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ABSTRACT

In-depth knowledge about the global patterns and dynamics of land surface net water flux (NWF) is

essential for quantification of depletion and recharge of groundwater resources. Net water flux cannot be

directly measured, and its estimates as a residual of individual surface flux components often suffer frommass

conservation errors due to accumulated systematic biases of individual fluxes. Here, for the first time, we

provide direct estimates of global NWF based on near-surface satellite soil moisture retrievals from the Soil

Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellites. We apply a recently

developed analytical model derived via inversion of the linearized Richards’ equation. The model is parsi-

monious, yet yields unbiased estimates of long-term cumulative NWF that is generally well correlated

with the terrestrial water storage anomaly from the Gravity Recovery and Climate Experiment (GRACE)

satellite. In addition, in conjunction with precipitation and evapotranspiration retrievals, the resultant NWF

estimates provide a new means for retrieving global infiltration and runoff from satellite observations.

However, the efficacy of the proposed approach over densely vegetated regions is questionable, due to the

uncertainty of the satellite soil moisture retrievals and the lack of explicit parameterization of transpiration by

deeply rooted plants in the proposed model. Future research is needed to advance this modeling paradigm to

explicitly account for plant transpiration.

1. Introduction

The sustainable availability of groundwater for irri-

gated agriculture and as potablewater for over two billion

people is crucial for global water and food security

(Gurdak 2017). The rapid increase of the human pop-

ulation has amplified the global reliance on groundwater.

Consequently, groundwater is being extracted at un-

sustainably high rates at many locales (Konikow 2011;

Wada et al. 2012; Moore and Fisher 2012; Richey et al.

2015). A practical principle for sustainable management

of groundwater is to limit water abstraction to a rate

smaller than the long-term average groundwater re-

charge (Finch 1998). In arid and semiarid regions, where

lateral groundwater flow is negligible, the groundwater

recharge is governed by the land surface net water flux,

NWF 5 infiltration 2 evapotranspiration (Finch 1998;

Yeh et al. 2007). Therefore, accurate estimation of NWF

at the global scale is of paramount importance for sus-

tainable management of groundwater resources.

Despite their importance, global patterns and dynamics

of NWF are still poorly understood (National Research

Council 2012). Today, the NASA Gravity Recovery and

Climate Experiment (GRACE) andGRACEFollow-On

satellites provide valuable global observations of the

terrestrial water storage (TWS) anomaly (Rodell et al.

2009; Famiglietti et al. 2011; Rodell et al. 2018). Although

the TWS temporal rate of change (i.e., the derivative of

TWS anomaly with respect to time, denoted as dS/dt) is

intimately connected to NWF, these two fluxes are

fundamentally different. In particular, GRACE dS/dt

is not only governed by NWF, but also by natural and

anthropogenic induced variations of surface water

storage, groundwater abstraction, lateral groundwater

flow, snowpack variations, and the melting of glaciers

(Getirana et al. 2017; Rodell et al. 2018).Corresponding author: Morteza Sadeghi, msadeghi@umn.edu
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NWF is linked to individual surface flux components,

including precipitation (P), evapotranspiration (ET),

runoff (R), and irrigation (Ir) via the surface water

balance (SWB) equation, NWF 5 P 2 ET 2 R 1 Ir.

Salient advances have been made in global monitoring

of these flux components using satellite remote sensing

(e.g., Stephens and Kummerow 2007; Hou et al. 2014;

Ebtehaj et al. 2015; Vinukollu et al. 2011; Fisher et al.

2017; Purdy et al. 2018) and modeling of their space–

time dynamics with hydrologic and land surface models

(e.g., �Sim�unek et al. 2016; Oleson et al. 2008; Niu et al.

2011). However, a global estimation of NWF via the

SWB remains challenging due to (i) a lack of direct

global observation of the flux components (i.e., R and

Ir), and more importantly, (ii) the accumulated uncer-

tainty emanating from individual flux estimation errors

(Armanios and Fisher 2014; Pellet et al. 2018, 2019;

Padrón et al. 2019). These uncertainties are largely due

to errors in remote sensing algorithms (Polhamus et al.

2013; Badgley et al. 2015; Ebtehaj and Kummerow 2017;

Purdy et al. 2016), inadequate parameterization of hy-

drologicmodels (Liu andGupta 2007), and amismatch of

the spatiotemporal resolutions of different data products

(Demory et al. 2014). Consequently, NWF estimates

based on the SWBare often systematically biased and are

not able to close the terrestrial water balance.

A potential solution for avoiding closure errors is

to estimate NWF directly from strongly correlated state

variables such as near-surface soil moisture (SM).

Recently, applying satellite SM data, encouraging ad-

vances have been made to estimate NWF (Crow et al.

2017) or other flux components such as precipitation

(Brocca et al. 2013, 2014; Koster et al. 2016), evapo-

transpiration (McColl et al. 2017; Purdy et al. 2018;

Akbar et al. 2018, 2019), runoff (Koster et al. 2018), and

irrigation (Lawston et al. 2017; Brocca et al. 2018;

Jalilvand et al. 2019; Zaussinger et al. 2019). To close the

water balance, these models generally rely on empirical

functional relationships, for example, for the soil inter-

nal drainage rate.

Recently, Sadeghi et al. (2019) developed a physically

based model to approximate NWF directly from SM

data and evaluated its performance with reference data

from four flux tower sites in the United States. This

model was derived via analytical inversion of Warrick’s

(1975) solution to the linearized Richards’ equation

(Richards 1931). An advantage of this model is that it is

parsimonious and computationally efficient. In addition,

the model parameters can be directly derived from SM

data and a single scaling parameter, and the model does

not rely on data intensive and computationally de-

manding least squares calibrations, which enables global

NWF approximations from satellite data.

Here, we examine the Sadeghi et al. (2019) NWF

model at the global scale, employing SM products from

the Soil Moisture and Ocean Salinity (SMOS) (Kerr

et al. 2001) and Soil Moisture Active Passive (SMAP)

(Entekhabi et al. 2010) satellites to provide direct es-

timates of the global land surface net water flux. We

demonstrate that this model yields unbiased estimates

of long-term cumulative NWF which are not readily

extractable with the conventional SWB approach. In

addition, we illustrate that the NWF model provides

a new avenue for global mapping of infiltration and

runoff, neither of which can be retrieved directly

from space.

2. Materials and methods

a. Analytical model

Richards’ (1931) equation captures the soil moisture

dynamics in space and time in response to the diffusive

and gravitational water flow in variably saturated soil.

The soil moisture-based Richards’ equation is widely

applied in land surface models (Decker and Zeng 2009).

The linearized form of this equation is given as
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2 k

›u

›z
, (1)

where u is volumetric soil moisture content, t is time, z

is soil depth positive downward, D is the effective soil

water diffusivity (i.e., an average value for the entire

soil moisture range), and k is the average slope of the

soil hydraulic conductivity function K(u).

Applying the superposition principle, Warrick (1975)

analytically solved Eq. (1) to link any arbitrary sequence

of downward (soil moisture gain) and upward (soil

moisture loss) surface water flux pulses to the soil

moisture profile. This solution, which is valid for a semi-

infinite homogeneous soil profile with uniform initial soil

moisture conditions, variable netwater flux at the surface,

and constant soil moisture at the bottom boundary,

is given as
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where subscript i denotes the number of time steps (from

1 to N) at intervals of DT, and T, Z, Q, and F are di-

mensionless representations of time t, soil depth z, soil

moisture u, and net water flux f, respectively, defined as
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In Eq. (3),D is the soil water diffusivity, k is slope of the

soil hydraulic conductivity functionK(u), u‘ denotes soil

moisture at the bottom boundary, and U is given as
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Inverting Warrick’s solution [Eq. (2)], Sadeghi et al.

(2019) derived an analytical model that allows approx-

imation of the land surface net water flux from a time

series of near-surface soil moisture:
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While Warrick’s solution in Eq. (2) indicates that a

surface water flux can be propagated into the entire soil

profile, altering soil moisture at different depths (see

Fig. 1 in Sadeghi et al. 2019), Eq. (5) specifies that

temporal variations of soil moisture at a single depth

(such as the surface layer) contain adequate informa-

tion to inversely estimate the surface water flux.

The analytical nature of Eq. (5) facilitates calculation of

NWF for different time steps (e.g., diurnal to monthly)

without the ‘‘truncation error,’’ which is of a concern in

numerical models (Zeng and Decker 2009). Note that the

estimated NWF for large (e.g., monthly) time steps deter-

mines the cumulative sum of all positive and negative sur-

face fluxes occurring duringDt (e.g., submonthly infiltration

and evaporation events).Accordingly, positiveNWFmeans

dominant infiltration (water gain) and negative NWF

means dominant ET (water loss) during time step Dt.
Performance of Eq. (5) has been evaluated with

ground-based reference observations of P and ET from

four flux tower sites with different climatic conditions

and land covers in the United States (Sadeghi et al.

2019). It has been shown that while the original solution

of Warrick (1975) was derived for bare soil, Eq. (5)

works well for vegetated sites such as Tonzi Ranch in

Californiawith 30%–60%forest canopy cover (Baldocchi

et al. 2016). This is expected due to the correlation be-

tween soil evaporation and plant transpiration on an

annual basis, and because of calibration of the model

parameters based on actual NWF data, which include

plant transpiration. However, it should be noted that the

model does not account for transpiration by deeply rooted

plants under dry conditions, when the soil surface dries out

and soil evaporation and plant transpiration decouple.

Other simplifying assumptions of theNWFmodel that

may not realistically represent natural conditions are

discussed in Sadeghi et al. (2019). For example, non-

isothermal water and vapor flow, occurring under dry

and warm conditions, and upward water flow from

shallow water tables, which is common in wet regions,

are not accounted for. Here, we examine to what extent

this parsimonious model can capture global NWF dy-

namics, despite the introduced simplifications.

b. Datasets and preprocessing

We employed six global data products for estimation

and evaluation of NWF that comprise: 1) SMOS-IC soil

moisture (Fernandez-Moran et al. 2017) fromMay 2010

to May 2017 at 25-km grid and 3-day temporal reso-

lution; 2) SMAP-L3 Passive Enhanced soil moisture

(O’Neill et al. 2018) from April 2015 to May 2017 at

9-km grid and 3-day temporal resolution; 3) Global

Precipitation Climatology Project (GPCP) precipitation

(Adler et al. 2003) from May 2010 to May 2017 at

2.58 grid and monthly temporal resolution; 4) Priestley–

Taylor Jet Propulsion Laboratory (PTJPL) evapotrans-

piration (Fisher et al. 2008) fromMay 2010 to April 2017
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at 36-km grid and daily temporal resolution; 5) Global

Runoff Reconstruction (GRUN) runoff (Ghiggi et al.

2019 a,b) from May 2010 to December 2014 at 0.58 grid
and monthly temporal resolution; and 6) GRACE-CSR

TWS anomaly (Save et al. 2016) from May 2010 to May

2017 at 18 grid and near-monthly (irregular) temporal

resolution.

The results in Sadeghi et al. (2019) indicate that the

proposed model is sensitive to soil moisture perturba-

tions. Therefore, results for a monthly time scale are

more stable than results for diurnal soil moisture data.

This is why we considered a monthly time scale for a

regular grid with an intermediate resolution of 18.
Datasets with higher spatial resolutions were coarse-

grained via box averaging and datasets with lower

resolutions were mapped via nearest neighbor inter-

polation to neither add nor discard relevant spatial

information. The daily and 3-day data were averaged

to produce the monthly data, which are attributed to

the middle of each month. GRACE data at regular

monthly resolution was obtained via linear interpola-

tion of the original data.

c. Model calibration and evaluation

We employed Eq. (5) to globally approximate NWF

based on SMOS and SMAP SM data. These new esti-

mates, denoted as NWFSMOS and NWFSMAP, are com-

pared with approximations from the residual approach,

NWFRES 5 P 2 ET 2 R, with irrigation assumed to be

negligible, as well as with GRACE dS/dt. For these

comparisons, we debiased NWFRES values to alleviate

the uncertainties of its flux components. To that end, we

subtracted the NWFRES mean from 2010 to 2014, which

implies no change in climate or direct human impacts

on water storage over said period (Rodell et al. 2015).

In addition, the proposed model is examined as a new

potential approach for retrieving infiltration and runoff

from space. In particular, the NWFSMOS estimates, in

combination with ET and P data, are used to provide

global estimates of infiltration (I 5 NWFSMOS 1 ET)

and runoff (R 5 P 2 ET 2 NWFSMOS).

To compute Eq. (5), the mean sensing depth z is set to

2.5 cm assuming that satellite SM is representative for

the top 5-cm soil layer. Note that the normalized depth

(Z5 kz/D), and subsequently our results are not overly

sensitive to small changes of z near the surface, because

the ratio D/k is commonly a much larger length scale

than z. We performed a sensitivity analysis on z (not

shown here) and found only very small changes of the

output NWF (below 0.1 cm month21 globally) in re-

sponse to the changes of z in the range of 0–5 cm.

A parsimonious approach is used to calibrate the

model parameters. The bottom-boundary soil moisture

u‘ for each pixel is assumed as a long-term mean of

SM, a constant k (e.g., 0.3 cmmonth21) is assumed for all

pixels and D is calculated for each pixel using the fol-

lowing physically based equation (Sadeghi et al. 2019):

D5D0
�
f
max

f 0max

�2

, (6)

where D0 is an initial arbitrary value for D (e.g.,

3000 cm2 month21), yielding an initial estimate for the

maximum NWF ( f 0max) using Eq. (6), and fmax is the

actual maximum NWF. Because NWFRES was not

available after December 2014, we used SMOS and

debiased NWFRES data (2010–14) to globally map D

with Eq. (6) and subsequently used this map to derive

both NWFSMOS and NWFSMAP. A step-by-step proce-

dure for calculating NWF from satellite SM retrievals is

provided in the appendix.

To determine uncertainties associated with the NWF

estimates, we conducted 100 Monte Carlo simulations

by perturbing all model inputs via zero-mean random

errors. Specifically, we perturbed the monthly values of

soil moisture and fmax by a uniformly distributed random

error of 610% and 620%, respectively. Then, we cal-

culated the upper and lower NWFuncertainty bounds as

0.95 and 0.05 quantiles of all 100 simulations.

3. Results and discussion

The global distribution of themaximum net water flux

fmax used in Eq. (6), which is the only tuning parameter

of the NWF model, and the soil water diffusivity D re-

sulting from Eq. (6) are presented in Fig. 1. As shown,

D varies over several orders ofmagnitude globally and is

generally higher for wetter regions with stronger NWF

seasonality (i.e., higher fmax). The similarity between soil

diffusivity and the NWF seasonality pattern is expected

from Eq. (6). Within this context, higher diffusivity in-

dicates smaller soil moisture changes in response to a

unit net water flux pulse. In practice, this dependency

highlights the strong climate impact on soil hydraulic

properties (Montzka et al. 2017). For example, in gen-

eral more diffusive soils are found close to the surface

(0–5 cm) in densely vegetated tropical regions, where

the soil bulk density is extremely low due to the high

organic matter content (Hengl et al. 2014).

As mentioned earlier, the soil diffusivity map in

Fig. 1b was obtained from SMOS data for the period

from 2010 to 2014. BecauseD is a static soil property, we

assume that the global estimates of D do not signifi-

cantly vary with time and the SM product. To examine

this assumption, we recalculated D for the period from

January 2015 to May 2017 based on SMAP SM data.
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To that end, assuming that the year-to-year variability

of runoff is small, we filled the missing runoff data with a

4-yr mean (e.g., R in January 2015 was approximated as

the mean of R in Januaries 2011, 2012, 2013, 2014). The

obtained SMAP-basedDmap (not shown for brevity) is

similar to the map depicted in Fig. 1b, with a global

relative mean absolute deviation of less than 3.85% in

log-space. This consistency indicates applicability of

the proposed model across different satellite SM

products with minimal calibration requirements. Note

that the same SMOS-basedDmap (Fig. 1b) is used for

all following results.

Figure 2 depicts the global estimates of NWFSMOS

(new approach), NWFRES, and GRACE dS/dt, for

January and July 2014. There is generally a good

agreement between the spatial patterns of these fluxes,

indicating that the proposed physical model can par-

simoniously retrieve global NWF solely from satellite

near-surface soil moisture retrievals, despite the intro-

duced simplifications. A noticeable mismatch between

the proposed approach and the other two products is

observed for a few regions near the equator, such as

western Brazil and central Africa. These areas are cov-

ered with dense vegetation and are known for large

vegetation opacity, which increases the uncertainty in

microwave satellite SM retrievals (Vittucci et al. 2016).

Unlike in the residual approach, the irrigation water is

implicitly accounted for in the new NWF estimates due

to its effect on SM. Therefore, the role of irrigated ag-

riculture can be another source for the deviation be-

tween these two methods, for example, in the northern

part of India, Spain, Portugal, and France, where

NWFSMOS is generally larger than NWFRES.

As shown in Eq. (5), themodeledNWF at a given time

t0 depends on the SM history from t5 0 to t5 t0. Hence,

even a single missing monthly SM value in a pixel can

render the NWF estimation infeasible. This explains the

missing NWFSMOS values for high latitude areas, where

SM cannot be retrieved accurately when the soil is fro-

zen. Accordingly, snow-covered surfaces will result in

undefined values and will be automatically masked,

which alleviates concerns about the inadequacy of the

linearized Richards’ equation for simulating snowpack

dynamics and its contribution to NWF.

Figures 3a and 3b show the coefficients of determi-

nation (R2) between SMOS and SMAP SM and their

corresponding NWF time series. As expected, while

high correlations between SM data exist for most

pixels, low correlations still occur for areas with

dense vegetation and high radio frequency interfer-

ence, and deserts where the signal-to-noise ratio is

low (Wigneron et al. 2017; Al-Yaari et al. 2017). For

areas where the SMOS and SMAP SM retrievals are

in good agreement, there are strong correlations be-

tween NWFSMOS and NWFSMAP, both derived based

on the same D map (Fig. 1b).

As shown in Fig. 3c, correlations between the

NWFSMOS and NWFRES time series are also strong for

many regions, especially when high-quality SM data are

available. For some extreme climates, the observed

correlations are low, which is attributable to the uncer-

tainty associated with the microwave SM retrievals as

well as to the introduced simplifying modeling assump-

tions. The transpiration by deeply rooted plants or up-

ward water flow from shallow water tables, which are

expected to be significant in wet regions (e.g., Amazon

basin), are not accounted for in Eq. (5). In addition, the

soil hydraulic functions D(u) and K(u) may be highly

nonlinear and nonisothermal water and vapor flow can

be significant in dry regions (e.g., Sahara), both violating

the model assumptions.

As expected, correlations between NWFSMOS and

GRACE dS/dt (Fig. 3d) are comparatively weaker. This

is partly due to the mismatch in spatial resolutions and

the fact that GRACE mass change data are affected by

additional fluxes such as human water abstraction, lateral

FIG. 1. Global distribution of the (left) maximum net water flux fmax used in Eq. (6) and (right) the soil water

diffusivity parameter D resulting from Eq. (6).

FEBRUARY 2020 SADEGH I ET AL . 245



flow (e.g., coastal areas), and glacier melt (e.g., Chile,

Argentina). The correlations are stronger, mostly in

wetter regions, where a more pronounced covarying

structure between NWF and dS/dt is found due to a

stronger seasonality.

The error statistics, including the bias and debiased

root-mean-square deviation (RMSD) betweenNWFSMOS

andNWFRES aremapped in Fig. 4. Although these error

metrics show a similar range, the observed biases are

much more important than the debiased RMSD values

in the context of the water budget analysis. As shown

later, a small bias in the NWF can lead to significant

water mass closure error that accumulates with time.

Hence, the observed biases in Fig. 4 are consequential in

the context of water budget analysis, while they might

be reasonable in terms of individual flux estimations

(e.g., P or ET). We discuss later whether the biases

belong to NWFSMOS or NWFRES.

Time series of spatially averaged SM values and esti-

mated NWF values for six geographic regions (i.e., Asia,

Australia, North Africa, South Africa, North America,

and South America) are depicted in Fig. 5 with associ-

ated statistical metrics listed in Table 1. While the

SMAP SM retrievals are slightly higher than the SMOS

retrievals, they are strongly correlated. Nevertheless,

the modeled NWFSMOS and NWFSMAP values closely

match for all investigated regions, indicating that the

NWFmodel is not sensitive to potential SM biases. This

is because the NWF depends on the SM deviation from

the mean, that is, u 2 u‘ in Eq. (3), and not on the ab-

solute SM value. It should be noted that the observed

deviations at the onset of the NWFSMAP time series are

due to the spin-up time (;2 months) of the NWFmodel

to relax effects of the initial conditions, assumed as

uniform SM profile in the derivation of Eq. (5). The

good agreement between NWFSMOS and NWFSMAP,

FIG. 2. Global distribution of (top) NWFSMOS, (middle) NWFRES 5 P 2 ET 2 R, and (bottom) GRACE dS/dt for

(left) January and (right) July 2014. The masked pixels represent missing data from either the SM or ET products.
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obtained with the same D values (Fig. 1b), provides

further evidence for the robustness of the presented

calibration method. It also indicates that the derived

diffusivity parameter (Fig. 1b) does not significantly vary

over time and among various soil moisture products.

The NWFSMOS and NWFRES values are generally in

close agreement in terms of seasonal and interannual

variations. However, within the context of the analysis

of the subsurface water balance, maintaining the mass

balance is more important than capturing the tempo-

ral NWF dynamics. The original NWFRES time series

can be calculated by adding the mean values (dashed

straight lines) to the debiased NWFRES time series

shown in Fig. 5. While the bias in most cases is signifi-

cantly smaller than the amplitude of the seasonal NWF

variations, when integrated over time, the small sys-

tematic biases can lead to significant water balance

closure errors. This problem is illustrated in Fig. 6,

where the cumulative NWFRES departs from the TWS

anomaly observed by GRACE for most geographic re-

gions, while the cumulative NWFSMOS is in reasonable

agreement with the TWS anomaly. As discussed above,

while the TWS anomaly is highly correlated with the

cumulative NWF, they are not the same, as they are

FIG. 4. (left) Bias defined as the temporal mean of NWFRES 2 NWFSMOS and (right) debiased RMSD between

NWFRES and NWFSMOS for the period from May 2010 to December 2014.

FIG. 3. Coefficient of determination R2 for monthly (a) SMOS and SMAP soil moisture retrievals, (b) NWFSMOS

and NWFSMAP, (c) NWFSMOS and NWFRES 5 P 2 ET 2 R, and (d) NWFSMOS and GRACE dS/dt.
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composed of different flux components. This is why the

deviation between NWFSMOS and the TWS anomaly in

Fig. 6 should not be solely related to potential modeling

or measurement errors. The deviations are within a few

centimeters for most cases, which is consistent with

the TWS trends reported in Rodell et al. (2018), who

related the trends to climate variability (e.g., sur-

face water changes) and/or anthropogenic activities

(e.g., groundwater abstraction). In contrast, the dif-

ferences between cumulative NWFRES and the TWS

FIG. 5. Time series of studied soil moisture and water fluxes spatially averaged for (a) Asia, (b) Australia,

(c) North Africa, (d) South Africa, (e) North America, and (f) South America. The dashed black straight

lines represent the mean (bias) of the original NWFRES (P 2 ET 2 R) values. The cyan shaded bands show

the NWFSMOS uncertainty bounds associated with the combined 610% uncertainty in monthly soil moisture

and 620% uncertainty in fmax used in Eq. (6). The masked pixels are associated with uncertain SM data

diagnosed from weak correlations (R2 , 0.5) between SMOS and SMAP retrievals.

TABLE 1. Statistical measures associated with the data shown in Fig. 5.

R2 for NWFSMOS vs RMSD (cm month21) for NWFSMOS vs

Region NWFSMAP NWFRES dS/dt NWFSMAP NWFRES dS/dt

Asia 0.94 0.90 0.91 1.06 1.48 1.42

Australia 0.97 0.87 0.56 0.31 0.61 1.12

North Africa 0.97 0.96 0.89 0.82 0.82 1.35

South Africa 0.96 0.95 0.86 0.80 0.79 1.36

North America 0.96 0.45 0.59 0.68 1.22 0.98

South America 0.91 0.91 0.89 0.82 0.81 1.01
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anomaly are well beyond the reported TWS trends and

most likely related to the mass balance errors because of

unknown uncertainties and biases in P, ET, and R data.

From a physical point of view, conservation of mass is

expected for the NWF model in Eq. (5), if there is no

sink (i.e., plant uptake, human extraction) and lat-

eral subsurface flow is negligible. This is inherent in

Richards’ equation, which is derived by combining the

continuity principle (i.e., conservation of mass) and the

Buckingham–Darcy law. Furthermore, the NWF is di-

rectly derived from a single data source, the near-

surface soil moisture. Similarly, a closure problem is

not expected in the residual approach when applying

reanalysis data (e.g., Rodell et al. 2004) or other data-

sets constrained to the continuity principle (Rodell

et al. 2015; Pellet et al. 2019). However, the problem is

unavoidable when independent satellite observations

and ground-based P, ET, and R measurements are

considered.

A sensitivity analysis, not shown here for brevity, in-

dicates that the NWF computation error is proportional

to the error of fmax, since fmax acts like a scaling factor in

the NWF model. For example, increasing fmax by 20%

will lead to about 20% increase in the long-term NWF

mean. Consequently, the subsurface water budget

closure based on this approach is linearly sensitive to

the model parameters and the model parameters only

change the ‘‘magnitude’’ of the estimated long-term

NWF mean, rather than its ‘‘sign’’ (i.e., whether water is

gained or lost).

Noticeably, the ability to directly estimate NWF

provides a new means to retrieve components of the

surface water balance, such as infiltration and runoff,

directly from satellite observations. As illustrated in

FIG. 6. Time series of cumulative water fluxes calculated from the flux rates shown in Fig. 5. The cyan shaded

bands show the NWFSMOS uncertainty bounds associated with the combined 610% uncertainty in monthly soil

moisture and 620% uncertainty in fmax used in Eq. (6).
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Fig. 7, combining ET with NWF estimates enables cal-

culation of infiltration (I 5 NWFSMOS 1 ET), which

currently is challenging to estimate because of the lack

of real-time runoff data (Tourian et al. 2013; Lorenz

et al. 2014; Ghiggi et al. 2019b). In addition, runoff can

be estimated from the infiltration estimates and pre-

cipitation data (R5 P2 I). As observed, the infiltration

estimated with this approach (Fig. 7, top) is in reason-

able agreement withGPCP andGRUNproducts (Fig. 7,

bottom). However, it needs to be mentioned that the

estimates are not free of uncertainty because they are

based on uncertain ancillary data of ET as well as

NWF data that are calibrated with the maximum

NWFRES. The observed deviations in Fig. 7 are most

likely due to such uncertainties and are equal to the

biases (NWFRES 2 NWFSMOS) shown in Fig. 4. The

results presented in Fig. 7 should be viewed as a proof

of concept for the applicability of the NWF model for

estimation of infiltration and runoff, and future work is

essential for a thorough evaluation of these estimates.

4. Conclusions

We introduced a new parsimonious modeling para-

digm that enables the inference of global land surface

net water flux (NWF) from satellite soil moisture prod-

ucts. Direct estimates of NWF with this analytical ap-

proach show similar spatial patterns and temporal

dynamics as the indirect estimates from the residual

approach, NWFRES 5 P 2 ET 2 R. However, the

presented model provides more robust estimates than

the residual method in terms of mass conservation.

Accordingly, the proposed model provides a new op-

portunity to estimate the long-term cumulative NWF

for groundwater depletion/recharge assessment and to

potentially reduce uncertainty in groundwater storage

estimates. Results of this study demonstrate that satel-

lite soil moisture retrievals, despite their shallow vertical

support, contain sufficient information to reveal dynam-

ics of the deeper subsurface water in response to the

surface net water flux, which is consistent with the Koster

et al. (2018) finding that ‘‘near-surface soil moisture re-

trievals contain, all by themselves, information that can

be used to estimate large-scale water budgets.’’

The proposed approach is based on a simple homog-

enous bare soil model that does not explicitly account

for transpiration by deeply rooted plants. Thus, the

presented results over wet climate regimes with strong

seasonal transpiration flux are expected to be highly

uncertain. Future research is needed to advance this

FIG. 7. Estimates of infiltration for January and July 2014 based on (top) NWFSMOS estimates and (bottom)

existing data products. The precipitation P derives from the Global Precipitation Climatology Project (GPCP),

evapotranspiration (ET) is from the Priestly–Taylor Jet Propulsion Laboratory (PTJPL), and the runoff R is ob-

tained from the Global Runoff Reconstruction (GRUN). The bias map shown in Fig. 4 quantifies the mean de-

viation between the two approaches (P 2 ET 2 R 2 NWFSMOS).
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modeling paradigm to explicitly account for the root

water uptake as well as to include more realistic soil

water flow properties and processes such as (i) nonlinear

soil hydraulic functions, (ii) soil layering, (iii) non-

isothermal water and vapor flow, and (iv) upward flow

from shallow water tables. Because an analytical solu-

tion to such complex processes is likely not feasible,

incorporation of above properties and processes may be

achieved with a new numerical model amenable to use

near-surface soil moisture data (an internal condition) to

simulate the surface water flux (a boundary condition).

The expected correlation between the cumulative

NWF obtained with the proposed approach and the

GRACE-observed TWS anomaly signify that the pro-

posed model is capable of retrieving physically consis-

tent NWF at a monthly time scale. Understanding and

interpreting the differences between these two fluxes are

expected to reveal important information about the

contributions of natural and anthropogenic drivers to

subsurface water storage changes, which is a subject of

ongoing research.
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APPENDIX

Steps for Calculating NWF from Satellite SM
Retrievals

1) Assume z 5 2.5 cm, k 5 0.3 cm month21, and D 5
3000 cm2 month21 for all pixels.

2) Calculate u‘ for each pixel as the temporal mean of

SM for the entire study period (2010–17 in this study).

3) Compute the initial time series of NWF [i.e., variable

f in Eq. (3)] for each pixel using Eq. (5) based on SM

data and the parameters from steps 1 and 2.

4) Obtain f 0max for each pixel as the maximum of the

initial NWF estimates obtained in step 3 during the

calibration period (2010–14 in this study).

5) Set fmax at each pixel as themaximum of the debiased

NWFRES during the calibration period (2010–14 in

this study).

6) Determine D for each pixel using Eq. (6) with

D0 5 3000 cm2 month21, f 0max from step 4, and fmax

from step 5.

7) Recalculate NWF time series for each pixel using

Eq. (5) based on SM data, D from step 6, and z, k,

and u‘ from steps 1 and 2.
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