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Abstract The terrestrial carbon and water cycles are coupled through a multitude of connected processes
among soil, roots, leaves, and the atmosphere. The strength and sensitivity of these couplings are not yet well
known at the global scale, which contributes to uncertainty in predicting the terrestrial water and carbon
budgets. We now have synchronous, global-scale satellite observations of critical terrestrial carbon and water
cycle components: solar-induced chlorophyll fluorescence (SIF) and soil moisture. We used these
observations within the framework of a global terrestrial biosphere model (Simplified Simple Biosphere
Model version 2.0, SSiB2) to investigate carbon-water coupling processes. We updated SSiB2 to include a
mechanistic representation of SIF and tested the sensitivity of model parameters to improve the simulation of
both SIF and soil moisture with the ultimate objective of improving the first-order terrestrial carbon
component, gross primary production. Although several vegetation parameters, such as leaf area index and
the green leaf fraction, improved the simulated SIF, and several soil parameters, such as hydraulic
conductivity, improved simulated soil moisture, their effects were mainly limited to their respective cycles.
One root-mean-square error parameter emerged as the key coupler between the carbon and water cycles:
the wilting point. Updates to the wilting point significantly improved the simulations for SIF and gross
primary production although substantial mismatches with the satellite data still existed. This study
demonstrates the value of synchronous global measurements of the terrestrial carbon and water cycles in
improving the understanding of coupled carbon-water cycles.

1. Introduction

Plant photosynthesis is an important process in the land surfacemodel. There is substantial uncertainty in the
simulation of the carbon cycle (Bonan et al., 2011; Friedlingstein et al., 2006; Wang et al., 2011) despite
considerable progress in developments of observational data sets and models. This problem is rooted in
the proper measurements of photosynthesis across scales (Fisher et al., 2014). Droughts potentially reduce
the ability of the terrestrial biosphere to mitigate rising atmospheric CO2 levels through primary production.
For example, traditional greenness-based vegetation indices have been used for the estimation of the photo-
synthesis products. This approach for estimating potential photosynthesis from greenness indices provides a
good understanding of the global biosphere (Running et al., 2004; Turner et al., 2003). However, these tradi-
tional greenness indices provide estimates of potential photosynthesis and cannot describe actual processes
of photosynthesis and downregulation when plants experience environmental stresses (Meroni et al., 2008).
Thus, a new approach to the direct estimation of photosynthesis through space-based proxies is desired for
monitoring and modeling of carbon cycling.

Recent advancement in the remote sensing of solar-induced chlorophyll fluorescence (SIF) provides a novel
way to directly estimate actual photosynthesis from space (Frankenberg, Butz, et al., 2011; Frankenberg,
O’Dell, et al., 2011; Guanter et al., 2007; Joiner et al., 2011). Approximately 1–2% of the solar energy
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absorbed by chlorophyll is re-emitted as fluorescence. This fluorescence is essentially a “glow” of plants at
wavelengths between 650 and about 800 nm. The fluorescence has two peak emissions at 685 and
740 nm, which are specific for plants (Lichtenthaler & Rinderle, 1988). The absorbed photosynthetically active
radiation by a leaf can be used to drive photochemical reactions to reduce atmospheric CO2, be re-emitted as
fluorescence at longer wavelengths, or be lost through regulated nonphotochemical quenching processes
(Baker, 2008). When plants experience environmental stresses and nonphotochemical quenching increases,
both photosynthesis and fluorescence generally decrease.

Global retrieval of chlorophyll fluorescence has opened up a new approach to establishing a direct link
between remotely sensed SIF and terrestrial photosynthetic processes. For example, previous studies
(Frankenberg, O’Dell, et al., 2011; Guanter et al., 2014) have shown that SIF products from the Japan
Aerospace Exploration Agency Greenhouse gases Observing SATellite (GOSAT) and the Global Ozone
Monitoring Experiment-2 (GOME-2) satellite are linearly correlated with terrestrial photosynthesis or gross
primary production (GPP). Using the near-surface measurement of canopy-scale SIF data at 760 nm in tem-
perate deciduous forests, Yang et al. (2015) found that SIF correlated with GPP at diurnal and seasonal scales.
The study conducted by Guanter et al. (2014) showed that satellite SIF measurements are more sensitive to
the high photosynthetic rates of cropland than are other remotely sensed vegetation parameters, and SIF
does not have the same linearity with GPP for different ecosystems, which makes the proper mechanistic
representation of SIF to GPP highly important and necessary. Furthermore, Lee et al. (2013) showed that
GOSAT SIF products have clear water stress signals over tropical rain forests. The normalized difference vege-
tation index or other similar indices, however, does not capture the signals well. Moreover, using the Orbiting
Carbon Observatory-2 (OCO-2) satellite data, Sun et al. (2017) found that the SIF-GPP relationships at eddy
covariance flux sites in the vicinity of OCO-2 orbital tracks were more consistent across biomes than
previously suggested.

Water and carbon cycles are closely coupled by plant biochemical processes through photosynthesis
(Scholze et al., 2016). The physiological effects of droughts lead to a decrease in the light use efficiency for
photosynthesis on the leaf scale. It has been shown that drought also causes a decrease in fluorescence yield
(Flexas et al., 2002). Sun et al. (2015) used GOME-2 satellite data to explore the potential of SIF for monitoring
drought dynamics, and the results showed that negative SIF anomalies in the spatial patterns are very similar
to the drought intensity maps from the U.S. Drought Monitor for droughts of 2011 in Texas and 2012 over the
central Great Plains. After examining satellite-based measurements of SIF over the region impacted by the
Russian drought and heat wave of 2010, Yoshida et al. (2015) found that SIF measurements were sensitive
to the fraction of absorbed photosynthetically active radiation.

Droughts and associated heat waves have a direct impact on plant photosynthesis through the physiological
response to water deficit and high temperature, including reductions in enzyme activity and stomatal con-
ductance to prevent water loss. The plant photosynthesis responses to drought differ among vegetation
types because stomatal conductance differs among ecosystems (Blackman et al., 2009). Moreover, canopy
light use efficiency, which is often used to estimate GPP in remote sensing, is closely related to soil moisture
and certain other environmental factors in satellite measurements (Madani et al., 2014). Scholze et al. (2016)
found that the assimilation of satellite soil moisture data could improve the estimation of atmospheric CO2 in
the Carbon Cycle Data Assimilation System.

This paper integrates soil moisture data from the Soil Moisture and Ocean Salinity (SMOS) mission conducted
by the European Space Agency (Kerr et al., 2010) and fluorescence measurements from GOSAT (Frankenberg,
Butz, et al., 2011; Frankenberg, O’Dell, et al., 2011) to evaluate the global impacts of these products on
estimations of carbon budgets and to investigate broad-scale relationships between soil moisture and SIF.
We coupled a chlorophyll fluorescence model (Lee et al., 2015; van der Tol et al., 2014) into a well-established
global terrestrial biosphere model (Simplified Simple Biosphere Model version 2.0, SSiB2) (Qiu et al., 2016; Xue
et al., 1991; Xue, Fennessy, et al., 1996; Zhan et al., 2003). The SIF data were used to evaluate the simulation of
photosynthesis as a diagnostic tool. To understand process-level mechanistic processes, we integrated two
satellite measurements into SSiB2 to improve the model parameterization as well as to evaluate the
model-simulated relationships between soil moisture and fluorescence. Use of satellite-derived soil moisture
and SIF measurements creates the opportunity for terrestrial ecosystem science that bridges water and
carbon cycles.
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The goals of this study were to advance the understanding of how SIF responds to soil moisture dynamics in
the land surface model and to provide new insights into the relationship between carbon and water cycles.
To achieve these goals, we updated SSiB2 to include a mechanistic representation of SIF. The SMOS soil
moisture products were used to improve the soil moisture parameters, and finally, the SIF response to
changing soil moisture was examined.

2. Materials and Methods
2.1. Ground and Satellite-Based SIF Measurements

The SIF field measurements were conducted at Harvard Forest (42.538°N, 72.171°W), which is a mixed tempe-
rate forest. This site is located in central Massachusetts, USA. The SIF measurements were collected from July
to August in 2013. A novel system (FluoSpec) was developed to measure SIF at 760 nm in the field 5 m above
the top of the forest canopy. A hyper spectrometer with a spectral resolution of ~0.13 nm between 680 and
775 nm (HR2000+, Ocean Optics, Inc.) was used. Based on the incident photosynthetically active radiation
above the canopy (PARabove), canopy-reflected PAR (PARreflect), and the average of understory PAR
(PARunder), which were all measured, the absorbed photosynthetically active radiation is calculated as follows:

APAR ¼ PARabove–PARreflect–PARunder (1)

And the SIF yield is given by

SIFyield ¼ SIF=APAR (2)

Details of the system andmeasurements were reported in Yang et al. (2015). Meteorological data, which were
used as the SSiB2 forcing data, were available from the flux site measurements.

Global SIF data from GOSAT were used in this study. This satellite was launched on 23 January 2009. The
satellite-based SIF data were derived based on high-resolution spectra covering Fraunhofer lines (narrow
absorption features in the solar spectrum) in the 755–772 nm range. Details of the retrieval method and data
descriptions can be found in Frankenberg, Butz, et al. (2011); Frankenberg, O’Dell, et al. (2011). We used global
monthly 2° × 2° data to minimize the noise inherent in the original retrieval. The standard errors for GOSAT
are 5–10% of the peak fluorescence, and the global average of the errors is smaller (Frankenberg, O’Dell,
et al., 2011).

The monthly gridded SIF data products from the GOME-2 MetOp-A satellite were also used in this study. The
data were archived onto a 0.5° grid. The GOME-2 MetOp-A satellite measured the spectrum for top-
of-atmosphere radiance between 240 and 790 nm, and the data with wavelengths between 734 and
758 nm were used to estimate SIF. The level 3 GOME-2 SIF product was prescreened for clouds (≥30% cloud
coverage were excluded). The footprint of the retrieval was approximately 40 km × 80 km before July 2013
and 40 km × 40 km since then. Since GOME-2 SIF was extracted for 740 nm, following Joiner et al. (2013)
and Yang et al. (2015), GOME-2 SIF was multiplied with 0.582 to approximate SIF at 760 nm. The details of
the retrieval method and data descriptions can be found in Joiner et al. (2013).

2.2. SSiB2 Model

The SSiB2 (Xue et al., 1991; Zhan et al., 2003) was used in this study. This model is a comprehensive land
surface scheme that simulates the complex and heterogeneous interactions between land surface processes,
hydrology, and the biosphere, including advanced treatments of the terrestrial CO2 fluxes. An analytical solu-
tion from the model of Collatz et al. (1991) and Collatz et al. (1992) was developed and incorporated into
SSiB2 (Zhan et al., 2003), which enhanced the model’s ability to simulate land surface CO2 fluxes.
Moreover, since a big leaf type of model tends to produce a higher photosynthesis rate and greater evapo-
transpiration (Hari & Makela, 2003), a new scaling methodology for the canopy scale, which includes leaf-
shading effects and takes diffuse radiation into account, has been developed in SSiB2, which is crucial to
assessing the diffuse radiation “fertilization” effect.

2.3. Coupling the SIF Module With SSiB2

An existing fluorescence module, which was incorporated into the Community Land Model version 4
(CLM4, Lee et al., 2015), was incorporated into SSiB2. Some basic information for this fluorescence module
is described in the supporting information (Test S1). The coupling of this module with SSiB2 enables the
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mechanistic representation of chlorophyll fluorescence, electron trans-
port, and carboxylation, with light and moisture stress linked to photo-
synthetic activity and GPP. The parameterizations used for calculating
photosynthesis in CLM4 are similar to those in SSiB2, thereby facilitating
this coupling. The specific technical approach necessary to complete the
coupling requires the tracking of the actual rate of electron transport
from the SSiB2 photosynthesis parameterization to the potential rate
of electron transport to the fluorescence module.

SSiB2 has been validated and evaluated using many observational data
sets from different sites and vegetation types (Boone et al., 2009;
Lokupitiya et al., 2016; Richardson et al., 2012; Rutter et al., 2009) and has
been used in global and regional climate studies (Li et al., 2016; Xue
et al., 2014). In this study, the performance of SIF simulations using SSiB2
was evaluated based on ground measurements. Hourly meteorological
measurements collected at Harvard Forest were used as the forcing data
for the SSiB2 model. The simulations covered the period from January to
August in 2013. The first 6 months used as the spin-up time, and the results
of the last two months were analyzed in this paper. Daily SIF was calcu-
lated as the mean value of field measurements collected between 6:00 a.
m. and 6:00 p.m. We compared the daily mean SIF and SIF yield with field
measurements from the Harvard Forest flux tower (Figure 1). The bias and
root-mean-square error (RMSE) of SIF were 0.08 and 0.13 W/m2/μm/sr, and
SSiB2 captured the daily mean SIF reasonably well, indicating the capability

of simulating SIF using this model. Figure 1b shows that the SIF yield simulated in SSiB2 was also close to the
data with field measurements; the bias and RMSE were 0.00004 and 0.00012 W/μm/sr/μmol/s, respectively.

A spectrometer measured fluorescence as the power per solid angle, unit area, and wavelength range
(W/m2/μm/sr). Because SSiB2, similar to other land models, has only visible and near-infrared bands, to match
the window of inversion of GOSAT SIF, themodel values of fluorescence at the 757 nmwavelengths need to be
estimated. We calculated the conversion factor from the Soil-Canopy Observations for Photosynthesis and
Energy balance (SCOPE) model (Lee et al., 2015; van der Tol et al., 2009, 2014) to compare SSiB2 SIF with the
measurements of GOSAT.

2.4. SMOS Soil Moisture Integration Into SSiB2

The SMOS mission, which was launched on 2 November 2009, is the European Space Agency’s second Earth
Explorer Opportunity mission. The primary goals of the SMOS mission were to globally and frequently mea-
sure the land surface soil moisture and sea surface salinity over the oceans (Kerr et al., 2001). Due to the pro-
gress in image reconstruction techniques, the operational retrieval algorithm was also improved and is able
to discern surface soil moisture fields that fulfill the requirements over land (Kerr et al., 2016). The SMOS soil
moisture data provide the best long-term record of global soil moisture currently available. The volumetric
soil water content is used in this paper to describe the soil moisture. In general, the soil moisture spatial errors
are low for SMOS, with a global average value of 0.023 m3/m3 (Kerr et al., 2016). The SMOS data were used to
validate and evaluate the model soil moisture simulations.

The SMOS mission (Kerr et al., 2001, 2010) was the first mission designed for and dedicated to soil moisture
and ocean salinity retrieval. The volumetric soil water content over land (0–5 cm) is measured globally and
frequently. In SSiB2, the volumetric soil water content is calculated for three layers (the surface, the rooting
zone, and the drainage zone). The soil moisture in the surface layer is calculated as follows:

∂θ1
∂t

¼ 1
D1

P þ Q12 � Egs � b1Edc
� �

(3)

where θ1 is the volumetric soil water content, D1 is the soil thickness of the surface layer, Q12 is the soil moist-
ure change between the first and second layers, Egs is evaporation from the soil surface, Edc is transpiration
from the surface layer, and b1 is the root fraction in the first layer.

Figure 1. Daily mean solar-induced chlorophyll fluorescence (SIF) and SIF
yield over the flux tower site at Harvard Forest, USA (42.538°N, 72.171°W).
Blue line represents measured values over the flux tower, and red line
represents the Simplified Simple Biosphere Model version 2.0 (SSiB2) result.
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In this paper, we used the SMOS data to validate and evaluate the SSiB2 surface soil moisture simulations.
Although satellite-based soil moisture only reflects water in the top few centimeters of the soil, there is gen-
erally a strong relationship between soil moisture in the near-surface and soil moisture at greater depths.
Ford et al. (2014) used in situ data from the U.S. Great Plains to evaluate the root zone soil moisture, which
was derived from near-surface observations from SMOS. The results demonstrated that the near-surface soil
moisture was closely related to the root zone soil moisture. In SSiB2, the surface layer is 2 cm for all soil types,
but the soil thicknesses of the middle layers differ. Linear interpolation was used to derive the volumetric
water content at 5 cm, which was compared with the SMOS data from the first and second layers. The differ-
ences were less than 0.005 m3/m3 for all plant functional types (PFTs) compared to the results of the first soil
layer only.

2.5. Experimental Design

In this study, the offline two-dimensional SSiB2 simulations are driven with atmospheric forcing from the
Princeton University Hydroclimatology Group Bias Corrected Meteorological Forcing Dataset (Sheffield
et al., 2006). The time step of SSiB2 integration is 3 h, and the model is run at 1.0° × 1.0° spatial resolution.
The experiments in this paper cover the period from 2008 to 2012. The first year is taken as a spin-up time,
and the results of the last 4 years are analyzed.

Figure 2 shows the overview flowchart of SSiB2 and the satellite data. The blue boxes are the SSiB2 and SIF
model components, and the green boxes are the satellite or reanalysis products. These products were used as
benchmarks to adjust the parameters and to evaluate the model simulation against the GOSAT and SMOS
products or were used as model input for simulation, such as the National Aeronautics and Space
Administration Global Modeling and Assimilation Office’s Goddard Earth Observing System Data
Assimilation System version 5 Modern-Era Retrospective Analysis for Research and Applications (MERRA) data
set (Rienecker et al., 2011). The red boxes show parameters modified in the experiment. In section 4, this flow-
chart will be discussed comprehensively. Table 1 lists the experimental design of this study.

In SSiB2, the leaf area index (LAI) and green leaf fraction of each PFT were derived based on ground survey
and limited satellite information (Dorman & Sellers, 1989; Xue, Zeng, et al., 1996), which contain substantial
uncertainties. In the control run (referred to as CTL hereafter), these original data sets were used for the

Figure 2. Overview flowchart of the Simplified Simple Biosphere Model version 2.0 (SSiB2) land surface model and the modified parameters in the model. The blue
boxes are the SSiB2 flowchart; the green boxes are the satellite/reanalysis data; and the red boxes are the modified parameters in the model. GPP = gross primary
production; MERRA = Modern-Era Retrospective Analysis for Research and Applications; LAI = leaf area index; GOSAT = Greenhouse gases Observing SATellite;
GOME-2 = Global Ozone Monitoring Experiment-2; SMOS = Soil Moisture and Ocean Salinity.
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model simulation as a benchmark run. As both the LAI and green leaf
fraction are important parameters in the land surface model, espe-
cially for the calculation of photosynthesis, and have a substantial
effect on the model simulation of the hydrological cycle (Kang et al.,
2007), in the Test Veg run (referred to as Test Veg hereafter), the
monthly mean MERRA LAI and green leaf fraction were applied to
assess their impact on carbon simulation. As their impacts were large,
in the two subsequent sensitivity tests (Test Veg+soil run and Test Veg
+soil+WILT run), we also used the MERRA LAI and green leaf fraction
to obtain a more realistic estimation of the terrestrial surface carbon
flux and its sensitivity to model parameters.

The vegetation-soil layer affects the radiative transfer at the surface and the partitioning of surface energy
into sensible and latent heat fluxes. Studies have shown that soil properties can have a substantial impact
on model simulations of surface hydrology. However, values for a number of the parameters are scarce for
different types of vegetation in the world (Kahan et al., 2006; Xue, Zeng, et al., 1996). Roughly estimated
parameter values cause uncertainty in land surface model simulations. To identify parameters that affect
both carbon cycles and soil moisture, GOSAT and SMOS satellite data were introduced as constraints to
adjust the land model parameters to ensure more realistic simulations of surface water and carbon cycles
in this paper. The satellite data provide a new approach to obtain a better global view of carbon flux and
soil moisture.

Since SSiB2 includes numerous vegetation and soil parameters, we first conducted preliminary sensitivity
experiments and statistical analyses to identify the most important parameters for the soil moisture simula-
tion. A global sensitivity analysis algorithm known as the extended Fourier Amplitude Sensitivity Test
(EFAST) was applied to identify the key parameters for soil moisture simulation using the SSiB2 land surface
model. EFAST is a global and quantitative sensitivity analysis algorithm that can be used for land surface
models that are complex, nonlinear, and nonmonotonic (Saltelli et al., 1999, 2010). The sensitivity index of
each parameter can be derived from the analysis of the impacts of the input factors on the output variance.
Therefore, EFAST is highly efficient and accurate and takes into account the interactions among parameters.
Some basic information pertaining to the EFAST algorithm is described in the supporting information
(Test S2).

The objective is to generate a matrix of results corresponding to different input variable settings based on
the SSiB2 vegetation and soil parameter range (Dorman & Sellers, 1989; Sellers et al., 1996). The input para-
meters in the SSiB2 land surface model are listed in Table S1, and the descriptions for the vegetation types
are listed in Table S2. In this paper, we define the areas that are covered by savannah, grasslands, and
shrub (vegetation types 6 to 9 in SSiB) as semiarid regions. A total of 2210 combinations was used in
the EFAST test to evaluate the direct and interactive effects. The method efficiently quantifies the relative
effects of input variables on model output through the use of the main sensitivity index (Si) and the total
sensitivity index (STi). Different PFTs may have different characteristics of the parameter sensitivities of
simulating soil moisture. In this paper, the key parameters were identified among the different vegetation
types. The sensitivity index results for soil moisture for four typical vegetation types are shown in Figure S1.
Despite the large number of SSiB2 input variables, the Si and STi results identify a few parameters that
have a large impact on soil moisture. It was observed that two key parameters, B parameter and hydraulic
conductivity at saturation (Ks), had the larger impacts than the other parameters. The impact of the wilting
point on the soil moisture simulations was lower than that of the B parameter and Ks but still substantially
larger than that of the other parameters.

These three key parameters were selected for further calibration. In the Test Veg+Soil run (referred to as Test
Veg + Soil hereafter), the B parameter, which affects the conversion from soil moisture to soil water potential
and subsequently the soil moisture diffusion between different soil layers, and hydraulic conductivity at
saturation (Ks) were modified in the model. In the Test Veg+Soil+WILT run (referred to as Test Veg+Soil
+WILT hereafter), the wilting point, the B parameter, and Ks were adjusted. Because of the large uncertainty
in these parameters, they have been calibrated in a number of studies based on the scale of investigation to
produce results close to observations (Xue, Zeng, et al., 1996; Zhang et al., 2015).

Table 1
Experimental Design

Experiment description

CTL The original LAI, green fraction, and vegetation
cover fraction

Test Veg With modified LAI, green leaf fraction, and cover fraction
Test Veg+Soil Same as Test Veg but B parameter and hydraulic

conductivity at saturation are modified
Test Veg+Soil+WILT Same as Test Veg+Soil but wilting point is modified
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This study mainly focused on the multiyear averages of soil moisture, SIF, and GPP in the SSiB2 model. The
simulations were compared to satellite products. To quantify the simulating ability of the SSiB2, three
common statistical measures, namely, the spatial correlation coefficient (SCC), the mean bias (BIAS), and
the RMSE, were calculated in this study.

3. Results

Table 1 lists the different experiments discussed in the previous section. This section discusses the main
results of these experiments. The global SIF results from the GOSATmeasurements and the SSiB2 land surface
model simulation using original LAI data (Dorman & Sellers, 1989) are compared in Figure 3. The simulated SIF
has a spatial pattern similar to that of the GOSAT SIF, but the values are lower in most areas. This bias was
likely caused by the inaccuracy of the LAI and the green leaf fraction. To obtain a more realistic SIF simulation,
the MERRA LAI and green leaf fraction were used in the experiment, referred to as Test Veg in this paper. The
vegetation cover fraction was also adjusted based on the satellite data (Kang et al., 2007). The global differ-
ences in annual mean SIF compared to GOSAT and GOME-2 data are shown in Figure 4. The SIF in CTL shows a
negative bias in most parts of the Southern Hemisphere, India, and Southeast China but a positive bias in
boreal forest areas and Eurasian steppes (Figures 4a and 4b). The simulated SIF improved in Test Veg
(Figures 4c and 4d). The results showed that the simulated SIF was improved compared to both GOSAT
and GOME-2 data. The SSiB2 simulated SIF decreased in the high latitudes of the Northern Hemisphere

Figure 3. Global map of annual mean solar-induced chlorophyll fluorescence (SIF) from 2009 to 2012, units: W/m2/μm/sr. (a) Greenhouse gases Observing SATellite
(GOSAT), (b) control run (CTL), and (c) Test Veg+Soil+WILT.
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and increased in South America, western and southern Africa, and India after more realistic LAI and green leaf
fraction data sets were used. Table 2 shows the SCCs, BIASs, and RMSEs of simulated global SIF with respect to
the GOSAT observations. The SCC of Test Veg increased by 31% compared to that in CTL. Both experiments
showed a negative bias, but in Test Veg, the bias was reduced by 21%. The RMSE of Test Veg was reduced by
16%. These results confirm those from a multimodel intercomparison, indicating that models specified with
improper representations of phenology have difficulty in producing adequate surface carbon flux
(Richardson et al., 2012). In the following analyses, Test Veg, which employed the more realistic LAI, was used
as a base run for comparison with other experiments.

Soil moisture and the parameterization of its transfer within soil layers are key elements in SSiB (Xue, Zeng,
et al., 1996) and affect carbon exchange between the soil and air (Zhan et al., 2003). To understand the rela-
tionships between soil moisture and carbon cycling, we compared soil moisture from the SMOS mission and
Sun-induced fluorescence data from GOSAT and GOME-2 with the SSiB2 results to evaluate the global

impacts of various simulated soil moisture values on carbon budgets.
This approach included an investigation of the model parameter
uncertainties using a set of parameter values within the uncertainty
range. We compared the model simulations with satellite measure-
ments to yield the best model parameters leading to the closest
match against the SMOS, GOSAT, and GOME-2 measurements, which
is the ultimate objective of our model development—improved
model performance against benchmark measurements within a phy-
sically realistic parameter range.

Figure 4. Global differences of annual mean solar-induced chlorophyll fluorescence compared to Greenhouse gases Observing SATellite (GOSAT) and Global Ozone
Monitoring Experiment-2 (GOME-2) data, units: W/m2/μm/sr. (a) CTL minus GOSAT, (b) CTL minus GOME-2, (c) Test Veg minus GOSAT, (d) Test Veg minus GOME-2,
(e) Test Veg+Soil+WILT minus GOSAT, and (f) Test Veg+Soil+WILT minus GOME-2.

Table 2
Spatial Correlation Coefficient (SCC), Mean Bias (BIAS), and Root-Mean-Square Error
(RMSE) of SIF Compared to the GOSAT Data, Unit: W/m2/μm/sr

CTL Test Veg

SCC 0.54 0.71
BIAS �0.09 �0.07
RMSE 0.26 0.21
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Reliable parameter values for these three parameters are not available, and there are uncertainties in
inputting values for these parameters in the model (Xue et al., 1997); consequently, similar studies have
been carried out to identify important soil parameters in surface hydrology (Xue, Zeng, et al., 1996).
Among the soil parameters, Ks and the B parameter have been identified to significantly affect the simula-
tion of soil moisture. Both parameters influence the soil moisture simulation by affecting the soil hydraulic
conductivity, field capacity, and subsequently the soil moisture diffusion processes. In addition, the wilting
point also has an impact on soil moisture through its influence on stomatal conductance and conse-
quently transpiration. We report the experiments that tested these three parameters (Table 1) and their
results in this paper.

The SMOS data were used as a benchmark to adjust Ks and the B parameter in Test Veg+Soil. The original and
new values of Ks and the B parameter are shown in the supporting information (Table S3). Figure 5 shows the
global difference between the simulation and SMOS data and between the different experiments for soil
moisture. In Test Veg, the boreal forest, tropical areas, and southeast China had positive biases, and different
degrees of negative biases can be seen in other areas (Figure 5a). In Test Veg+Soil, we used the SMOS data to
calibrate Ks and the B parameter to obtain better results. The soil moisture in Test Veg+Soil
increased/decreased in areas with negative/positive bias in Test Veg (Figure 5b). This result indicates that
after parameter calibration using satellite data, the simulated soil moisture improved. Figure 6 shows that
after calibration, the global soil moisture RMSE had a substantial reduction, by 22%. In addition, SCC

Figure 5. Global difference of soil moisture, units: m3/m3. (a) Test Veg� Soil Moisture andOcean Salinity (SMOS), (b) Test Veg+Soil� SMOS, (c) Test Veg+Soil� Test Veg.
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increased by 19%. Applying global-scale satellite observations of soil
moisture, such as the SMOS product, is an effective approach to
improve the ability of this land surfacemodel to simulate soil moisture.

In addition to the SMOS data, the GOSAT and GOME-2 SIF provide a
new method to check whether the model’s representation of photo-
synthesis processes is improved. The analysis of the Test Veg+Soil
results, however, showed that although soil moisture was better simu-
lated following the calibration of the soil parameters, the simulated
SIF results, compared against the GOSAT and GOME-2 SIF product,
were substantially worse (Figure 6). Nevertheless, the change in SIF
in Test Veg+Soil confirmed that the changes in soil moisture had
substantial impacts on photosynthesis processes. We have since
conducted a number of sensitivity studies and identified that the wilt-
ing point, which is the minimum soil moisture at which a plant loses
turgidity and can no longer recover, is a crucial parameter for better
SIF simulation under adequate soil moisture. After calibration of the

wilting point, the simulated global SIF in Test Veg+Soil+WILT improved substantially compared against the
GOSAT and GOME-2 SIF product and retained reasonable simulations for soil moisture (Figure 6). The annual
mean SIF for Test Veg+Soil+WILT from 2009 to 2012 is shown in Figure 3c. The global differences between
the simulations and the satellite (GOSAT and GOME-2) data are shown in Figures 4e and 4f, respectively.

Studies have shown that satellite-retrieved SIF provides useful information on terrestrial photosynthesis and
GPP (Frankenberg, O’Dell, et al., 2011; Lee et al., 2015). We also investigated whether the land surface model
could better simulate GPP after the improvements in the SIF simulation, which would further confirm the
close relationship between SIF and GPP. We applied the Max Planck Institute for Biogeochemistry (MPI-BGC)
GPP product from the FLUXNET-basedModel Tree Ensemble (MTE) (Beer et al., 2010) as the benchmark in this
study. Figure 7 shows the global differences in annual mean GPP from all of the experiments compared to the
MPI-BGC products. The global GPP in CTL (Figure 7a) shows a negative bias in magnitude, especially in South
America and most of Africa. In the high latitudes of the Northern Hemisphere, the modeled GPP was slightly
higher compared to the MPI-BGC product, consistent with the SIF results shown in Figure 4. In Test Veg
(Figure 7b), the simulated GPP improved after the MERRA LAI and green leaf fraction were used. However,

Figure 6. Global root-mean-square error (RMSE) of different experiments relative
to Soil Moisture and Ocean Salinity (SMOS) soil moisture and Greenhouse gases
Observing SATellite (GOSAT) and Global OzoneMonitoring Experiment-2 (GOME-2)
solar-induced chlorophyll fluorescence (SIF).

Figure 7. Global difference of gross primary production betweenMPI-BGC and the experiments, units: g C/m2/yr. (a) Control run (CTL), (b) Test Veg, (c) Test Veg+Soil,
(d) Test Veg+Soil+WILT.
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when SSiB2 produced better simulated soil moisture in Test Veg+Soil
(Figure 7c), the GPP simulation worsen. After the calibration of the
wilting point, the global GPP in Test Veg+Soil+WILT (Figure 7d)
improved substantially. The model simulations still showed large
biases in the Amazon, northern Europe, and China. The land surface
model consists of many processes, and further investigations are
needed to understand and improve these processes. Although the
simulated GPP spatial distribution from different cases showed similar
spatial patterns (Figure 7), the parameters’ impacts on GPP were sub-

stantial. Table 3 shows the SCCs, BIASs, and RMSEs of the global simulated GPP from different experiments.
The MERRA LAI and green fraction had a substantial impact on the GPP simulation: the SCC increased by 8%
in Test Veg compared to CTL, and Bias and RMSE were reduced by 41% and 28%, respectively (Table 3).
However, the bias and RMSE were worse in Test Veg+Soil compared with Test Veg, similar to the SIF results.
The GPP simulation in Test Veg+Soil+WILT was the best among the four experiments and was, consistent
with the results in which SIF was used as a benchmark for comparison.

This study shows that the wilting point is a key parameter linking soil moisture and photosynthesis; tests indi-
cated that the sensitivity of GPP to the wilting point varies among vegetation types. Figure 8 shows the
RMSEs for the vegetation types that had substantially improved GPP simulations after the wilting point
was calibrated. As discussed before, without the wilting point calibration, the results would be deteriorated
substantially. The RMSE of SIF was calculated at global scale. However, the wilting point has larger impacts on
the SIF simulations over semiarid region. Table 4 showed that the RMSE of SIF and GPP in Test Veg+Soil was
increased by 18% and 32%, respectively, compared to the values in Test Veg+Soil+WILT. This suggests that
the wilting point is more important in connecting the carbon and water cycles in semiarid regions. The soil
water condition is a limited factor for vegetation growth in semiarid regions, where the soil moisture is
approaching and crossing the wilting point more frequently.

4. Discussion

Sun-induced chlorophyll fluorescence provides a new approach to quantify photosynthetic efficiency (Flexas
et al., 2002). Lee et al. (2015) incorporated SIF into photosynthesis parameterization in the National Center for
Atmospheric Research (NCAR) CLM4 land surface model and demonstrated its utility as a diagnostic tool for
the evaluation of modeled photosynthesis, which is one of the key processes in land surface modeling that

strongly influence the carbon, water, and energy balance. Lee et al.’s
paper mainly focused on SIF coupling with the NCAR CLM4 land sur-
face model, and the relationships between SIF and soil moisture were
not discussed. It should be noted that our approach would also
improve the rooting zone soil moisture. The MERRA data include the
surface soil moisture (0–2 cm) and root zone soil moisture
(0–100 cm). Using the approach discussed in this paper, the adjust-
ment of Ks and the B parameter using the surface soil moisture, the
simulations of root zone soil moisture also improved in SSiB2 as
shown in Table S4.

The seasonal soil moisture, SIF, and GPP in the three experiments were
calculated at global scales (Figure 9). The soil moisture simulations
improved after adjusting the B parameter and Ks, but SIF and GPP
worsened for throughout the year. However, the SIF and GPP simula-
tions improved after modifying the wilting point in the model and
the simulations for soil moisture retained reasonable. The most
improvements for soil moisture were from March to September and
for SIF and GPP were from June to August, when the photosynthesis
process was quite strong in Northern Hemisphere.

To understand carbon-water cycles and the roles of some important
parameters involved in this coupling, we further examined the soil

Table 3
Mean Bias (BIAS), Spatial Correlation Coefficient (SCC), and Root-Mean-Square Error
(RMSE) of GPP Compared to the MPI-BGC Data, Unit: g C/m2/yr

SCC BIAS RMSE

CTL 0.84 �246 504
Test Veg 0.91 �146 365
Test Veg + Soil 0.89 �224 429
Test Veg + Soil+WILT 0.90 �80 357

Figure 8. Root-mean-square error (RMSE) of gross primary production (GPP) from
different vegetation types, units: g C/m2/yr.
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and photosynthesis parameterizations in SSiB2 (Xue, Fennessy, et al., 1996;
Zhan et al., 2003). Figure 2 shows the overview flowchart of the SSiB2 land
surface model and the modified parameters. There are three soil layers in
the calculation of soil moisture. The gradient of soil water potential is used
to calculate the diffusion of soil water, and it is defined as follows:

ψ ¼ ψs
θ
θs

� ��B

(4)

where the B parameter is an empirical constant that is dependent on the
soil type and θs is the volumetric soil water content at saturation. The soil water diffusion equation is written
as follows:

Q ¼ �ks
θ
θs

� � 2Bþ3ð Þ ∂ψ
∂Z

þ 1

� �
(5)

where Q is proportional to the soil water conductivity at saturation. Because of their roles in the soil moisture
diffusion, it is not surprising that the calibration of B and Ks has a substantial impact on the soil moisture simu-
lation. The canopy stomatal resistance, rc, used for transpiration and carbon assimilation is closely related to
soil moisture. Studies (Blackman & Davies, 1985) have indicated that the stomatal response to the water sup-
ply is controlled by soil water potential and that roots “sense” the soil moisture supply and directly transmit
chemical messages to the guard cells to adjust stomata opening. In SSiB2, stomatal opening is controlled by
soil moisture through the β factor:

β ¼ 1� exp �C2 C1 � ln �ψð Þ½ �f g (6)

where C1 is the natural logarithm of the wilting point. In the model, the stomata close completely at the wilt-
ing point. C2 is a slope factor that depends on the vegetation type. The wilting point is directly linked to sto-
matal resistance (or conductance, the reciprocal of resistance) and consequently to transpiration and
photosynthesis processes. The wilting point affects soil moisture through transpiration. Our experiments
show that the impact of the wilting point on soil moisture is not as efficient as that of Ks and the B parameter.
The wilting point has a direct impact on the photosynthesis process through the β factor, but B and Ks influ-
ence this factor through the soil water potential.

In most semiarid regions, the simulated soil moisture (Figure 6) was lower compared with the SMOS product,
and the SIF (Figure 4b) and GPP (Figure 7b) also exhibited negative biases. Calibration of B and Ks resulted in a
close match between soil moisture and the SMOS products; however, this modification also affected the β
factor and subsequently stomatal resistance, which resulted in poorer simulations for SIF and GPP. To over-
come this problem, the wilting point was calibrated in equation (6) using SMOS data to generate an appro-
priate β factor. The original and new values of the wilting point are shown in the supporting information
(Table S5). Although the above discussion is based on SSiB2, the soil moisture diffusion equations based on
Darcy’s law and Clapp andHornberger (1978) are widely used in land surfacemodels, and the parameterization

Table 4
Root-Mean-Square Error of Solar-Induced Chlorophyll Fluorescence (SIF) and
Gross Primary Production (GPP) Compared to the Global Ozone Monitoring
Experiment-2 and MPI-BGC Data in Semiarid Regions, Unit: SIF (W/m2/μm/
sr), GPP (g C/m2/yr)

SIF GPP

Test Veg+Soil+WILT 0.11 352
Test Veg+Soil 0.13 464

Figure 9. The monthly mean (a) soil moisture, (b) solar-induced chlorophyll fluorescence, and (c) gross primary production at the global scale in Test Veg, Test Veg
+Soil, and Test Veg+Soil+WILT. SMOS = Soil Moisture and Ocean Salinity.
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of the link between the wilting point and stomatal resistance is also
applied in many models with various forms (Niu et al., 2011).

Several experiments have been conducted to determine model
sensitivity to changes in different parameters. For example, two
vegetation types, savanna and grassland, were chosen, and sensitivity
tests were driven using atmospheric forcing data from the bias-
corrected meteorological forcing data set of Princeton University’s
Hydroclimatology group (Sheffield et al., 2006). The experiments

covered the period from 2009 to 2010. The first year was used as the spin-up time, and the results for summer
in 2010 were analyzed. Table 5 lists the values of the soil parameters used for experiments A, B, and C and the
ranges of the B parameter, Ks, and the wilting point, respectively. The changes for each parameter are within
the normal range of soil and vegetation property variations (Xue, Zeng, et al., 1996).

Figures 10a and 10b show that the soil wetness increased with a higher B parameter (from sandy to clay tex-
ture) because an increase in the B parameter value reduces soil hydraulic conductivity (equation (5)) and
increases soil wetness. The SIF and GPP values decreased with an increase in the B parameter. An increase
in Ks (from clay to sandy texture) resulted in a decrease in soil wetness and an increase in SIF and GPP
(Figures 10b and 10d). For most of the semiarid regions, both the simulated soil moisture and SIF values were
lower compared with the satellite data. After the B parameter and Ks were modified to result in greater soil
moisture, the simulated SIF and GPP values decreased and worsened as shown in Test Veg+Soil (Figure 6).
Figures 10e and 10f show that a higher wilting point decreases soil wetness, but this change was not very
large, unlike that resulting from modifications of the B parameter and Ks. However, SIF and GPP increase
substantially with an increase in the wilting point because of the direct impacts on the calculation of the β
factor (equation (6)). The results show that the wilting point strongly affects the photosynthetic process
but does not alter soil moisture. As such, after calibrating the three parameters, the soil moisture, SIF, and
GPP simulations improved.

Table 5
Soil Parameters Used in the Experiments

B parameter Ks Wilting pointa

Experiment A 5, 6, 7, 8, 9 2E-5 6
Experiment B 7 2E-3, 2E-4, E-5, 2E-6, 2E-7 6
Experiment C 7 2E-5 4, 5, 6, 7, 8

aThe values are the logarithm of negative soil water potential for wilting point.

Figure 10. Calculated soil moisture (black), solar-induced chlorophyll fluorescence (SIF) (blue), and gross primary production (GPP) (red) for savannah (a, c, and e) and
grassland (b, d, and f), (a and b) B parameter; (c and d) logarithm of Ks; (e and f) wilting point.
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This study confirms the close relationship between soil moisture and terrestrial carbon processes, which are
linked through the wilting point. It is important to adequately represent and dynamically couple both
processes to ensure a comprehensive understanding of water and carbon cycles. With the previously
launched OCO-2 (Frankenberg et al., 2014), the Sentinel-5 Precursor/TROPOspheric Monitoring Instrument
(Guanter et al., 2015), and the proposed FLuorescence EXplorer (FLEX) (recommended for the European
Space Agency explorer 8 mission) (Rascher et al., 2015), improved SIF measurements with higher spatial
and/or temporal resolution, higher signal-to-noise ratio, and/or increased spectral bands (e.g., the added
red emission peak near 680 nm in FLEX) are expected.

The launched Soil Moisture Active Passive mission is National Aeronautics and Space Administration’s first
Earth-observing satellite mission designed to provide continuous global observations of surface soil moist-
ure. Aquarius, which launched on 10 June 2011 and was operational until 7 June 2015, focused on salinity
retrieval from radiometric measurements in the L-band and has also shown the ability to deliver soil moisture
products (Bindlish et al., 2015).

Forthcoming work will integrate Soil Moisture Active Passive soil moisture and fluorescence from OCO-2,
which can provide products of better quality, spatial and temporal resolution, coverage, accuracy, and preci-
sion, as further constraints and coupling between the water and carbon cycles are developed. These data sets
along with existing soil moisture and SIF data will pave the way for satellite observations leading to advances
in the predictive understanding of global terrestrial coupled carbon-water cycles.

Although SIF simulations have improved for semiarid regions, large errors still exist. In this paper, we just
focused on the relationship between soil moisture and SIF; some other important factors, such as the canopy
structure and Rubisco Vcmax (Lee et al., 2015; Verrelst et al., 2015), were not included in this paper. In the
further work, we will continue to include these factors to have better SIF simulations in SSiB model.

5. Conclusions

In this paper, we used SMOS, GOSAT, and GOME-2 data observations within the framework of SSiB2 to inves-
tigate how SIF responds to changing soil moisture and to identify the key parameter of carbon-water cycles.
This study shows that although calibration of Ks and the B parameter in the SSiB2 model resulted in better soil
moisture simulations, the SIF and GPP simulations were poorer. To overcome this issue, it was necessary to
calibrate another parameter, the wilting point, to improve both global SIF and GPP. This research focuses
on the integration of both a key water cycle variable—soil moisture (from SMOS)—and a key carbon cycle
variable—chlorophyll fluorescence (from GOSAT and GOME-2), which also has a direct link to the total gross
amount of carbon taken up by plants. This study demonstrates the close link between the water and carbon
cycles in the application of remote sensing data and the SSiB2 land surface model.
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