Ground heat flux: an analytical review of 6 models evaluated at 88 sites and globally

A. J. Purdy 1, J. B. Fisher 2, M. L. Goulden 1, and J. S. Famiglietti 1,2

1 Department of Earth System Science, University of California, Irvine, California, USA
2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

Abstract
Uncertainty in ground heat flux (G) means that evaluation of the other terms in the surface energy balance (e.g., latent and sensible heat fluxes (LE and H)) remains problematic. Algorithms that calculate LE and H require available energy, the difference between net radiation, \(R_{NET} \), and G. There are a wide range of approaches to model G for large-scale applications, with a subsequent wide range of estimates and accuracies. We provide the largest review of these methods to date (N = 6), evaluating modeled G against measured G from 88 FLUXNET sites. The instantaneous midday variability in G is best captured by models forced with net radiation, while models forced by temperature show the least error at both instantaneous and daily time scales. We produce global decadal data sets of G to illustrate regional and seasonal sensitivities, as well as uncertainty. Global model mean midmorning instantaneous G is highest during September, October, and November at 63.42 (±16.84) W m\(^{-2}\), while over December, January, and February G is lowest at 53.86 (±18.09) W m\(^{-2}\), but shows greater intermodel uncertainty. Results from this work have the potential to improve evapotranspiration estimates and guide appropriate G model selection and development for various land uses.

1. Introduction and Background
Ground heat flux (G) is an integral part of the surface energy budget \((R_{NET} - G = LE + H + V) \). Net radiation, \(R_{NET} \), and G are balanced by latent heat (LE), sensible heat (H), and chemical energy provided by metabolism or used by photosynthesis in plants (V), a negligible amount. Ground heat flux accounts for the energy gained or lost during belowground warming or cooling. Commonly used approaches to calculate LE and evapotranspiration (ET), such as the Penman-Monteith equation, the Priestley-Taylor equation, and the residual of the energy balance, not only need high-fidelity \(R_{NET} \) but also require G to calculate the available energy [Penman, 1948; Monteith, 1965; Priestley and Taylor, 1972]. The magnitude of G varies greatly across different landscapes. In wet areas with dense canopy G is small, while in arid regions with sparse canopy G reaches comparable amounts of energy to H and often larger amounts than ET. With G varying orders of magnitude across different landscapes and being an essential part of available energy to support global ET applications, the need for robust and accurate estimates of G is evident. However, many approaches to model G were formulated with limited spatiotemporal sampling and have since been broadly applied. A clear characterization of the discrepancies and potential sources of bias in current G models has the potential to improve estimates of available energy, increase the accuracy and consistency of ET estimates, and facilitate scrutiny of mechanistic model differences across ET algorithms, which is an actively ongoing focus of research [Vinukollu et al., 2011; Jiménez et al., 2011; McCabe et al., 2013; Mueller et al., 2013; Ershadi et al., 2014; Chen et al., 2014; Michel et al., 2016; Miralles et al., 2016].

Remote sensing algorithms developed to calculate daily ET at high spatial resolutions created a need for spatially explicit G estimates. Subsequently, many methods to quantify G using satellite data were developed. Initial approaches assumed G to be a constant fraction of \(R_{NET} \) or G to be negligible at daily or longer times [Seguin and Itier, 1983]. Later work derived linear and nonlinear empirical relationships between G/\(R_{NET} \) and vegetation indices [Reginato et al., 1985; Clothier et al., 1986; Choudhury et al., 1987; Kustas and Daughtry, 1990; Kustas et al., 1993] and G/\(R_{NET} \) and surface temperatures [Jacobsen and Hansen, 1999; Mu et al., 2011]. Recently, G models have employed physically based analytical solutions to thermal diffusion equations [Bennett et al., 2008; Holmes et al., 2008]. The assumption that G is always negligible is not appropriate, especially at midmorning times near satellite overpasses or in areas with sparse vegetation cover (Figures 1 and 2) [Daughtry et al., 1990]. Setting G as a constant fraction of \(R_{NET} \) discounts the impact of
spatially varying soil properties, neglects the influence from vegetation insulation, and disregards conservation of energy, unless efforts are taken to equally weight periods when G is positive (daytime/summer) and negative (nighttime/winter). Variables that influence the magnitude of G/R_{NET} include soil properties, vegetation cover and height, and temperature fluctuations [Santenello and Friedl, 2002]. These different factors impart different magnitudes of influence at instantaneous or daily time scales. Consequently, models have been developed to quantify G instantaneously or aggregated across daily or longer times. The G model formulations and variable selection can be seen in Table 1, but models primarily use vegetation characteristics or temperature.

Vegetation cover density impacts G by attenuating incoming radiation and temperature fluctuations at the soil surface. As vegetation cover increases, the ratio of G/R_{NET} decreases. Despite the general agreement of this relationship, G/R_{NET} varies for distinct amount vegetation cover across models, especially for areas with sparse to no vegetation (Figure 2). Previous research reported G/R_{NET} to range from 0 at complete canopy cover to 0.39 for bare soil [Mu et al., 2011]. Other studies indicated smaller ranges: Kustas and Daughtry [1990] found G/R_{NET} spanning from 0.15 at full canopy to 0.30 for bare soil, while Reginato et al. [1985] observed a much smaller range from 0.05 for full canopy and 0.1 for bare soil. The breadth of these ranges demonstrates how localized measurements for one particular environment do not translate toward broader applications and that factors other than vegetation cover regulate G/R_{NET}.

Soil properties and land surface temperature are also known to impact G. Idso et al. [1975] measured G/R_{NET} to be 0.5 for dry bare soil and 0.3 for the same bare soil when saturated. Land surface temperature (LST), also known as the radiometric skin temperature, has been shown to correlate to G.

Figure 1. Probability density distributions of observed instantaneous midmorning and daily G from the 88 FLUXNET towers used in this analysis. (left) Probability density distribution of midmorning instantaneous G. Although G has the highest probability of being near 0, the long tail at the positive end of G indicates that G is an integral term in the instantaneous energy balance. (right) Probability density distribution of daily G. Daily G is more often than not 0. However, a normal distribution around G that spans from -40 Wm^{-2} to 40 Wm^{-2} demonstrates the seasonality of G at daily time steps.

Figure 2. Vegetation influence on instantaneous modeled G/R_{NET} ratios. The separation between these models is greatest at low vegetation cover.
Empirical relationships and thermal diffusion solutions have been successful at modeling G over aggregated daily time steps \cite{Bennett2008, Holmes2008}. A linear empirical relationship developed for the Arctic tundra between simultaneously measured surface temperature and G exhibited high correlation and low error and has since been adopted for global applications \cite{Jacobsen2011}. However, a linear relationship between skin temperature and G may not capture other factors that impact G, such as attenuation due to vegetation cover, the thermal conductivity of soil, or the temperature gradient of thawing tundra. Thermal diffusion solutions use the integrated time difference between land surface temperatures to calculate G. This approach mimics a physically accurate method to transfer heat from the atmosphere into the Earth surface while relying on knowledge of soil surface thermal inertia estimates. \cite{Bennett2008} bypass the need for spatially explicit global soil properties by parameterizing a constant thermal inertia for each location globally. To date, this method has only been applied globally at relatively coarse scales (10–30) using reanalysis data sets \cite{Bennett2008, Vinukollu2011}.

Many previous studies demonstrate success at tuning a G model for specific a location, but many of these G models and their optimized parameter sets have not been tested across a robust observation data set with a variety of land covers and various climates. With a push for global high-resolution spatiotemporal ET data, some ET models and their respective G representations that were constructed to function over specific land uses have since been applied to continental applications without scrutiny \cite{Allen2015}. The limited studies which have investigated differences in G models have only focused on irrigated agricultural land uses \cite{Cammelleri2009, Irmak2011}. These studies found overall poor performance compared to mean in situ G observations and concluded that local calibration is necessary for successful model application. Additionally, the differences between methods to quantify G at both instantaneous and daily resolutions need to be better understood to aide appropriate G model selection in global ET algorithms.

<table>
<thead>
<tr>
<th>Table 1. Table of Widely Used G Modules in Current LE Algorithms Including the Equations to Calculate Both Instantaneous G and Daily G^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>METRIC</td>
</tr>
<tr>
<td>G/R_{NET}</td>
</tr>
<tr>
<td>G/R_{NET}</td>
</tr>
<tr>
<td>G/R_{NET}</td>
</tr>
<tr>
<td>SEBS</td>
</tr>
<tr>
<td>$\Gamma_s = 0.05$ fraction of $G : R_{\text{NET}}$ for bare soil</td>
</tr>
<tr>
<td>ALEXI</td>
</tr>
<tr>
<td>G/R_{NET}</td>
</tr>
<tr>
<td>G/R_{NET}</td>
</tr>
<tr>
<td>G/R_{NET}</td>
</tr>
<tr>
<td>MOD16</td>
</tr>
<tr>
<td>$G_{\text{day/night}} = 4.73 \times (T_{\text{day/night}} - 273.15) - 20.8$</td>
</tr>
<tr>
<td>for $T_{\text{diff}} < 5^\circ\text{C}$ and $T_{\text{an}} > 25^\circ\text{C}$:</td>
</tr>
<tr>
<td>$G_{\text{day/night}} = 0$</td>
</tr>
<tr>
<td>Then G is capped at</td>
</tr>
<tr>
<td>$G_s = \max (LE + H) = 0.39 \times (LE + H)$</td>
</tr>
<tr>
<td>Thermal diffusion</td>
</tr>
<tr>
<td>$l = \sqrt{\rho c k}$</td>
</tr>
<tr>
<td>l = thermal inertia, c = specific heat</td>
</tr>
<tr>
<td>T = skin temperature, ρ = soil bulk density</td>
</tr>
<tr>
<td>k = thermal conductivity, s = integration variable</td>
</tr>
</tbody>
</table>

* f_C is the fractional cover, LAI is the leaf area index, T_s is the surface temperature, T_{an} is the mean annual temperature, T_{diff} is the daytime and nighttime temperature difference, and $T_{\text{day/night}}$ is the day or night surface air temperature, respectively.
Globally distributed observations of G at FLUXNET eddy covariance towers and global satellite observations of vegetation and LST facilitate the direct comparison of numerous G models across a robust global observation data set to address the limitations of previous work. Determining the best method to quantify G will lead to a high-fidelity G data set to apply to global ET algorithms and reduce the energy budget closure uncertainty at towers that have poor or missing G measurements. We compare several currently used methodologies ($N = 6$) to answer three main questions with this study: (1) What is the best G model structure for both instantaneous and daily ET algorithms? (2) What mechanisms govern G across instantaneous and daily time scales? (3) What is the impact of G uncertainty on ET globally?

2. Methods

Global energy flux and meteorological observations from the FLUXNET eddy covariance site network provide a robust data set to assess current remote sensing G models. In this section, we introduce the FLUXNET synthesized data set, describe the satellite vegetation and temperature data, the radiation data used to perform this analysis, and detail the statistical metrics used to evaluate model performance.

2.1. Data Sets

2.1.1. FLUXNET La Thuile Data Set and Validation Sites

The FLUXNET eddy covariance tower network provides a decadal set of carbon, water, and energy cycle observations across a numerous biomes and climates [Baldocchi et al., 2001]. The La Thuile data set is a subset of this network providing harmonious quality control treatment and gap filling to limit potential biases arising from data-processing techniques. Data are available from the FLUXNET database (http://www.fluxdata.org). Despite being the best available collection of globally distributed observations, many locations lack a full year of observations, experience instrument quality degradation, and locate ground heat flux plates and soil thermocouples to calculate storage at different depths (2–15 cm) to measure G. We subset and filtered the La Thuile data set for sites with data that met our requirements for remote sensing G model evaluation. Selected towers for this study contain at least 90% high-quality G and R_{NET} observations for 330 days for a given year based on the La Thuile table of core variables present for each year (http://www.fluxdata.org). Only original observed data or high-quality, gap-filled data for both G and R_{NET} are used in this analysis. Overall, we used measurements from 88 towers across 11 climates and 10 biomes to evaluate modeled G (Table S1 and Figure S1 in the supporting information). All tower data used in this analysis were open access.

The inherent uncertainty associated with small-scale variability of G due to soil moisture, soil conductivity, vegetation cover, sensor placement, and sensor accuracy contributes to the limited performance against coarser resolution remote sensing footprints in more heterogeneous landscapes. The large sample size ($N = 88$) mitigates potential bias from tower representativeness or sensor placement that may exist with a smaller sample size. Previous energy balance closure assessments have pointed out that limited sampling due to soil moisture, soil conductivity, G measurements. We compare several currently used methodologies to extract good to excellent quality MODIS normalized difference vegetation index (NDVI) and land surface temperature data to evaluate each remote sensing G model (http://daac.ornl.gov/MODIS/).

2.1.2. Moderate Resolution Infrared Spectroradiometer Data

The Moderate Resolution Infrared Spectroradiometer (MODIS) provided continuous high-resolution global coverage of vegetation phenology and land surface temperature. These observations span from 2000 to present at resolutions of 250 m–5600 m. Observations at 250 m and 1 km were used to evaluate G models against FLUXNET point observations of G and R_{NET}. We utilized the Oak Ridge National Laboratory MODIS land product subset tool and apply quality control filters to extract good to excellent quality MODIS normalized difference vegetation index (NDVI) and land surface temperature data to evaluate each remote sensing G model (http://daac.ornl.gov/MODIS/).

2.1.2.1. MODIS Vegetation Data

The MOD13Q1 16-daily 250 m normalized difference vegetation index (NDVI) data set was sampled at each of the FLUXNET. Linear interpolation from 16-daily to daily NDVI was used for daily analysis. This interpolation...
method is commonly used to fill missing data gaps in current LE algorithms [Ershadi et al., 2014]. For global spatial comparisons, the 16-day MOD13C1 0.05° NDVI data set was applied. Fractional cover is calculated assuming a linear relationship with NDVI. This is based on the fraction of photosynthetic active radiation intercepted by total vegetation cover [Fisher et al., 2008]. LAI is calculated from fractional cover as LAI = −\ln\left(\frac{1 - \text{fi}}{0.5}\right) [Ross, 1976; Fisher et al., 2008].

2.1.2.2. MODIS Land Surface Temperature

Land surface temperature (LST) at 1 km from MOD11A1 was sampled at FLUXNET site locations daily, while daily MOD11C1 0.05° LST was used in spatial comparisons. MODIS quality control flags were used to filter each data set to avoid cloud contamination. The LST data encompass both the soil skin temperature and the canopy skin temperature for partially vegetated areas.

2.1.3. Reanalysis Data

The National Center for Environmental Prediction (NCEP) provides global reanalysis data sets including short-wave radiation, long-wave radiation, skin temperature, and ground heat flux. The reanalysis data set uses data assimilation to combine observations and model simulations. We used daily (24 hourly) radiation, skin temperature, and ground heat flux at 2.5° by 2.5° gridded data to complete this analysis. Skin temperature was used to calibrate the thermal inertia parameters by land classification for the heat diffusion approach [Bennett et al., 2008].

2.2. Models

Models from six widely used ET algorithms that also calculate G are compared. Three of these models were developed with the intent to model instantaneous G, while two other models were developed for use at daily time steps, and one model was developed to model G separately for day and night. The G models either apply vegetation properties to reduce R_{NET} to G or use skin temperature to model G (Table 1).

For instantaneous applications, we compare three models that use different vegetation properties (LAI and fractional cover) and R_{NET} to calculate G. The Mapping EvapoTRANspiration using Inverse Calibration (METRIC) algorithm relies on measures of LAI to partition controls of G, where for sparse cover a linear relationship of LST normalized by R_{NET} estimates G. At moderate and high vegetation cover, the fraction of G/R_{NET} decreases exponentially with increasing LAI. The Surface Energy Balance System (SEBS) model uses fractional cover to determine the portion of R_{NET} that contributes to G [Monteith, 1973; Kustas and Daughtry, 1990; Su, 2002]. Similar to SEBS, the Atmospheric Land EXchange Inverse (ALEXI) model assumes G to be a constant fraction of the R_{NET} that reaches the soil surface [Anderson et al., 2007]. All the instantaneous approaches (METRIC, SEBS, and ALEXI) incorporate vegetation phenology through calculating and removing radiation intercepted by the canopy, after which a fraction of the energy which reaches the soil determines G.

Three distinct theoretical approaches are used to compare modeled G at daily resolution. The Global Land-surface Evaporation: the Amsterdam Methodology (GLEAM) quantifies the daily G from set fractions of R_{NET} based on canopy height and canopy cover. Tall canopies reduce the magnitude of G more than short canopies [Kustas and Daughtry, 1990; Miralles et al., 2011]. The MOD16 ET algorithm [Mu et al., 2011] models G at both daytime and night using a linear relationship with surface temperature. Additionally, this method includes temperature constraints to set G equal to 0 for extremely hot climates, extremely cold climates, and in areas with small diurnal temperature changes. Furthermore, a maximum fraction of G/R_{NET} is set for the incoming radiation that reaches the soil surface. Daily G for MOD16 is computed from the average of daytime and night values. Lastly, a thermal diffusion (T-DIFF) approach is applied to quantify G using the amount of heat that is transferred from the atmosphere to the soil. This approach requires parameterization of soil properties that represent the soil thermal inertia [Bennett et al., 2008]. We force the T-DIFF model with nighttime LST from MODIS. Model equations and variables are described in detail in Table 1.

We evaluate all models against each other and use the original model parameterization while changing the temporal resolution of the forcing data to compare instantaneous and daily G separately. At midmorning instantaneous times we evaluate five models (ALEXI, METRIC, SEBS, MOD16, and GLEAM), while at daily time steps we compare all six models. The T-DIFF model structure and forcing data requirement prevent modeling G at the instantaneous time steps.

Journal of Geophysical Research: Biogeosciences

10.1002/2016JG003591
Many of the G models evaluated here were originally calibrated for specific land uses; therefore, model performance should vary across these different plant functional types (PFTs). For example, the METRIC and ALEXI G models were developed for use over cropland cover and grasslands, the G model in MOD16 was originally developed for Arctic tundra, and the GLEAM and T-DIFF G models were developed for global applications. Because sampling across PFTs for FLUXNET towers is limited with respect to high-quality G/R_{NET} observations, we evaluate model performance across the four most sampled PFTs: grassland (GRA; N = 25), cropland (CRO; N = 15), evergreen forest (ENF; N = 23), and deciduous forest (DBF; N = 13). As in the above global comparison, models are evaluated at both the instantaneously and daily temporal resolutions.

2.3. Statistical Evaluation

The above models and data are used to evaluate modeled G. Statistical metrics, including the mean bias (BIAS), root-mean-square error (RMSE), and the Kendall’s tau (KT) coefficient, are used to objectively rank instantaneous and daily G models against in situ observations. Model performance and skill are evaluated using in situ observations from FLUXNET. Measurement errors may degrade model comparison to in situ observations, but these errors do not impact the relative ranking of model performance because all models are subjected to error equally. Intermodel uncertainty is quantified from the standard deviation of modeled G normalized by R_{NET}. This allows for global seasonal model assessments to identify where high model disagreement exists. The spatial comparison calculates the difference in G models normalized by R_{NET} to highlight the times and regions with the largest model disagreement. These steps will help determine the optimal G model to capture instantaneous midmorning G and daily G, the mechanisms that control G at these different time scales, and the potential impact of modeled G uncertainty on ET algorithms.

3. Results

3.1. Model Evaluation Against In Situ Observations

3.1.1. Midmorning Instantaneous Model Evaluation

Many of the G models evaluated here were originally calibrated for specific land uses; therefore, model performance should vary across these different plant functional types (PFTs). For example, the METRIC and ALEXI G models were developed for use over cropland cover and grasslands, the G model in MOD16 was originally developed for Arctic tundra, and the GLEAM and T-DIFF G models were developed for global applications. Because sampling across PFTs for FLUXNET towers is limited with respect to high-quality G/R_{NET} observations, we evaluate model performance across the four most sampled PFTs: grassland (GRA; N = 25), cropland (CRO; N = 15), evergreen forest (ENF; N = 23), and deciduous forest (DBF; N = 13). As in the above global comparison, models are evaluated at both the instantaneously and daily temporal resolutions.

2.3. Statistical Evaluation

The above models and data are used to evaluate modeled G. Statistical metrics, including the mean bias (BIAS), root-mean-square error (RMSE), and the Kendall’s tau (KT) coefficient, are used to objectively rank instantaneous and daily G models against in situ observations. Model performance and skill are evaluated using in situ observations from FLUXNET. Measurement errors may degrade model comparison to in situ observations, but these errors do not impact the relative ranking of model performance because all models are subjected to error equally. Intermodel uncertainty is quantified from the standard deviation of modeled G normalized by R_{NET}. This allows for global seasonal model assessments to identify where high model disagreement exists. The spatial comparison calculates the difference in G models normalized by R_{NET} to highlight the times and regions with the largest model disagreement. These steps will help determine the optimal G model to capture instantaneous midmorning G and daily G, the mechanisms that control G at these different time scales, and the potential impact of modeled G uncertainty on ET algorithms.

3. Results

3.1. Model Evaluation Against In Situ Observations

3.1.1. Midmorning Instantaneous Model Evaluation

The G models in currently applied ET algorithms exhibit a wide range in performance across the FLUXNET sites. Site-wide analysis reveals that the ALEXI, METRIC, SEBS, GLEAM, and MOD16 models more often than not overestimate instantaneous G observations with the slope between modeled G compared measured G greater than 1.0 coinciding with a positive BIAS (Figure 3). Models’ individual performances vary across all sites with average RMSE ranging from the least error from MOD16 (RMSE = 26.93 Wm^{-2}) to the highest error from SEBS (RMSE = 42.08 Wm^{-2}; Table 2). The site-wide average absolute BIAS ranges from a low of 14.96 Wm^{-2} from MOD16 to a maximum BIAS of 31.59 Wm^{-2} from SEBS. The average model KT spans from
Of all the models analyzed at the towers used in this study, MOD16 exhibits the strongest performance with the lowest overall error (RMSE = 26.93 Wm\(^{-2}\) and BIAS = 14.85 Wm\(^{-2}\)), while maintaining similar ability to other models at capturing G variability (KT = 0.41; Table 2).

3.1.2. Daily Model Evaluation

Of the six models, the thermal diffusion model (T-DIFF) best fits the observations with both the lowest average error given the towers and conditions for this analysis (RMSE = 7.34 Wm\(^{-2}\); BIAS = 1.45 Wm\(^{-2}\)) and the second highest explanation of variance (KT = 0.38; Table 3). The T-DIFF model underestimates the magnitude of daily G with a negative bias and a slope between modeled G and measured G less than 1, while the other models all overestimate G with slopes greater than 1 and a positive BIAS (Figure 3). The GLEAM approach only explains slightly more variance (KT = 0.40) than T-DIFF, but GLEAM has average errors across all sites that are twice as large (RMSE = 14.00 Wm\(^{-2}\); BIAS = 10.21 Wm\(^{-2}\)) as T-DIFF. Like GLEAM, MOD16 has twice as much error compared to the T-DIFF model and explains the least G variability (KT = 0.27). The other models originally suited to quantify instantaneous G, ALEXI, GLEAM, METRIC, and SEBS all explain a similar amount of variance to T-DIFF but exhibit larger errors (Table 3). The RMSEs of each model are at least 1.75 times greater than T-DIFF, and the absolute BIASs are at least 5 times greater than T-DIFF.

3.1.3. Model Performance by Land Use

We evaluate G models across the four most sampled land covers, grassland, cropland, evergreen forest, and deciduous forest. Four FLUXNET sites were selected to provide an example of the wide range in modeled G across a year for these distinct land covers (Figure 4). For the instantaneous model statistics averaged over grasslands, METRIC results in the lowest errors (RMSE = 32.20 Wm\(^{-2}\); BIAS = 15.75 Wm\(^{-2}\)), and GLEAM explains slightly more variance (KT = 0.51) than other models. For cropland cover, METRIC again has the lowest errors (RMSE = 30.03 Wm\(^{-2}\); BIAS = 10.82 Wm\(^{-2}\)), while METRIC and GLEAM share the highest explanation of variance (KT = 0.52). For evergreen needleleaf forests MOD16 results in the lowest error (RMSE = 15.90 Wm\(^{-2}\); BIAS = 8.10 Wm\(^{-2}\)) and is again followed by GLEAM (RMSE 16.13 Wm\(^{-2}\); BIAS 10.49 Wm\(^{-2}\)). METRIC explains the most variance (KT = 0.45) for evergreen needleleaf forests. In deciduous broadleaf forests, MOD16 has the lowest error (RMSE = 14.75 Wm\(^{-2}\); BIAS = 8.79 Wm\(^{-2}\)) followed by GLEAM (RMSE = 15.41 Wm\(^{-2}\); BIAS = 11.30 Wm\(^{-2}\)), while GLEAM explains the most variance (KT = 0.36). Figure 5 shows the range in model performance for each of these statistics across all sites for each PFT. The MOD16 and GLEAM models exhibit more consistent performance over deciduous broadleaf forest and evergreen needleleaf forest with tighter error statistic box plots compared to other PFTs. Explanation of variance is generally higher for grassland and cropland cover compared to forests. Model errors, specifically, MOD16

Table 2. Instantaneous Model Performance Across All FLUXNET Sites

<table>
<thead>
<tr>
<th>Model</th>
<th>RMSE</th>
<th>BIAS</th>
<th>KT</th>
<th>Slope</th>
<th>Int</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEXI</td>
<td>35.20</td>
<td>23.54</td>
<td>0.36</td>
<td>0.37</td>
<td>22.27</td>
<td>0.12</td>
</tr>
<tr>
<td>GLEAM</td>
<td>35.14</td>
<td>24.86</td>
<td>0.45</td>
<td>0.48</td>
<td>15.50</td>
<td>0.21</td>
</tr>
<tr>
<td>METRIC</td>
<td>32.40</td>
<td>21.31</td>
<td>0.43</td>
<td>0.40</td>
<td>22.49</td>
<td>0.11</td>
</tr>
<tr>
<td>MOD16</td>
<td>26.93</td>
<td>14.85</td>
<td>0.41</td>
<td>0.27</td>
<td>9.62</td>
<td>0.10</td>
</tr>
<tr>
<td>SEBS</td>
<td>42.08</td>
<td>31.59</td>
<td>0.40</td>
<td>0.42</td>
<td>26.12</td>
<td>0.10</td>
</tr>
</tbody>
</table>

\(\text{RMSE}\) is the root-mean-square error, \(\text{BIAS}\) is the mean absolute difference between model mean and observed mean, and \(\text{KT}\) is the mean Kendall’s tau statistic across all sites. Slope and intercept (Int) are the coefficients of the model G versus observed G. \(R^2\) is the coefficient of determination for the linear relationship described by Slope and Int.

Table 3. Daily Model Performance Across All FLUXNET Sites

<table>
<thead>
<tr>
<th>Model</th>
<th>RMSE</th>
<th>BIAS</th>
<th>KT</th>
<th>Slope</th>
<th>Int</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEXI</td>
<td>12.63</td>
<td>9.02</td>
<td>0.36</td>
<td>0.32</td>
<td>8.86</td>
<td>0.12</td>
</tr>
<tr>
<td>GLEAM</td>
<td>14.00</td>
<td>10.21</td>
<td>0.40</td>
<td>0.23</td>
<td>5.02</td>
<td>0.08</td>
</tr>
<tr>
<td>METRIC</td>
<td>12.91</td>
<td>8.07</td>
<td>0.37</td>
<td>0.39</td>
<td>7.07</td>
<td>0.10</td>
</tr>
<tr>
<td>MOD16</td>
<td>10.75</td>
<td>6.39</td>
<td>0.26</td>
<td>0.22</td>
<td>4.78</td>
<td>0.06</td>
</tr>
<tr>
<td>SEBS</td>
<td>14.98</td>
<td>11.51</td>
<td>0.37</td>
<td>0.07</td>
<td>9.90</td>
<td>0.01</td>
</tr>
<tr>
<td>T-DIFF</td>
<td>7.34</td>
<td>1.45</td>
<td>0.38</td>
<td>0.16</td>
<td>0.61</td>
<td>0.17</td>
</tr>
</tbody>
</table>

\(\text{Statistics are the same as indicated in Table 2.}\)
Figure 4. Instantaneous model performance compared across four different land covers at individual representative sites ((top left) grassland U.S.-Var, (top right) cropland U.S.-Ne1, (bottom left) evergreen forest U.S.-Blo, and (bottom right) deciduous forest UK-Ham). Data are plotted for one calendar year; the numbers along the bottom axis indicate each month in the year. The METRIC model most closely matches measured G for grassland and cropland cover, while GLEAM and MOD16 more closely match measured G over forested land cover. Model spread is high for each site demonstrating need for appropriate model choice for certain PFTs and potential for model improvement through global calibration.

Figure 5. Instantaneous model performance across four most sampled PFTs in the observation data set. The METRIC G model is strongest for cropland and grassland cover. The MOD16 and GLEAM models show the strongest performance for both deciduous broadleaf forest and evergreen needleleaf forest.
and ALEXI BIAS and RMSE have the widest ranges over grassland, while ALEXI and SEBS BIAS and RMSE have the widest range for evergreen needleleaf forests.

The daily G models show more varied performance among the different PFTs (Figures 6 and 7). The T-DIFF model consistently results in the lowest RMSE and BIAS and exhibits comparable explanation of variance.

Figure 6. Daily model performance compared across four different land covers at same representative sites as seen in Figure 4. The T-DIFF model most closely models G throughout the year across all sites when the thermal inertia parameter is scaled.

Figure 7. Daily G model performance across the four most sampled PFTs in the observation data set. The T-DIFF model has the lowest BIAS and RMSE across all sites along with the lowest spread in model performance, along with an explanation of variance at similar levels and reduced range compared to all other models.
to GLEAM, MOD16, ALEXI, METRIC, and SEBS for the four land covers (Figure 7). The T-DIFF model has more varied performance for cropland and grassland compared to other land uses due to underestimation of thermal inertia (Figures 6 and 7). We also compare a scaled version of the T-DIFF model at each of the four locations to show that the parameterized coarse resolution thermal inertia inhibits the T-DIFF model’s ability to capture high and low G values. The scaled version demonstrates the strength of the model’s structure by improvement in model performance with local calibration of thermal inertia.

The GLEAM and SEBS models show similar explanation of variance with the highest average Kendall’s tau at three of the four PFTs (GRA, CRO, and ENF; Figure 7). Despite high explanation of variance across these particular PFTs, the GLEAM and SEBS G models have errors more than twice as large as the T-DIFF over GRA and CRO due to overestimation of daily G (Figures 6 and 7). For GLEAM, model error improves in deciduous forest and evergreen forest (Figures 6 and 7). The MOD16 model shows the widest range in model error across both grassland and cropland covers, with the highest error for one site out of all the models, most likely from setting G = 0 at a location where this is not appropriate as seen in the annual plot of grassland in Figure 6. For evergreen forest and deciduous forest, the MOD16 model shows reduced error and interquartile range in errors but exhibits a wide range in explanation of variance. The differences in model formulation yield a wide range of results for G estimation across these different biomes and climates.

3.2. Spatial and Seasonal Model Intercomparison

We model G from 2001 to 2006 at 5 km globally using MODIS NDVI, LST, and NCEP net radiation. The 2001–2006 model average midmorning G is not negligible in all areas globally (Figure 8). Areas with dense vegetation such as

Figure 8. Seasonal and annual multimodel mean instantaneous G averaged from 2001 to 2006.
the Amazon and boreal forested regions exhibit low G, but in areas with little vegetation G is greater than 150 Wm$^{-2}$. Global G is lowest during the boreal winter and is at maximum during the boreal fall. High latitudes during winter months have the lowest G. Less vegetated regions, such as the southwestern United States, the Saharan desert, the Arabian Peninsula, central Australia, and southern Africa, show the highest average modeled G during warmer months. Modeled G differs more at low vegetation cover compared to high vegetation cover (Figure 2). A spatio-temporal comparison highlights these seasonally driven model differences globally. We evaluate the G model uncertainty from 2001 to 2006 by normalizing the multimodel standard deviation of G by the mean R_{NET} for each season (Figure 9). During December, January, and February the largest regions of model disagreement are boreal Canada, Siberia, the southwest United States, and high-mountain Asia. Over the boreal spring and summer (March, April, and May and June, July, and August) models generally agree globally. For the months of September, October, and November, similar to the winter months high-latitude areas in the northern hemisphere experience more disagreement. The regions of disagreement are predominantly areas where bare soil, dormant vegetation, low radiation, and low temperature drive model divergence. The model formulations (Table 1) which quantify G/R_{NET} from empirical relationships to vegetation cover or temperature disagree most under periods of low vegetation cover and low R_{NET} (Figure 2). For areas with peak seasonal greenness the models converge to estimate similar magnitudes of G/R_{NET}.

4. Discussion

4.1. Strengths and Weaknesses of Models for Instantaneous and Daily G Calculations

Despite potential scaling issues in relating remote sensing footprints to in situ

Figure 9. Average seasonal G model uncertainty from 2001 to 2006. The red areas indicate the greater model disagreement.
data, we find that most models provide reasonable estimates of G across a variety of land uses and climates. For instantaneous estimation of G, we identify the linear relationship to LST used in MOD16 to provide the lowest error across all the sites (minimum average BIAS and RMSE). However, the current model formulation results in unrealistic G for regions with very hot (T_{an} > 25°C) or cold (T_{an} < -5°C) temperatures or low diurnal temperature swings (T_{dif} < 5°C) and can result in misclassification for some locations (Figure 6). This approach assumes that vegetation cover does not impact G for these regions, which is contradictory to much preliminary work developing G models [Choudhury et al., 1987; Kustas and Daughtry, 1990; Kustas et al., 1993]. Therefore, the METRIC formulation presents an attractive alternative where G is modeled using vegetation cover for areas of moderate to high vegetation (LAI > 0.5), a common characteristic of models that capture more day-to-day instantaneous G variance, while still using a linear relationship to temperature for barren and sparsely covered areas (LAI < 0.5). The METRIC G model exhibits lower errors over grasslands and croplands compared to other land covers, which was the environment under which the original empirical relationship was calibrated [Allen et al., 2007]. Initial exploration into recalibration for the different PFTs indicated parameters for this formulation convergence for tall (mixed forest, DBF, evergreen broadleaf forest, and ENF) and short canopy (GRA and CRO) covers, respectively. This suggests that canopy structure not just leaf cover density influences G at these time scales [Reginato et al., 1985; Clothier et al., 1986; Miralles et al., 2011]. For midmorning instantaneous G calculations, the METRIC formulation shows the most potential from parameter recalibration for a more robust representation by incorporating canopy height. For G needed at daily or longer time scales the T-DIFF model bests all other models. The T-DIFF model exhibits low errors while explaining a similar level of variance to models forced by R_{NET}. We find the optimal thermal inertia parameters to minimize error are greater than reported values for daily time steps (Figure 6) [Bennett et al., 2008]. Despite the difference, the integrated time difference in nighttime LST is the best method to model G at these time scales. Further work on parameterization of the soil thermal properties and the incorporation of changing properties such as surface soil moisture creates the opportunity to enhance model performance globally [Idso et al., 1975; Santenello and Friedl, 2002].

4.2. Mechanisms That Control G Across Instantaneous and Aggregated Time Scales

The instantaneous and daily G models each share a common set of variables: R_{NET}, vegetation properties (NDVI, LAI, and f_c), and LST (Table 1). These variables are used to model the environmental processes that control G. Vegetation impacts the magnitude of G in multiple ways. Dense vegetation reduces G through shading the ground from incoming radiation and by buffering temperature gradients in areas with high rates of ET. We analyze the results from the instantaneous and daily model evaluations to determine if these processes are appropriately represented.

For instantaneous models the highest explanation of day-to-day variability is achieved by GLEAM, a model forced with R_{NET} (Table 2). The models forced by only LST miss higher-frequency variability in G that is captured by models forced with R_{NET}; this is in contrast to previously published correlation coefficients for a model forced only by LST data (R^2 = 0.90) [Jacobsen and Hansen, 1999]. Models that use vegetation properties to scale R_{NET} to G (ALEXI and SEBS) result in more error compared to models that use both vegetation properties and LST to estimate G (METRIC and MOD16). Comparing the explanation of variance between the GLEAM scalar approach and the models that only use vegetation phenology (ALEXI and SEBS) would imply that vegetation changes might not even play a major role in the calculation of instantaneous G (Table 2 and Figure 5). This suggests that the phenological changes in vegetation are less indicative of seasonal changes in G compared to seasonal fluctuations in R_{NET} and LST or that LST implicitly incorporates phenological changes from the impact of vegetation on LST. This finding is contrary to early work built on the foundation that G/R_{NET} is proportional to vegetation density [Choudhury et al., 1987; Kustas et al., 1993]. However, for specific locations, such as the cropland cover where large changes of vegetation occur with cultivation practices, this is not the case (Figure 4). Here the GLEAM model deviates from the observation and the other G models between May and June due to a change in vegetative cover unaccounted for by annually invariant canopy height forcing data sets (Figure S11). Not every model applies vegetation properties to scale R_{NET}; instead, models rely on LST data to reflect changes in canopy conditions appropriate for modeling G.

For daily or longer times, temperature is the most important variable for accurately modeling G. As evidenced above the T-DIFF model outperforms all other models, suggesting that the integrated time differential in
nighttime LST is a sound method to model G at daily time steps. Additionally, the T-DIFF structure implicitly accounts for energy storage and conserves energy by summing both increases and decreases in the time derivative of LST to calculate G. For these time scales, models that reduce R\(_{\text{NET}}\) to G using vegetation attributes (NDVI, LAI, or canopy height) have errors close to twice as large as T-DIFF and do not explain considerably more variability in daily G (Table 3 and Figure 7). The poor performance by these models might be traced to model formulations that neglected energy storage. Energy storage is important for aggregated times but not necessary for snapshots of energy partitioning. At daily or longer frequencies temperature fluctuations explain just as much variability in G as R\(_{\text{NET}}\) does. The GLEAM G model, which directly scales R\(_{\text{NET}}\) to G, only explains slightly more daily G variability than T-DIFF (Table 3). The T-DIFF model error suggests that other factors, such as soil properties, may help explain the magnitude of G, but parameterizing these uncertainties using PFT specific calibrations is an appropriate way to handle the uncertainty surrounding spatially explicit specific soil properties. However, since a relatively low amount of daily G variability is explained by this model (KT = 0.36), the assumption that the thermal inertia calibrated for this model evaluation remains constant across a year warrants further exploration. Future work to calibrate soil thermal inertia with soil moisture occurrences of minimum ET occur across the seasons and areas where model differences in R\(_{\text{NET}}\) were evaluated globally from 2001 to 2006. We identify which G models from highly regarded ET algorithms were compared. Previous studies have not evaluated G models against a global set of in situ observations or investigated seasonal model divergence globally. We use in situ G observations from the FLUXNET La Thuile synthesis data set in combination with MODIS vegetation and LST data to evaluate model performance across 88 sites globally. Global G flux estimates produced using MODIS NDVI and LST data along with NCEP R\(_{\text{NET}}\) were evaluated globally from 2001 to 2006. We identify which G
models perform best globally, which models perform best across different plant functional types, and the areas with the largest seasonal disagreement among G models.

The results from this study uncover potential for improvement in energy balance closure at the site level through leveraging remote sensing data, provide guidance on how best to model G at different time scales for different land covers, and identify regional and seasonal model biases with implications for global ET and H estimates. Poor model performance at some locations (KT < 0) reveals potential issues of comparing models to in situ G observations. These potential issues include the scaling of situ observations to remote sensing footprints or the observation technique used to measure G, the depth of heat flux plate, and how soil heat storage above the sensor is modeled using soil thermocouples. For regional studies, utilizing finer spatial resolution remote sensing products would help minimize scaling issues in heterogeneous areas such as croplands and harvested forests. Much work is still needed to enhance understanding on how limited point measurements impact scaling this flux to much larger areas. Additional high-fidelity observations at high latitudes, where model disagreement is greatest (Figure 9), would provide opportunity to scrutinize and improve G models under low-energy conditions.

The G models that only rely on vegetation may introduce seasonal biases in areas with large phenology swings, and areas with small vegetation changes may mask a seasonal cycle directly observed by LST. The G models that only use LST may overestimate G in areas with tall canopies and/or dense vegetation cover. Future work should incorporate physical principals and the environmental processes that control G and optimize the best structural formulations to many land uses and canopy heights. Preliminary results for these efforts suggest that calibration by PFT delivers optimal performance for both instantaneous and daily estimates. Despite often being the smallest term in the surface energy budget, this study reveals that G is not negligible and warrants appropriate representation in ET algorithms.

References

