIF and G-ft.

In general, seasonal amplitude of G-pri and G-opt are

statistically similar to each other and, due to high vari-

ability across flux towers, to G-ft. However, there is a

clear tendency to underestimate amplitude of G-ft (with

the exception of SH biomes), particularly in GR biomes

where G-ft exceeds G-pri and G-opt by nearly a factor

of 3 (although site-to-site flux tower variability is high;

see Fig. S14) and in DB biomes where site-to-site

variability is low. Amplitude differences scale to some

extent with fractional biome coverage, in particular in

GR biomes where amplitude errors are large but grid

scale areal coverage is only 7.4% on average. Ampli-

tude errors are smaller and less statistically significant

in other biomes, whose fractional coverage range from

25% to 65%. In general subgrid heterogeneity is high

such that differences are attributable primarily to repre-

sentation error.

Divergence of G-opt magnitude and uncertainty from

G-pri is related to sampling coverage and SNR of SIF

data. G-opt has improved seasonality in DB and CR bi-

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 8 Scatter plots of optimized scale factor anomaly vs. ensemble average GPP from TRENDY models (G-pri), as a function of biome

type (panels a-g, based on dominant biome type in Fig. 1). Blue and red lines indicate prior and posterior least squares regression lines

respectively (blue line sits of x-axis since prior scale factor is unity everywhere). Blue and red shading indicate aggregated prior and

posterior uncertainty. (Color in the online version)
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omes likely a result of high sampling density, which

averages to about 91.4 samples per site/year/biome in

DB biomes and 278 samples per site/year/biome in CR

biomes. Strong uncertainty reduction in these biomes is

driven in part by high SNR (smaller error bars in sea-

sonal plots of SIF in Fig. S18). Conversely, unchanged

seasonality and low uncertainty reduction in NF, GR,

and SH biomes stems from relatively low sampling

density (56.9, 86.5, and 81.6 samples per year per site,

respectively) and low SNR (larger error bars in

Fig. S18).

Overall, these results are consistent with our under-

standing of the key environmental controls for seasonal

phase and amplitude in extra-tropical forests. The sea-

sonal phase, which is characterized by high GPP in the

middle of the growing season (~July) and low GPP

outside the growing season (~January), is driven

primarily by large-scale seasonal climate drivers such

as solar insolation. Since insolation is coherent over

large spatial scales it has similar effects at the local scale

of flux towers and large scale of models. Amplitude, in

contrast, is determined more by local factors such as

plant functional type, soil characteristics, topography,

and management practices – all of which have large

subgrid variability which tend to average out at scales

predicted by models and sampled by GOSAT. This

explains low G-pri and G-opt amplitude relative to flux

towers, giving increased confidence that remote sensing

and model based approaches provide realistic estimates

of landscape-scale flux and uncertainty.

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 9 Seasonal GPP from 2009–2010 for the ensemble average of TRENDY models (G-pri, solid blue) and optimal combination of

TRENDY models and GOSAT SIF (G-opt, solid red) as a function of biome (panels a–g, based on dominant biome type in Fig. 1). Blue

and red shading indicate aggregated prior and posterior uncertainty. Dashed lines represent estimates of G-opt from different SIF scal-

ing strategies (SIF1-5; see Table 1). (Color in the online version)
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These comparisons highlight some of the reasons

why an optimal estimation approach is preferable to

separate estimates by models or SIF. While GOSAT

provides near global coverage of SIF and a direct

measurement of subgrid scale variability at high reso-

lution, there is often unrealistic variability and/or

negative values in cases when sampling coverage is

reduced and precision error is high, especially during

winter and in cases where GPP signals are weak.

Model ensembles provide a strong constraint on

seasonal phase in northern latitudes due to spatial

coherence of large-scale environmental factors such as

insolation and temperature, which are relatively

straightforward to model, but typically underestimate

subgrid scale variability due to unresolved and/or

poorly understood processes.

Amazon Basin. Here, we compare climatological GPP

estimates and flux tower data in the Amazon Basin.

GPP records range from 2000–2009 in G-pri, 2009–2012

(a) (b)

(c) (d)

(e)

Fig. 10 Seasonal cycles of GPP from flux towers (G-ft, diamonds), ensemble average of TRENDY models (G-pri, blue), and optimal

estimates of TRENDY models and GOSAT SIF (G-opt, red), grouped by biome type for (a) needleleaf forest (NF), (b) deciduous broad-

leaf forest (DB), (c) shrublands (SH), (d) grasslands (GR), and (e) croplands (CR). Grid scale estimates are based on sampling at flux

tower locations and weighting by fractional biome coverage. G-ft is based on seasonal averages from 2009 to 2010, G-pri from 2000 to

2009, and G-opt from 2009 to 2012. Error bars on flux tower data equal 1-sigma standard deviations across sites. Labeling on top right

of panels indicates number of flux towers used per biome (Sites), average percent coverage of biomes within flux tower pixels (Biome),

and number of SIF samples per year/site/biome used for data assimilation in G-opt (SIF). Blue and red shading represent prior and

posterior uncertainty. (Color in the online version)
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in G-opt, and 1999–2006 for 7 flux tower sites (see

Table S1). We use fractional biome weighting as before

but average G-pri and G-opt across all available grid

points in Amazonia to further avert the issue of non-

temporal overlap. Results are shown in Fig. 11 (sea-

sonal averages using only flux tower pixels can be

found in Fig. S19b).

G-ft indicates peak GPP from November–February,
roughly coinciding with the wet season in Amazonia,

with a mean seasonal amplitude of ~2.5 g C m�2 d�1.

G-pri and G-opt are easily within the statistical uncer-

tainty of G-ft, which is very high. Seasonal amplitude is

underestimated by nearly a factor of 2 in G-pri, with

seasonal phase (on average) delayed by ~1 month and

GPP recovery at the end of the dry season (~September)

too slow. Low GPP during the dry season is aligned

with G-ft but peak wet season GPP is substantially

underestimated. These findings are generally true for

individual TRENDY models as well (also shown in

Fig. 11), although in the case of LPJ-GUESS seasonality

is reversed relative to flux towers while OCN is rela-

tively flat. The TRENDY seasonal average is unchanged

when using a shorter overlapping time period (i.e.,

2000–2006).
Subgrid sampling by SIF leads to substantial

improvement in both the seasonal phase and amplitude

of GPP, including faster rates of seasonal transition

from wet-to-dry season (~May) and from dry-to-wet

season (~September) and uncertainty reductions of 30–
40% throughout the year. With the exception of LPJ,

most models don’t reproduce the seasonal phase of G-

ft. Similar to evidence from G-ft and SIF that models

underestimate rates of leaf senescence in temperate DB

forests, poor timing in the tropics may be partly an

issue of models unable to capture the rate and timing of

leaf-flush just before the onset of the wet season (Zeri

et al., 2014). These are key examples of how SIF can

help inform DGVMs.

Discussion

We demonstrate an optimal estimation technique for

constraining seasonal and spatial GPP variability at glo-

bal scale that exploits information from DGVM ensem-

bles and satellite measurements of SIF. We use an

ensemble of eight state-of-the-art DGVMs and global

estimates of GPP inferred from GOSAT SIF retrievals.

The model ensemble provides an improved estimate of

GPP compared to individual models as well as a pro-

cess-based estimate of uncertainty. SIF data augments

this information by observing the rate of global

photosynthetic activity at subgrid scale, which

improves estimates of seasonal phase and amplitude

with respect to flux towers and semi-empirical data in

N. America, Europe, and S. America, reduces a priori

uncertainty of process models by up to 40–70% in high

productivity tropical and temperate regions, and redis-

tributes global productivity from northern latitudes to

the tropics through reduced GPP in northern forests

(~3.6 Pg C yr�1) and enhanced GPP in tropical forests

(~3.7 Pg C yr�1).

Theory and experiments lead to a prediction of CO2

fertilization scaled to GPP, with peak productivity in

the tropics (Norby & Zak, 2011; see Fig. 6). Our find-

ings suggest that the partitioning of GPP from northern

to tropical forests is underestimated in DGVMs, and

that tropical CO2 fertilization is stronger than currently

predicted. These results have important implications

for our understanding of the global carbon cycle and its

response to climate and environmental changes, and

warrants further investigation.

The assimilation of satellite SIF to reduce uncertainty

of predicted GPP provides an empirical constraint that

helps benchmark models, which may lead to process

understanding. For example, models that overestimate

Fig. 11 Estimates of seasonal GPP averaged across the Amazon

Basin, representing evergreen broadleaf (EB) and savannah (SV)

biomes. Flux tower observations (diamonds) represent the aver-

age across seven flux tower sites (see Table S1). Grid scale esti-

mates represent the average over the entire Amazon Basin and

based on seasonal averages from the ensemble average of

TRENDY models from 2000 to 2009 (G-pri, blue), optimal esti-

mates from TRENDY models and GOSAT SIF from 2009 to 2012

(G-opt, solid red), and individual TRENDY models from 2000 to

2009 (dashed). Error bars on flux tower data equal 1-sigma stan-

dard deviations across sites. Blue and red shading represents

grid scale averages of prior and posterior uncertainty. (Color in

the online version)
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growing season GPP (relative to SIF) in the extra-tro-

pics (e.g., Fig. 6a) may be overly sensitive to environ-

mental factors such as (CO2) fertilization and nitrogen

deposition, climate forcing such as temperature and

precipitation (Poulter et al., 2011). In contrast, system-

atic underestimates of seasonal amplitude and delayed

timing of dry season GPP loss/recovery cycles in

Amazonia (e.g., Fig. 11) relates to the way models rep-

resent seasonal interactions of GPP, precipitation, and

sunlight (Baker et al., 2008; Restrepo-Coupe et al., 2013;

Harper et al., 2014). As seasonal interactions of water

stress and SIF in southern Amazonia are correlated

with column (CO2) variability (Lee et al., 2013; Parazoo

et al., 2013), it is important for models to correctly rep-

resent these processes in the context of the global car-

bon cycle.

Despite these key benefits of assimilating SIF data

there are several opportunities for improvement. In par-

ticular, we note the absence of any correction for biases

associated with undersampling of diffuse light under

cloudy conditions, which enhances sampling biases at

high latitudes due to increases photosynthetic efficiency

(e.g., Mercado et al., 2009), correction for GPP response

to light saturation at subdaily scale, or rigorous assess-

ment of errors related to estimates of diurnal GPP. We

are working to constrain nonlinearity of light response

through use of data from flux towers. Furthermore, we

expect cases of low SNR to be reduced with future satel-

lites such as OCO-2, which are expected to enhance the

quantity and quality of these data, improving subgrid

scale sampling and precision that we have shown is crit-

ical for reducing GPP uncertainty.
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