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a  b  s  t  r  a  c  t

Evapotranspiration  models  allow  climate  modelers  to describe  surface–atmosphere  interactions,  ecol-
ogists to  understand  the  impact  that  global  temperature  change  and  increased  radiation  budgets  will
have on  ecosystems,  and  farmers  to decide  how  much  irrigation  to give  their  crops.  Physically  based
algorithms  for  estimating  evapotranspiration  must  manage  a trade-off  between  physical  realism  and  the
difficulty  of  parameterizing  key  inputs,  namely  resistance  factors  associated  with  water  vapor  transport
through  the  canopy  and  turbulent  transport  of  water  vapor  from  the  canopy  to ambient  air.  In this  study
we  calculate  predicted  evapotranspiration  at 42  AmeriFlux  sites  using  two  types  of  dedicated  evapotrans-
piration  models—one  using  physical  resistances  from  the  Penman–Monteith  equation  (Monteith,  1965)
(Mu  et  al., 2007,  2011)  and  another  based  on  the  Priestley–Taylor  (1972)  equation,  substituting  func-
tional  constraints  for  resistances  (Fisher  et al.,  2008).  We  analyze  the  structure  of  the  residual  series  with
respect to various  meteorological  and  biophysical  inputs,  specifically  Jarvis  and  McNaughton’s  (1986)
decoupling  coefficient,  ˝, which  is designed  to  represent  the  degree  of control  that  plant  stomata  versus
atmospheric  demand  and  net radiation  exercise  over  transpiration.  We  find  that  vegetation  indices,  mag-
nitude of  daytime  fluxes,  and  bulk  canopy  resistance  (rc)—which  largely  drives  ˝—are  strong  predictors
of  patterns  in  model  bias  for all flux  products.  Though  our analysis  suggests  a consistently  negative

relationship  between  ˝  and  mean  predicted  error for all evapotranspiration  models,  we  found  that  veg-
etation  indices  and  flux  magnitudes  were  the most  significant  drivers  of  model  error.  Before  addressing
error  associated  with  canopy  resistance  and  ˝, refinements  to existing  models  should  focus  on  correct-
ing  biases  with  respect  to flux  magnitudes  and  canopy  indices.  We  suggest  a dual-model  approach  for
backsolving  rc (rather  than  estimating  it from  lookup  tables  and  canopy  indices),  and  increased  attention
to water  availability,  which  largely  drives  stomatal  opening  and  closure.
. Introduction

Evapotranspiration (ET) is a central component of the global
ydrological cycle (Fisher et al., 2009; Hasler and Avissar, 2006;

imenez et al., 2011; Jung et al., 2010), and therefore of interest
o hydrologists, climate modelers, ecologists, and agriculturalists.
ccurate description of ET allows climate modelers to predict how
tmospheric concentrations of water vapor are likely to change
ith increasing global temperatures (Arnell et al., 1996; Takahashi,

008), and how these trends are likely to relate to other phases of
he hydrological cycle, such as river runoff volumes (Arnell et al.,
996). Ecologists may  be interested to know how forest canopies
ill respond to changes in the radiation budget and precipitation
Malhi et al., 2009). Finally multiple authors (Fisher et al., 2008; Mu
t al., 2007; Sheffield et al., 2010) have sought to develop ET prod-
cts for applications in water resource management. The Food and

∗ Corresponding author. Tel.: +1 323 540 4569; fax: +1 818 354 9476.
E-mail addresses: jbfisher@jpl.nasa.gov, joshbfisher@gmail.com (J.B. Fisher).

168-1923/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.agrformet.2012.10.002
© 2012 Elsevier B.V. All rights reserved.

Agricultural Organization of the United Nations publishes irrigation
guidelines that estimate crop water demand in part through esti-
mating the ET rate (Allen et al., 1998).

In spite of the relevance of ET prediction to multiple fields
of research and industry, the ET products currently in use vary
widely with respect to predicted ET (Jimenez et al., 2011; Jung
et al., 2010). Our results will show that the models considered
here from Mu et al. (2007, 2011) and Fisher et al. (2008) have
moderate success in predicting observed data, but with room for
substantial improvement. Multiple authors, particularly those who
implement a version of the Penman–Monteith equation (Monteith,
1965) have discussed the difficulty of parameterizing resistance
inputs, particularly stomatal or canopy resistance, associated with
the biophysical controls over ET (Fisher et al., 2008; Mu et al.,
2007, 2011; Sheffield et al., 2010). All models, regardless of whether
they directly or indirectly parameterize stomatal resistance, must

ultimately account for the influence of stomatal control over tran-
spiration. To determine if the models from Mu  et al. and Fisher
et al. account for this control, we  examined prediction errors in
relation to Jarvis and McNaughton’s (1986) decoupling coefficient,

dx.doi.org/10.1016/j.agrformet.2012.10.002
http://www.sciencedirect.com/science/journal/01681923
http://www.elsevier.com/locate/agrformet
mailto:jbfisher@jpl.nasa.gov
mailto:joshbfisher@gmail.com
dx.doi.org/10.1016/j.agrformet.2012.10.002
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,  an index of stomatal control which explains the degree to which
ranspiration is driven by radiation versus controlled by stomatal
esistance. We  tested the null hypothesis that  ̋ is not correlated
ith ET model performance. If there are grounds for rejecting this
ypothesis, it may  suggest that more accurate means of parame-
erizing stomatal resistance inputs to ET are necessary to improve
urrent models. Our goal is to recommend a strategy for improving
vapotranspiration estimation via a statistical analysis of the struc-
ure of model prediction errors for two widely used ET products.

The paper proceeds with: (1) a short overview of the primary ET
roducts currently implemented in the literature and discussion of
he decoupling coefficient; (2) discussion of the methodology used
o parameterize resistances and describe the structure of ET model
rror with respect to the independent variables; (3) presentation
nd summary of the data; (4) results and discussion and (5) and
onclusion.

. Theoretical framework

.1. Modeling evapotranspiration

Penman (1948) noted that there are two theoretical approaches
o describe the evaporation of water from saturated surfaces,
the first being on an aerodynamic basis in which evaporation is
egarded as due to turbulent transport of vapor by a process of
ddy diffusion, and the second being on an energy basis in which
vaporation is regarded as one of the ways of degrading incom-
ng radiation.” He concluded that the energy balance model was  a

ore realistic method of describing the process of evaporation than
erodynamic transport. The premise of an energy balance model is
hat when solar energy encounters the earth’s surface some of it is
eflected, and some of it is converted to sensible and latent heat.
ensible heat refers to energy that can be directly sensed as heat
hrough the transfer of energy from the canopy or soil to the air and
he air’s subsequent change in temperature, while latent heat refers
o energy that is used to evaporate water as it changes phase from

 liquid to a vapor. Energy degraded through increasing soil tem-
erature is referred to as ground heat flux (G). Penman’s equation
or evapotranspiration is1:

E = �(Rn − G) + �cP[es(Ta) − ea]/ra

� + �
(1)

here � is the latent flux of heat, taken to be 2.257 (MJ kg−1); E is
he ET rate (kg m−2 s−1); � is the slope of the saturation-to-vapor
ressure curve (Pa K−1); Rn is net radiation (W m−2); � is the density
f dry air at approximately 12 ◦C, taken to be 1.234 kg m−3; cP is
he specific heat capacity of air, taken to be 1005 J kg−1 K−1; es(Ta)
s the saturation vapor pressure and ea is the actual vapor pressure
Pa); ra is the aerodynamic resistance to transfer of water vapor
rom the surface to ambient air (s m−1); and � is the psychrometric
onstant, taken to be 0.066 kPa K−1. The difference between es and
a is commonly referred to as vapor pressure deficit (VPD).

Penman’s formula describes potential ET (ETp): the amount
f evaporation that would occur if the surface were sufficiently
ell-watered. Monteith (1965) modified Penman’s formulation to

nclude a measure of surface resistance (rs). Typically considered
ne of the most theoretically grounded means of estimating ET
Cleugh et al., 2007; Langensiepen et al., 2009), this formula is
eferred to as the “Penman–Monteith” (PM) formula:
E = �(Rn − G) + �cP[es(Ta) − ea]/ra

� + �(1 + (rs/r˛))
(2)

1 We unitize these terms as in Fisher et al. (2009).
est Meteorology 169 (2013) 12– 24 13

where all terms are as in Eq. (1) and rs describes the surface
resistance to water vapor transport (s m−1). If we assume that
an extensive canopy acts as a uniform leaf over a given area of
land rs becomes equal to bulk canopy resistance, rc. Though we
rely on this assumption for our formulation of rc, a more accu-
rate conception of surface resistance involves those arising from
soil resistance at ground level in addition to stomatal resistance
to transpiration (Leuning et al., 2008). Note that when the ratio
of rc to ra is low, this formula converges on Penman’s original. As
bulk canopy resistance grows in relation to aerodynamic resistance,
however, rc begins to play an increasingly active role in limiting
ET.

Mu et al. (2007) expand upon Cleugh et al.’s (2007) method
for parameterizing the PM equation, partitioning incoming radi-
ation into components intercepted by the soil and by the canopy,
and from these summing soil- and canopy-based evapotranspira-
tion. They estimate soil resistance and rc separately, estimate ra

as a function of temperature, and constrain potential evaporation
from the soil via a multiplier that is a function of VPD and rela-
tive humidity. Recently the Mu  et al. (2007) approach was  updated
by “(1) simplifying the calculation of vegetation cover fraction; (2)
calculating ET as the sum of daytime and nighttime components;
(3) adding soil heat flux calculation; (4) improving estimates of
stomatal conductance, aerodynamic resistance and boundary layer
resistance; (5) separating dry canopy surface from the wet; and (6)
dividing soil surface into saturated wet surface and moist surface”
(Mu et al., 2011). We  denoted these models as MOD16 2007 and
MOD16 2011 in reference to their versions of implementation as
the MODIS MOD16 evapotranspiration product.

Despite the conceptual power of PM,  reliable estimation of
canopy and aerodynamic resistances can be difficult, and the nec-
essarily broad assumptions on resistance parameterization in Mu
et al. (2007, 2011) may  be too simplistic. Priestley and Taylor (1972)
suggested a simplification of PM for ETo that replaces resistance
parameters with a coefficient ˛, such that:

�E = ˛
�

� + �
(Rn − G) (3)

where all terms are as in Eq. (1) and G represents the ground heat
flux (W m−2). Here  ̨ is a constant that is tuned to reflect the over-
all magnitude of latent heat relative to sensible heat flux, and is
related to the Bowen ratio  ̌ = H/LE, the ratio of sensible to latent
heat. Priestley and Taylor derive a value of  ̨ = 1.26 for well-watered
surfaces, though multiple studies adjust � to reflect different sur-
face conditions (Fisher et al., 2005, 2009; Garcia and Andre, 2000;
Pereira and Villa Nova, 1992).

Fisher et al. (2008) note that Priestley and Taylor’s formula-
tion, though less sophisticated than PM,  is easier to parameterize
and has in many studies been shown to have similar if not greater
explanatory power than versions of PM for well-watered surfaces
(Jin et al., 2005; Sumner and Jacobs, 2005). They design an ET model
that incorporates water availability constraints and disaggregates
sources of ET by parsing out the total ET budget among canopy
transpiration, soil evaporation, and interception evaporation. They
then calculate potential ET from each component according to PT,
and constrain these estimates with canopy and soil moisture con-
straint indices designed to be sensitive to water limitation and
the density of the vegetative cover. The goal of the Fisher et al.
(2008) model is to establish a technique for estimating evapotrans-
piration whose inputs can be reliably estimated from data–sparse
environments (e.g. via remote sensing), while at the same time
describing the physiological and non-physiological processes driv-

ing ET. The model is driven by five inputs: net radiation (Rn),
normalized difference vegetation index (NDVI), enhanced vege-
tation index (EVI), maximum air temperature (Tmax), and water
vapor pressure (ea), all of which can be approximated via remote
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ensing (Fisher et al., 2008). We  denote the Fisher et al. (2008)
odel as “PT-JPL”. When used to predict ET from 16 eddy covari-

nce flux tower sites, the PT-JPL model performed well, achieving
2 = 0.90 (Fisher et al., 2008). 1 contains information about
very variable used in the calculations of the PT-JPL and ET MU
odels.

.2. The decoupling coefficient

Jarvis and McNaughton (1986) identify a conflict in the ET lit-
rature between those who believe that plant stomata control
ranspiration, and those who believe that atmospheric variables
uch as vapor pressure and net radiation are the primary drivers.
hey create a unitless index, the decoupling coefficient, ˝,  which
escribes the extent to which the VPD of a leaf (or canopy) boundary

ayer is coupled to the ambient air:

 = 1 + ε

1 + ε + (rc/ra)
(4)

here ε = �/� , and rc and ra are defined as in Eq. (3).  As rc increases
elative to ra the degree of decoupling approaches 0, i.e. the VPD
f the leaf/canopy boundary layer becomes closely matched to
hat of the ambient air. Conversely, when ra is large relative to
c, the decoupling coefficient approaches 1, i.e. the VPD of the
eaf/canopy boundary layer differs substantially from the ambient
ir. McNaughton and Jarvis begin by considering  ̋ in the context of

 single, amphistomatous leaf, before scaling up to the canopy level.
hey conclude that at large spatial scales (e.g. 105 m across) over-
ll transpiration will be relatively insensitive to changes in bulk
tomatal resistance, citing De Bruin and Holtslag’s (1982) study
hich found that a 3-fold change in canopy conductance from 0.4

o 1.2 mol  m−2 s−1 would be expected to cause only a 20 percent
hange in transpiration. This present study is concerned with a spa-
ial scale of approximately 1 km2, leaving open the possibility that
hanges in bulk stomatal resistance could have a significant impact
n the accuracy of ET models.

McNaughton and Jarvis also derive an expression for the sen-
itivity of a change in transpiration (at the leaf scale) to a change
n the stomatal conductance of that leaf (gstom

−1 = rstom). We  can
xtrapolate from the leaf to canopy level, substituting gstom for the
ulk stomatal resistance of the canopy, gc, while E represents the
verall transpiration from the surface:

(ıE/E)
(ıgc/gc)

= 1 −  ̋ (5)

he intuition here is that when  ̋ is close to 0, a fractional change in
anopy conductance results in an equal fractional change in tran-
piration (e.g. in the fully closed scenario above, a small degree
f opening corresponds to a large percentage increase in transpi-
ation). As canopies couple with the ambient air (  ̋ approaches
), radiation becomes the dominant driver of transpiration, and
ractional changes in stomatal conductance result in much smaller
ractional changes in transpiration. When stomatal control of tran-
piration is high and atmospheric inputs like net radiation and
PD are large there will be a disconnect between the level of
tmospheric demand for ET and the ‘willingness’ of the canopy
o provide it. The difficulty of accurately describing these resis-
ances, however, may  result in ET models being prone to bias in
cenario.

. Data
The flux tower data for this study comes from the level 3
roducts of the AmeriFlux network, and was downloaded from
ttp://cdiac.ornl.gov/ftp/ameriflux/data/Level3/. AmeriFlux is part
f a global network of over 500 towers spanning 5 continents
est Meteorology 169 (2013) 12– 24

(FLUXNET), providing half-hourly to hourly measurements of car-
bon dioxide, water vapor, and energy exchanges between the land
and atmosphere across a diverse range of ecosystems and climates
using the eddy covariance method (Baldocchi, 2008). In addition
to meteorological variables such as temperature, water vapor sat-
uration, and incoming net radiation, each tower measures fluxes of
latent heat, sensible heat, and soil heat flux. Fluxes are reported
as averages over a half-hour interval. Daily and monthly values
expressed in W m−2 likewise reflect the average rate of flux over
that interval. It is essential that the averaging interval of the mod-
eling inputs matches that of the predicted flux, and we have taken
to assure that this is the case here.

Though the original data are reported as half-hourly aver-
ages, we use a two-step averaging process to construct a data
set of monthly averages. This approach averages much of the
random variation in the data, resulting in better model fits than
we obtain at larger time scales. We  compared the results of the
daily and monthly averages and found that the loss of resolu-
tion from the monthly averaging did result in an increase in fit
as measured by R2 by ∼0.15 per model. For the purposes of our
analysis, we assume that this improvement in performance is due
largely to the averaging out of random variation that is more pro-
nounced at the finer time scales, and that the monthly averaging
therefore allows us to interrogate the underlying model struc-
ture mode effectively. The data used to calculate monthly scale
ET predictions were pre-processed as follows: (1) First, fluxes and
input variables were partitioned into daytime and nighttime val-
ues using global incoming solar radiation (Rg) measurements. If
Rg > 10 W m−2 and the quality flag was  equal to 0 (i.e. no qual-
ity problems), an observation was classified as daytime. If Rg ≤ 10
and the quality flag was equal to 0 an observation was classified
as nighttime. Because of problems eddy covariance instrumen-
tation errors that are aggravated during the nighttime, we only
selected daytime values for our analysis; (2) If there were more
than 10 daytime observations a daytime value was calculated from
the data as a simple average. Otherwise the daytime value was
assigned a fill; (3) We  then removed all site/month combinations
for which there were not at least 15 days of data. If this crite-
rion was satisfied, we calculated monthly values of fluxes and
model inputs as simple averages; (4) Since PT-JPL requires an
annual series of data, we removed all site/year combinations for
which there was  not at least one observation for six months of
the year; (5) For each missing month of data that had valid adja-
cent months of data on either side we interpolated the missing
values as simple averages. E.g. if for March–April–May April is
missing, April = (March + May)/2; (6) We  linearly interpolated the
values for missing month pairs, conditional on the missing pair
being bordered by complete adjacent months; (7) We  removed
any site/year combinations that did not contain at least 10 months
of data. (8) Finally, we only used observations that contained the
requisite data to produce both the MOD16 and PT-JPL products
(Table 1).

This filtering procedure reduced the size of the data set by
approximately 32 percent—from 2071 potential site/month obser-
vations to 1400 usable observations. Notwithstanding, the final
sample contained 40 sites distributed throughout the diverse cli-
mate regions and biomes of North America. See Table 2 for a list of
the land cover types, AmeriFlux ID, and sample representation of
the sites used in this study.

We supplemented the AmeriFlux data with 9 km2 square
gridded MODIS data from the Oak Ridge National Laboratory Dis-
tributed Active Archive Center. The gridded MODIS data provides

the necessary land cover class (Friedl et al., 2002) and absorbed pho-
tosynthetically active radiation (fPAR), LAI (Myeni et al., 2002), EVI,
and NDVI (Huete et al., 2002) inputs necessary to calculate PT-JPL,
MOD16 2007, and MOD16 2011.

http://cdiac.ornl.gov/ftp/ameriflux/data/Level3/
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Table  1
List of inputs to the Fisher et al. (2008) and Mu  et al. (2007, 2011) models. MOD16 2007 and MOD16 2011 are grouped together. All values represent daytime averages,
unless  stated otherwise.

Input Details Units Value Model

Tamin Minimum monthly air temperature ◦C [−40,25] MOD16
Gday Soil heat flux W m−2 [−50,90] MOD16
LAI  Leaf area index unitless [0,7] MOD16
gcu Minimum leaf cuticular conductance m s−1 0.00001 MOD16
ë  Latent heat of evaporation J kg−1 2,260,000 MOD16
Ma Molar mass of air g mol−1 28.97 MOD16
Mw Molar mass of water g mol−1 18.015 MOD16
LC UMD land cover classification unitless 1, 2, . . .,  12 MOD16,PT-JPL
ó  Stefan-Boltzman constant W m−2 K−4 5.67 × 10−8 MOD16,PT-JPL
ñ  Density of air kg m−3 1.234 MOD16,PT-JPL
cP Specific heat capacity of air J kg−1 K−1 1003.5 MOD16,PT-JPL
P  Unit of atmospheric pressure Pa 101,325 MOD16,PT-JPL
ã Psychrometric constant: (Ma/Mw)(cP × P/ã) Pa K−1 72.35 MOD16,PT-JPL
Taday Average day time air temperature ◦C [−40,40] PT-JPL
Tamax Maximum daily air temperature ◦C [−25,40] PT-JPL
EVI  Enhanced vegetation index unitless [−1,1] PT-JPL
Tanight Average night time air temperature ◦C [−40,40] PT-JPL, MOD16
RH  Relative humidity % [0,100] PT-JPL, MOD16
Rn Incoming net radiation W m−2 [−35,250] PT-JPL, MOD16
VPDday Vapor pressure deficit Pa [0,∞]  PT-JPL,MOD16

Table 2
Table of sites included in study.

Site ID Land cover classification n Site ID Land cover classification n

CANS2 Evergreen Needle-leaf Forest 12 USMe5 Woody Savannas 36
CANS3 Woody Savannas 9 USMMS Deciduous Broad-leaf Forest 55
CANS5 Evergreen Needle-leaf Forest 24 USMOz Deciduous Broad-leaf Forest 36
CANS6 Water 24 USNe2 Croplands 47
CANS7 Woody Savannas 12 USNe3 Croplands 47
USARM Grassland 36 USNR1 Evergreen Needle-leaf Forest 59
USAud Open Shrublands 36 USRo1 Croplands 24
USBar Deciduous Broad-leaf Forest 24 USRo3 Croplands 35
USBkg Croplands 23 USSO2 Woody Savannas 12
USBo1 Croplands 83 USSO3 Closed Shrublands 12
USDix Urbanand Built-up 24 USSO4 Closed Shrublands 24
USFPe Grassland 84 USSP1 Evergreen Broad-leaf Forest 47
USFR2 Grassland 12 USSP2 Woody Savannas 60
USFuf  Woody Savannas 12 USSP3 Evergreen Broad-leaf Forest 48
USFwf Croplands 12 USSRM Open Shrublands 36
USGoo Cropland/Natural Vegetation Mosaic 36 USTon Mixed Savannas 72
USIB1  Cropland/Natural Vegetation Mosaic 12 USVar Woody Savannas 72
USIB2 Cropland/Natural Vegetation Mosaic 24 USWkg Grassland 24
USKS2 Evergreen Broad-leaf Forest 24 USWlr Grassland 24
USMe2 Evergreen Needle-leaf Forest 59 USWrc Evergreen Needle-leaf Forest 48

n
F .

4

4

P

r

A
a
t
c
˝
a

v
A

r

 indicates per-site monthly sample size.
or more detail about each site, visit http://public.ornl.gov/ameriflux/site-select.cfm

. Methods

.1. Estimation of resistances

To estimate canopy resistance we inverted the
enman–Monteith equation (4) as follows:

a = ra

(
�Rn + �cP( VPD/ra)

��E
− �

�
− 1

)
(6)

ll inputs (including ET) to items on the right hand of this formula
re measured empirically at half-hour intervals at each flux site. We
hen calculate their monthly daytime averages to use as inputs for
alculating monthly average fluxes. For the purposes of calculating

 we assume that rc = rs. This is not a valid assumption in all cases,
nd we discuss the implications of this in Section 6.

Aerodynamic resistance was estimated from the surface friction

elocity u* (Thom, 1975) measured by eddy covariance (Hasler and
vissar, 2006; Lee and Black, 1993):

a = u

u∗2
(7)
where u is wind speed and u* is the friction velocity. Though
more sophisticated parameterizations of aerodynamic resistance
are possible (Liu et al., 2007), these require additional data inputs
that must often be empirically derived, e.g. coefficients of the inte-
gral stability functions for wind and temperature. For the purposes
of this study, we assume that Eq. (7) represents an adequate sim-
plification of physics of aerodynamic resistance.

We  calculated resistances using monthly scale parameters to
estimate monthly values of ˝.  These monthly values were then
used in our analysis of the structure of the residual predicted data
series, as outlined below.

4.2. Statistical analysis

In attributing ET model error to the covariates in the data set we

have two  objectives: (1) to describe the relationship between the
input variables and model error; and (2) to quantify the significance
of that relationship in terms of explaining variance in the residual
series.

http://public.ornl.gov/ameriflux/site-select.cfm
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A classic approach to this problem is through ordinary least
quares (referred to here as OLS) regression. For OLS regression to
e valid we require independently, identically, and normally dis-
ributed prediction residuals with mean zero and constant variance
ver. We  also need the dependent variable (e.g. ET) to be linearly
elated to its covariates. In practice these assumptions are often not
atisfied. For example, since  ̋ has strict lower and upper bound-
ries of 0 and 1 the relationship of  ̋ to model error will become
ncreasingly nonlinear as  ̋ approaches its upper and lower bound-
ries. Furthermore, interaction effects between the variables must
e specified manually, meaning that unless the researcher has good
rior knowledge about how the variables are interrelated it may  be
asy to miss subtle yet significant relationships between them. In
pite of these challenges, we choose to include OLS (i) because of its
ase of interpretation, (ii) its widespread use as an analytical tool
n the field of environmental science, and (iii) it sets a benchmark
or the performance of the more sophisticated machine learning
lgorithms we will use to explore the data.

The second class of models that we apply here are sum-of-
rees models based on Breiman’s classification and regression trees
CARTs) (Breiman et al., 1984). These are random forests (Breiman,
001) and Bayesian additive regression trees (BARTs) (Chipman
t al., 2010). In contrast to OLS, these models are able to account for
omplex interactions and additive effects between model variables
ithout explicit training. They are therefore extremely useful for

xploratory analyses where the researcher has little prior knowl-
dge about how the prediction variables relate to the dependent
ariable, as is the case with this study. For a detailed explanation
f the theoretical basis of CART, random forests, and BART, refer to
ppendix A.

The final statistical technique that we use to model the error
tructure of our data is the neural network. We  use the R Stuttgart
eural Network Simulator (Bergmeir and Benítez, 2010) to train
n Elman network (Elman, 1990). The simplest examples of neural
etworks utilize a structure whereby the input layer connects to
he hidden layers that connect to the output layer in a feed-forward

anner. An Elman network follows this same basic structure, but
ith the modification that the hidden layer is linked to a “context

ayer” via a 1:1 connection. For each iteration i of network training,
he context layer inherits the values of the hidden layer, and these
alues are then used to train the hidden layer in iteration i + 1 along
ith the input layer (Cruse, 2006).

To quantify the relative importance of each variable in explain-
ng residual series variance we use variable importance rankings.
or the neural network and random forest models we  calculate
ariable importance metrics by randomly scrambling the entries
or the variable of interest, then predicting the data using the same

odel but with the scrambled inputs (Liaw and Wiener, 2002). This
andom permutation introduces additional error into model pre-
ictions, quantified as the sum of squared residuals (SSR). Those
ariables whose permutations result in the largest reductions in the
odels’ ability to predict the training set, i.e. the largest increase

n SSR, are classified as relatively more important. This technique
s well established for random forests (Breiman, 2001; Liaw and

iener, 2002; Strobl et al., 2007), but not typically used for neural
etworks (Olden et al., 2004). Random permutation of the input

ayers to a neural network can be considered an adaptation of the
nput perturbation method (Gevrey et al., 2003), whereby a small
mount of white noise is added to inputs and the resulting change
n mean squared error is analyzed. Our view is that the permu-
ation is preferable to perturbation for the purposes of variable
election, since it introduces an even greater degree of random-

ess into model inputs. Though we could repeat a similar procedure

or BART, the maintainers of the R BART package (Chipman and
cCulloch, 2010) provide a function that uses the number of times

hat a variable appears in the selection node of the final suit of
est Meteorology 169 (2013) 12– 24

Bayesian trees calculated from the Markov chain runs described
above. Those variables most frequently selected as node splits are
classified as relatively more important. For ease of comparison we
normalize the scales of all variables important by dividing by either
the largest RSS or proportion value such that all importance rank-
ing range between 0 and 1. A value of 1 indicates that, relative to
the other variables in the data set, a variable is ‘very important.’ A
value of 0 indicates ‘not important at all.’

Machine learning algorithms like random forests are essen-
tially “black box” techniques—they tend to have good prediction
performance, but the relationship between the dependent and
explanatory variables is not nearly as explicit as in OLS. Fortunately,
a technique called “partial dependence plotting” allows us to esti-
mate good visual representations of these relationships (Friedman,
2001). The purpose of partial dependence plots is to illustrate how
a marginal change in a variable of interest influences the expected
value of the dependent variable. Friedman (2001) suggest the aver-
age function for cases where the functional form of the model used
for partial dependence plotting does not depend too heavily on the
specific subset of data used for model training. The average function
for partial dependence plotting is defined as:

f̃ (x) = 1
n

n∑
i=1

f (x, xiC ) (8)

where x is the variable for which partial dependence is being exam-
ined, and xiC is the rest of the data set (Liaw and Wiener, 2002). In
practice, we estimate the partial dependence function by selecting
k values of x. For each of these k values we then recalculate model
predictions, but with all entries for x only containing the kth value.
When this process is repeated for a sufficiently fine-grained subset
of x, a partial dependence curve can be plotted.

5. Results

In an intercomparison of PT-JPL, MOD16 2007, and
MOD16 2011, PT-JPL explained 71 percent of the variance in
the sample data, compared to 54 percent and 48 percent for
MOD16 2011 and MOD16 2007, respectively (Fig. 1). All models
tended to over-predict the measured ET (or, conversely, measured
ET was  “under-measured” relative to predicted ET). A slope coeffi-
cient of less than one indicates that we  obtain the expected value
of an observed data point by shrinking that observation’s predicted
value. Both of the MOD16 models over-predicted less than PT-JPL.
The 6 percent performance improvement from MOD16  2007 to
MOD16 2011 confirms that the authors’ updates to the 2007
model in their 2011 paper did indeed improve performance.

We  recognize the unresolved problem of energy balance clo-
sure in the observed ET data, which has the potential to introduce
significant error into observed flux values, skewing model per-
formance diagnostics (Fisher et al., 2007). Energy balance closure
refers to the difference between measured incoming energy (Rn)
and the sum of measured fluxes LE, H, and G. In theory these
should be equal, but in practice they often are not. The mean of
the energy balance closure ratio—EBC = (ET + H + G)/Rn—across the
monthly sample for the 40 sites was  0.91, a similar though slightly
higher level of closure compared to what is commonly observed
in the literature (Aubinet et al., 2005; Scott, 2010; Shuttleworth,
2007; Wilson et al., 2002). However, a sample mean of 0.91 does
not rule out the possibility of there being significant variation in
the level of closure across sites. We  expressed energy balance clo-

sure as a difference, EBC = Rn − (ET + H + G), and examined its sample
distribution (Fig. 2). The mean of the differenced EBC sample dis-
tribution here is 18.4 W m−2, a relatively small figure, but with a
standard deviation of 43.8 W m−2. We control for the effect of this
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Fig. 1. Performance diagnostic plots for each of the three evapotranspiration prod-
ucts used in this study. The constant coefficient and slope of the regression lines are
represented by  ̨ and ˇ, respectively. R2 represents portion of variance explained
by  the dependent variable, RMSE represents “root mean squared error,” and MBE
represents “mean biased error.”.
Fig. 2. Histogram of energy balance closure at the monthly level across all site,
expressed as the difference between daytime net radiation and the sum of observed
ET,  H, and G. Estimated density curve drawn in red.

wide variation in EBC by including differenced EBC as a variable in
the error structure analysis.

Three of the variables used in the error structure analysis are
functions of other variables in the data set. The decoupling coeffi-
cient is heavily driven by rc, which has observed ET as a significant
component. Similarly, ra is a function of wind speed and fric-
tion velocity. We  therefore used principal component analysis
(PCA) to identify how the explanatory variables were related with
respect to the two  primary axes of variation in the data (Fig. 3).
The first two principal components captured 53 percent of the
total variation in the explanatory data set, with the remaining
12 components explaining the other 47 percent. The first compo-
nent explained approximately 30 percent of the variation, and the
second explained approximately 23 percent. Because these two
components describe a large share of the variation in the data, a
two-dimensional projection of the data onto them is a good way
to visualize patterns of similarity among variables in this study.
We can see that  ̋ and rc are strongly, inversely, related along

the second principal component. We  therefore expect these two
variables to capture similar sources of variation in the residual
series. This is to be expected given the construction of ˝—when
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Fig. 3. Labeled biplot diagram of projection of all flux product/predictor variables
onto first and second principle components.
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ig. 4. Intercomparison of the performance of four statistical models (rows) for exp
columns).

anopy resistances are large (high rc) we will generally expect to
bserve decoupled canopies (  ̋ close to 0). It is encouraging to see
c and  ̋ varying more or less orthogonally to LE day,  Ta day, and
n day, all of which are used to derive rc via the Penman–Monteith
quation. In spite of being composite variables,  ̋ and rc do not

eem overwhelmingly driven by any one of their inputs, though
here is a strong apparent relationship between  ̋ and Rh min. That
recipitation—which relates to water availability—˝,  and rc have
rincipal component loadings that are distinct from the majority
g residual series data for the three evapotranspiration products used in this study

of other model input variables suggests that they describe dis-
tinct sources of variation. We  hypothesize that the first principal
component, where Ta day and Rn day are primarily loaded, relates
primarily to incoming energy, while the second principal com-
ponent, where Precip is primarily loaded, relates mainly to water

availability.

The dependent variable in the error structural analysis is the
prediction residual, est = Pst − Ost, where s represents site and t rep-
resents month. We  use the statistical models described above to
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neural network.
We are unable to infer from the results of this particular analy-

sis whether canopy decoupling or bulk stomatal resistance is most
Fig. 5. Variable importance rankings for the random for

redict this residual as a function of model inputs, along with u*,
ind speed, precipitation, ˝,  and rc such that:

st = Mi(Xst) + εst, i = 1, 2, 3, 4 (9)

here Mi represents one of the four statistical models, Xst rep-
esents the predictor set, indexed by site and time, and εst, the
esidual of the model Mi prediction on the Xst predictor set. Fig. 4
hows how OLS, random forest, BART, and neural network models,
espectively, performed in modeling the monthly residual series
f PT-JPL, MOD16 2011, and MOD16 2007 predictions. Error pre-
ictive performance was weakest across all statistical models for
T-JPL; because PT-JPL had the best overall performance in explain-
ng the observed data, there is less “left over” variation to be
xplained in the residual series. If we were only implementing the
LS statistical model, one could object that the error structure of

he residuals is simply more complicated for MOD16. However,
e implement several machine learning techniques that effectively
odel non-linear relationships and variable interactions. This gives

s confidence that the weaker performance of the statistical models
or PT-JPL is related to the smaller amount of unexplained variation
n the original data relative to MOD16 2007 and MOD17 2011. The
andom forest and BART models improved error prediction perfor-
ance over OLS by 16–22 percent for PT-JPL, but only 7–10 percent

nd 3–6 percent for MOD16 2011 and MOD16 2007, respectively.
his suggests that simple, linear effects dominate the error struc-
ures of the MOD16 models. For PT-JPL, the difference in prediction
erformance between the linear and non-linear models suggests

 relatively stronger presence of variable interactions and non-

inearities.

Fig. 5 shows the variable importance plot partitioned by ET prod-
ct and residual analysis model (M). We  should be careful about
he inferences we make from these variable importance rankings.
F), BART, and neural network (NNET) statistical models.

Unlike OLS, each of the three models illustrated here incorpo-
rates random processes in the training stage, and therefore can be
expected to yield slightly different results each time the model is
trained. To control for this we ran the analysis 41 times, and gen-
erated a single variable importance ranking for each product and
model combination as a simple average of the rankings across all 41
iterations. In statistical analysis, the number 30 is a threshold often
used as the sample size for which the distribution of the mean of
a random variable will be essentially normal according to the Cen-
tral Limit Theorem. This is not a quantitative threshold, but rather
a qualitative default used for convenience. Since we present partial
dependence plot lines as means of multiple analysis runs, we would
like these means to have approximately normal distributions for
the sake of estimating confidence intervals. The fact that we ran
the analysis 41 times is a result of the fact that this is where the
computer used for this analysis encountered a memory constraint
while executing the multiple-runs analysis. Overall,  ̋ and rc did
not score highly in the variable importance analysis. Though they
were ranked the highest in the random forest analyses, they were
still dwarfed by variables relating to incoming energy and canopy
greenness. There was no clear trend across all statistical models
and ET products as to whether  ̋ or rc was more important.2 In
addition to energy- and canopy-related variables, daytime air tem-
perature ranked highly in several of the analyses, particularly the
2 Note that even though PT-JPL does not model rc explicitly, the PT-JPL error struc-
ture could still be related to rc if canopy resistance is indeed an important limiting
factor of ET and the model does not adequately implicitly model this.
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ig. 6. Performance improvement associated with iterative inclusion of top-ranked
mportant variables from figure . Iteration I: observed ET, Rn; Iteration 2: . . . + EVI,
AI;  Iteration 3: . . . + rc; Iteration 4: . . . + ˝.

elevant for predicting model error. Breiman (2001) note that when
wo variables, x1 and x2, express the same information in a data
et, the fact that they will each be selected an approximately equal
umber of times in the random forest leads them to have similar
ariable importance scores. However, when a model that includes
1 is modified to include x2, the change in prediction performance
ill be minimal since no new information is added. If x1 and x2 are

 and rc, we can map  the performance change in a series of ran-
om forest models to see not only if each variable is important, but
hether these variables add new information with respect to the

esidual series for each flux product.
Fig. 6 shows the proportion of variance explained using a ran-

om forest model calculated over four iterations. The variable
nsemble used for model training was selected according to the
ariable importance data in Fig. 5. Iteration 1 used only observed ET
nd Rn, iteration 2 included LAI and EVI,  the second-most impor-
ant variables, iteration 3 included rc, and iteration 4 included ˝.
p to iteration 3, we can see that the random forest model actually
xplains similar amounts of various across the PT-JPL and MOD16
roducts. However, there is a significant difference in how the ran-
om forest models respond to the incorporation of  ̋ at iteration
: for PT-JPL the incorporation of  ̋ only contributes a 4 percent

mprovement in prediction performance whereas for MOD16 2011
nd MOD16 2007 it contributes approximately 14 and 16 per-
ent, respectively. For both of these models, the amount of new
nformation that  ̋ added is comparable to the new information
dded by incorporating rc. For the residual series of PT-JPL, it is the
nformation that rc and  ̋ have in common that drives the perfor-

ance improvement for the random forest model, i.e. bulk stomatal
esistance. This implies that PT-JPL is failing to describe impor-
ant information related to rc (namely, the role of plant stomata in
estricting transpiration), but succeeding in describing the aspects
f  ̋ related to ra and VPD. For the residual series of both MOD16
odels, we see that rc and  ̋ each add new information. This sug-

ests that while all three models struggle to adequately describe
he biophysical constraints on transpiration associated with rc, PT-

PL is better at controlling for air temperature and VPD, the other
ey inputs to ˝.

Observed ET occupied the position of importance in the residual
nalysis across all statistical models. This follows from the fact that
Fig. 7. Partial dependence of mean prediction bias on canopy indices EVI and LAI.
Calculated using random forests. Shaded area represents that 95 percent confidence
band for each partial dependence curve.

e is a function of the observed and predicted data. As we  see in the
diagnostic plots in Fig. 1, all ET products tend to under-predict large
observed values. This tight relationship between large observed ET
values and large residuals explains why  observed ET is consistently
ranked the most important variable. The importance of vegetation
indices EVI and LAI, particularly for PT-JPL, where EVI was ranked as
the most important explanatory variable for all M, were consistent
across models. Observed ET and LAI were jointly the most significant
variables for both ET MU products for all M.  As seen in the step from
iteration 1 to iteration 2 in Fig. 6, these variables contribute signif-
icant, unique information about prediction error to random forest
model. Fig. 7 shows partial dependence plots of the relationship
between mean predicted error and EVI or LAI,  depending on which
was ranked as the most important for each ET product. We  see that
for all models the relationship resembled a logarithmic curve, with
relatively little change in expected model bias for high and low
values of the vegetative index before sloping steeply upward in the
middle of the range. This is evidence that the mechanisms for incor-
porating canopy data into the flux products tested here transition
from overly restrictive (or in the case of PT-JPL, appropriately non-
restrictive) to not restrictive enough. On average, large values of
canopy indices correspond to larger prediction residuals, suggest-
ing that the ET products are relaxing the canopy-based restrictions
on transpiration too aggressively when canopy indices are large,
leading to over-prediction.

Fig. 8 shows the partial dependence plots of the predicted resid-
uals on  ̋ for all statistical models across the three flux products:
we see that PT-JPL begins with a mean, positive predicted bias that
diminishes as  ̋ increases, approaching zero as  ̋ approaches 1. The
MOD16 products have approximately zero mean predicted bias for
low levels of ˝,  but tend to become increasingly negatively biased
as  ̋ increases. This implies that for large-  ̋ conditions, where we
generally expect to observe larger volumes of evapotranspiration,

the ET MU  products are often overly restrictive. This finding varies
across statistical models, and is less pronounced for the BART and
random forest analyses, which incorporate non-linear effects that
OLS and the neural network do not.
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ig. 8. Partial dependence of mean prediction bias on ˝,  estimated using each of t
round each line. Shaded areas represents the 95 percent confidence band for each

. Discussion

The goal of this paper was to study the structure of the residual
rror in ET model predictions, specifically with respect to ˝,  a proxy
or canopy control of transpiration. We  tested the null hypothesis
as that  ̋ would be unrelated to model error using variable impor-

ance sampling and partial dependence plotting based on several
tatistical models. Though the strongest predictors of ET model
rror were LAI (for MOD16), EVI (for PT-JPL) and observed ET,  we
ound evidence of a non-trivial role for ˝ and rc. Recognizing that ˝
s largely driven by rc, we tested a random forest model for the resid-
al series of each latent heat product that iteratively incorporated
he top-ranked variables from the importance sampling, includ-
ng rc and ˝.  We  found that the importance of  ̋ for explaining
he error of PT-JPL was due primarily to its functional relationship
o rc, whereas for MOD16 2011 and MOD16 2011 both variables
ad unique explanatory power with respect to the residual series.
ll models, therefore, could improve with respect to their descrip-

ion of biophysical constraints on transpiration—whether those
onstraints are modeled implicitly or explicitly—and the MOD16
odels could further improve with respect to their modeling of

he surface–atmosphere interactions captured by the decoupling
oefficient.

What are the implications of this study’s results for improv-
ng ET models going forward? As a first step, modelers need to
dentify why models consistently under-predict large values of ET,
espite an aggregate over-prediction bias. Observed ET was  the sin-
le strongest predictor of model error over the entire study for
OD16, closely followed by LAI.  For PT-JPL, EBC, Rn, and observed ET,
ere all top-ranked variables, depending on the statistical model
sed. Since EBC is a function of Rn and observed ET,  this is evidence
he energy balance closure is a significant error factor for PT-JPL.
nergy balance closure has the potential to insert large biases into
he accuracy of observed ET estimates. This, in turn, could call
nto question the reliability of our residual estimates. Richardson
t al. (2008) also found that flux magnitude is strongly related to
ncertainty for CO2. MOD16 models were affected primarily by the
agnitude of observed ET; PT-JPL was more sensitive to the dif-
erence between Rn and ET, energy balance closure. The question
f how to explicitly incorporate uncertainties arising from energy
alance closure is beyond the scope of this paper but warrants
urther research.
dy’s four statistical models. Shaded area represents 95 percent confidence interval
l dependence curve.

The second step for modelers is to identify why  models’ positive
prediction bias increases so sharply with LAI and EVI. This could be
related to rc: currently both classes of models are setup to relax
the canopy’s control over transpiration as greenness increases. The
rationale is that greener the canopies indicate a greater the sup-
ply of water available for ET, and thus a convergence between
potential and actual ET. If this relationship does not hold, relatively
large values of LAI or EVI, could correlate to over-relaxed model
constraints on transpiration and therefore model over-prediction.
This seems to be the case here. If the divergence between water
availability and LAI and EVI is indeed the underlying cause of
these indices’ positive correlation with ET model bias, then this
may  recommend the current work being done to remotely predict
soil moisture, e.g. the SMAP mission (Chen et al., 2011). Esti-
mating soil moisture directly, rather than as a proxy of canopy
reflectance, could potentially boost prediction performance sub-
stantially.

Finally, not all canopies will respond similarly to the combined
effects of water stress, atmospheric demand, and photosynthetic
energy. For example, research has shown significant species-level
differences in strategies for managing leaf water potential through
maximum stomatal conductivity and sensitivity to VPD (Mackay
et al., 2003). At the regional scale these differences become less rel-
evant, but at the tower scale Mackay et al. (2003) found them to be
highly significant. Therefore, even after resolving the above issues
there may  be scope to incorporate more accurate models of canopy
resistance or decoupling into revised evapotranspiration products.
The challenge is how to do so with remotely sensed data? One pos-
sibility would be to solve rc using the Penman–Monteith equation,
with the “true” observed ET value provided by another evapotrans-
piration product, e.g. PT-JPL. This back-solved rc could then be an
input to an ET product explicitly requiring parameterized stomatal
resistance.

This paper makes the convenient assumption that surface resis-
tance (rs) is equal to canopy resistance (rc). In fact, this is not often
the case. In sparsely vegetated canopies with large areas of exposed
soil, it will often be the case that direct evaporation, rather than
transpiration, is the main contributor to ET. Where the evaporation

component of ET is large relative to the transpiration component
rs estimates will contain little information about the level of sto-
matal resistance. This introduces bias into our analysis, though in
this study we  have not attempted to quantify this or select sites



2 d For

a
c

t
n
o
s
i
s
P

c
t
m
e
c
w
t
l
a
t
a
v

v
u
a
t
a
t
A
t
o

A

h
M
M
v
F
h
a
t
o
u
i

A

h
r
i
1
v
2
(
r
r
i
s
S
r

aggregated across each tree in the forest and used to determine
the final predicted values. By randomly permuting the values of
a given variable and examining how this permutation changes
2 A. Polhamus et al. / Agricultural an

bove a particular threshold of canopy density. Further studies
ould improve on our method.

Some authors (Pereira, 2004; Fisher et al., 2005) have attempted
o improve PT-based models by varying the  ̨ coefficient. We  have
ot tested this strategy here, nor do we recommend it as a basis
f physics-based model improvement because it typically relies on
ite-level, empirical calibration, rather than modeling an underly-
ng physical reality. Fisher et al.’s (2008) approach is to calculate a
eries of multipliers that collectively adjust the potential ET from
T using the default value of  ̨ = 1.26.

An analysis of the effect of specific biome type, species, and land
over on error structure is missing from this analysis. To the extent
hat land cover, rc, LAI, and EVI are correlated with each other, this

eans that we are missing a potentially valuable control from the
rror structure analysis. To have treated this variable with suffi-
ient rigor would have expanded the manuscript significantly, as
ell as have been much more computationally costly when training

he machine learning models implemented. Furthermore, we  were
imited by the fact that for the AmeriFlux data set some biome types
re much more heavily represented than others, potentially biasing
he results of an analysis including biome type. A future, detailed
nalysis of the effect if biome type on ET model error would be a
aluable addition to the results contained in this paper.

Though  ̋ and rc were not the most significant explanatory
ariables of ET model error, this paper gives evidence that the
nderlying biophysical factors they describe do have a system-
tic relationship to the error structure of ET predictions. Improved
echniques for estimating resistances (such as the double model
pproach), or innovations such as soil water content data, have
he potential to contribute to the improvement of these models.
s a first step toward model improvement, we identify a consis-

ent under-prediction bias associated with large values of ET and
ver-prediction associated with large canopy index values.
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ppendix A.

Two of the machine learning techniques that we  apply
ere—random forests (Breiman, 2001) and Bayesian additive
egression trees (BARTs)—are sum-of-trees methods for combin-
ng classification and regression trees (CARTs) (Breiman et al.,
984). Trees can take two forms, depending on the response
ariable that they attempt to describe (De’Ath and Fabricius,
000; Venables and Ripley, 2002). If the response variable
as is ET in this study) is numeric then the tree will be a
egression tree, which typically minimizes the sum of squared
esiduals within population subgroups. If the response variable

s a class the tree will be a classification tree, which splits
ubgroups according to a measure of distributional impurity.
ince the dependent variable in this study (model prediction
esiduals) is continuous, we only treat regression trees in this
est Meteorology 169 (2013) 12– 24

paper. A simple regression tree begins with a single node
representing the entire sample population used for tree growing.
The tree growing algorithm then searches across all predictor vari-
ables to select a binary split that minimizes the sum of the squared
residuals (SSR). For regression trees this will typically be the sum of
the squared differences between each observation in the subgroup
and that subgroup’s population mean.3 For example, consider a
sample of model residuals from PT-JPL with an SSR—based on an
overall sample mean of 20 W m−2—of 1000 W2 m−4. Now, say that
we split this population into two  groups on the basis of whether
an observation’s  ̋ value is greater or less than 0.5. The group cor-
responding to  ̋ ≥ 0.5 has a lower sample mean of 5 W m−2, while
the group corresponding to  ̋ < 0.5 has a larger sample mean of
40 W m−2. With these new sample means we calculate new SSRs
within each population subgroup of 200 W2 m−4 and 250 W2 m−4,
respectively, for an overall SSR of 450 W2 m−4. If this is the max-
imum possible reduction in SSR that we can achieve across all
variable splits, then we  select it as the first split for our regres-
sion tree model. We  continue to further subdivide the two resulting
groups using the same methodology. We  refer to a node leading
to a split as a parent node, and the nodes proceeding from that
split as children (Breiman et al., 1984). Nodes that split into other
nodes are interior nodes, while nodes that are associated with a
prediction are terminal nodes. The algorithm continues to grow the
tree by splitting the terminal node the results in the maximum
possible reduction in residual sum of squares. Such algorithms are
“greedy” in that they only look one step ahead. In theory it would
be optimal to test all possible trees, but such a technique is com-
putationally infeasible, generating a “combinatorial explosion” of
possible trees (Venables and Ripley, 2002). Though trees can be
grown to the extent that every observation inherits its own  unique
terminal node, this is almost guaranteed to over-fit the model to
the data. Various techniques for pruning trees according to their
performance on a set of training data exist, such as k-fold cross
validation and bootstrapping (Kohavi, 1995; Venables and Ripley,
2002). Trees therefore have the useful property of invariance under
monotonic transformation of the variables, which is not the case in
linear regression. We  will also describe how the sum-of-trees mod-
els implemented here can be used for variable importance ranking
partial dependence plotting. Sum of trees models improve over
single tree models in their ability to account for additive effects
among the variables, while preserving trees’ ability to incorporate
complex interaction effects (Breiman, 2001; Chipman et al., 2010).
Unlike linear models, which assume a linear relationship between
the regressors and response variable, classification and regression
tree are only sensitive to the rank ordering of variables (Breiman
et al., 1984; De’Ath and Fabricius, 2000).

By introducing randomness in the training sets and covari-
ate ensembles used for tree growing, Random Forests often
out-perform single trees (Breiman, 2001) in terms of prediction
accuracy. The basic random forest, which we  use for this analy-
sis, is trained by taking B bootstrap samples of the original data,
and randomly sampling M covariates out of the full ensemble of
explanatory variables for each of the B samples. For each of the
B samples a tree is grown to maximum depth (each observation
inherits a single terminal node) using its corresponding sample
of covariates, and the out-of-bag samples are used to cast “votes”
for the value of each observation. These predicted values are then
3 There are other, more complex criteria for selecting node splits, i.e. via the sum
of  squared residuals from a linear regression of the subset on a suite of predictor
variables.
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rediction performance random forests also provide useful variable
mportance metrics.

Bayesian additive regression trees (Chipman et al., 2010) expand
pon earlier work by Chipman et al. (1998) in the field of Bayesian
ART model search. In the 1998 paper the authors consider possible
ART selections as having posterior probabilities given by:

(T |X, Y) ∝ p(Y |X, T)p(T) (1A)

The prior probability, p(T), is initially expressed as a function of
 and � such that:

(�, T) = p(�|T)p(T) (2A)

here T represents a tree with b terminal nodes and
 = (�1, �2, . . .,  �b) associates a parameter value(s) �i with the

th terminal node. The authors solve for this prior probability
y assuming independence between � and T and solving p(�|T)
nd p(T) separately. Note that as an index for a given tree T also
efers to the structure of that tree in terms of its shape/depth and
ode splitting rules. The authors use the rules pSPLIT and pRULE to
etermine (a) and (b), respectively, where:

SPLIT (	, T) = ˛(1 + d	)−ˇ (3A)

here 	 is a node index and d	 represents the depth of that
ode. The choices of ˇ and ˛ may  be informed by plotting prior
robabilities as a function of terminal nodes, but being parameters
f a prior distribution, are fundamentally subjective. This splitting
ule serves to restrict the likelihood of observing complex, poten-
ially over-fit trees. If a node is selected for splitting, pRULE randomly
elects a variable x from the set of predictors in X according to a
niform distribution, and randomly selects either a category (if x is
ualitative) or a single value (if x is quantitative) as the split point,
, again from a uniform distribution. The probability of observing a
ree T, p(T), is therefore a function of the probabilities from pSPLIT
nd pRULE.

A detailed explanation of how the authors choose p(�, T) would
e beyond the scope of this paper. In short, that they select Gaussian
orms for � such that the problem:

(Y |X, T) =
∫

p(Y |X, �, T)p(�|T)d� (4A)

an be solved analytically. Trees with high posterior probabil-
ty per Eq. (2A) are then searched for stochastically using the

etropolis–Hastings search algorithm (Hastings, 1970; Metropolis
t al., 1953) that generates a chain of trees T0, T1, T2, . . .,  TN. For
ach step from Ti to Ti+1 a candidate tree T* is generated from Ti by
andomly choosing to either (i) GROW the tree according to pRULE,
ii) PRUNE a tree by collapsing two terminal nodes into their par-
nts, (iii) CHANGE the splitting rule of an internal node according
o pRULE, or (iv) SWAP the splitting rules of a parent-child pair that
re both internal nodes. After the candidate tree is generated Ti+1

s set to T* with the probability given by the Metropolis–Hastings
ecision function, otherwise it is set to Ti. BART is essentially an
lgorithm that generates multiple chains of Bayes’ tree (e.g. 200)
nd aggregates the information in these chains by using the mean
f the posterior probability distribution for each final tree as its
ummation weighting (Chipman et al., 2010).
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