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Abstract

Terrestrial ecosystem and carbon cycle feedbacks will significantly impact future climate, but their responses are highly

uncertain. Models and tipping point analyses suggest the tropics and arctic/boreal zone carbon–climate feedbacks

could be disproportionately large. In situ observations in those regions are sparse, resulting in high uncertainties in car-

bon fluxes and fluxes. Key parameters controlling ecosystem carbon responses, such as plant traits, are also sparsely

observed in the tropics, with the most diverse biome on the planet treated as a single type in models. We analyzed the

spatial distribution of in situ data for carbon fluxes, stocks and plant traits globally and also evaluated the potential of

remote sensing to observe these quantities. New satellite data products go beyond indices of greenness and can

address spatial sampling gaps for specific ecosystem properties and parameters. Because environmental conditions

and access limit in situ observations in tropical and arctic/boreal environments, use of space-based techniques can

reduce sampling bias and uncertainty about tipping point feedbacks to climate. To reliably detect change and develop

the understanding of ecosystems needed for prediction, significantly, more data are required in critical regions. This

need can best be met with a strategic combination of remote and in situ data, with satellite observations providing the

dense sampling in space and time required to characterize the heterogeneity of ecosystem structure and function.
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Introduction

Feedbacks from the global carbon cycle contribute

substantially to uncertainty about future climates.

Twenty years ago, Schimel (1995) summed it up, ‘Lack

of knowledge about positive and negative feedbacks

from the biosphere is a major limiting factor to credi-

ble simulations of future atmospheric CO2 concentra-

tions’. Despite decades of research since then, and

very substantial increases in knowledge, the statement

remains true today. Ecosystems take up a significant

fraction of carbon released to the atmosphere from

fossil fuel burning and deforestation, but if this sub-

sidy declines, the rate of increase in atmospheric CO2

accumulation will sharply increase for any given

emission scenario (Ciais et al., 2013). As a result, the

importance and complexity of the world’s terrestrial

ecosystems have come into sharp focus over the past

few decades.

Despite the significance of terrestrial carbon storage

in the climate system, global ecosystem models persis-

tently diverge on even fundamental predictions of the

sign and magnitude of feedbacks (Piao et al., 2013;

Friend et al., 2014; Hoffman et al., 2014), contributing

substantial uncertainty to the overall accuracy of Earth

system prediction (Bodman et al., 2013). Gaps in theory

contribute to the failure of models (Wieder et al., 2013),

but a lack of critical observations slows to the pace of

development of theory, and its implementation into

models (Keller et al., 2008). In one recent analysis of

observing needs for the carbon cycle, the current state

was characterized as a ‘sparse, exploratory framework’

and the need as being a ‘dense, robust, and sustained

system’ (Ciais et al., 2014). In this study, we analyze the

current state of observations for several critical terres-

trial ecosystem variables relative to their known
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patterns, identify systematic issues with the current

research efforts and suggest potential solutions. For a

comprehensive review of atmospheric, oceanic and

human system observing needs, see Ciais et al. (2014).

Ecosystem observations provide knowledge about

patterns of productivity, species distributions, and

other key characteristics and how they are changing.

These patterns form an important resource for the

development and benchmarking of predictive models,

in concert with experiments and process studies. Pre-

dicting current patterns is both a crucial test of model

skill and a necessary initial condition for forecasts (Luo

et al., 2012). Global models and data syntheses have

been assembled by international collaboration to meet

these requirements and to provide a best estimate of

current patterns (Fisher et al., 2014a). Here, we analyze

the state of observations of three types of terrestrial eco-

system data, all central to model development, analysis

and evaluation. We focus on carbon fluxes–net ecosys-
tem exchange (NEE) and gross primary productivity

(GPP), aboveground biomass and plant traits, three

data sets covering carbon fluxes, carbon stocks and

plant functional diversity.

Flux data represent our best knowledge of the quan-

tity that affects the atmosphere directly and are critical

for inferring flux sensitivity to light, water, tempera-

ture, nutrients and other factors. Biomass, and related

ecosystem structural information, is also critical and

integrates information on the growth environment, dis-

turbance regimes and resulting age structures. In eco-

system models, plant traits define some of the most

variable, important and poorly constrained model

parameters, governing photosynthesis and carbon

uptake, resource-use efficiency (light, water, nutrients),

allocation to tissues with different lifetimes and subse-

quent heterotrophic metabolism.

All three of these types of observations are repre-

sented by large global databases widely used by eco-

system modelers and Earth scientists. While there are

many other data types for global ecology, these three

are represented by large and accessible global data

bases, are the focus of substantial and important litera-

ture, and represent many of the problems, opportuni-

ties and issues that apply to other, less well-developed

observation types. We discuss the current state of these

data types, the role that remote observations can play

and the requirements for sustained observation to

detect and understand the change.

Carbon cycle tipping points

The terrestrial carbon cycle will play a significant role

in future climate change (Friedlingstein et al., 2006).

Models of the climate system show large feedbacks

from terrestrial ecosystems, including simulated nega-

tive feedbacks resulting from increased uptake as

northern ecosystems become less temperature limited

and positive feedbacks from tropical dieback (Fung

et al., 2005). Simulated net positive feedbacks from ter-

restrial ecosystems can cause atmospheric CO2 concen-

trations to be as much as 100 ppmv higher than

simulations with no feedbacks for a specified fossil

emission level, with accompanying climate effects.

However, models disagree wildly about the magnitude

of these feedbacks, partly as a result of data gaps

described above (Pavlick et al., 2013).

Lenton et al. (2008) analyzed potential ‘tipping ele-

ments’ in the Earth system, described as regions where

Fig. 1 Spatial distribution of terrestrial vegetation and soil carbon storage with the three ‘tipping element’ regions identified by Lenton

et al. (2008). The tipping elements coincide with regions of high storage and hence high potential for losses to influence atmospheric

concentrations. Red points show the distribution of carbon flux observations, showing that this network, like the others assessed in this

study have sparse coverage in the tipping element regions. Data from Ruesch & Gibbs (2008) and FAO et al. (2009).
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‘a small change in forcing triggers a strongly nonlinear

response in the internal dynamics of part of the climate

system’. Figure 1 shows Lenton et al.’s terrestrial

carbon tipping point regions, called tipping elements,

superimposed on a map of terrestrial carbon storage.

Specifically, they identified the arctic/boreal zone

(ABZ) as a region where changes in climate could trig-

ger rapid changes to ecosystem carbon storage, and

where, if respiration or combustion were to increas-

ingly dominate over GPP, the massive reserves of car-

bon stored there (Fig. 2) could cause rapid increases in

CO2 and temperature. Lenton et al. also identified the

tropics as a tipping element where either reductions in

GPP or increases in forest dieback as a result of war-

mer, drier climates could lead to the release of biomass

carbon. This release can be rapid, as wood, the main

storage component, can be quickly oxidized to CO2 if

fires increase (Schimel & Baker, 2002).

We evaluate data sets that contribute to basic under-

standing of tipping elements and aid in monitoring

ongoing change through changes to fluxes, biomass car-

bon storage or plant diversity and functional proper-

ties. If the ABZ and the tropics are indeed the location

of climate tipping elements, then theory suggests that

early detection of change requires dense observations

in time and space (Scheffer et al., 2012). In situ observa-

tions generally provide the most direct measurements

of process and mechanism, but are challenged to

achieve the density, coverage and longevity to detect

and attribute change. In this study, we will evaluate the

current distribution of three key types of ecosystem

data, each represented by a major international data-

base, and the potential of new remote sensing tech-

niques to address sampling issues for these variables.

There are many other considerations in using remote

observations, including the relationship between the

satellite observable and the property in question, cali-

bration, validation and standardization of data prod-

ucts and the length of time series required. Although

we touch on many of these issues, we focus on the spa-

tial characteristics of in situ and space-based observa-

tions relative to the Lenton et al. (2008) geography.

Below, we evaluate each data type and the potential to

complement in situ with remote observations.

Available and required global observations

Carbon stocks and fluxes

Measurements of carbon fluxes are a foundation for

understanding ecosystem carbon balance. Eddy covari-

ance flux measurements are widely used to determine

simulated GPP and NEE. An effective global commu-

nity of researchers has evolved and provides increas-

ingly critical flux data collection, evaluation of data

quality and analyses. With more than 500 sites distrib-

uted worldwide, FLUXNET provides worldwide sam-

pling of ecosystems and is widely used in model

development and evaluation (Bonan et al., 2011). Fig-

ure 2 shows the distribution of FLUXNET sites as a

function of climate (temperature and precipitation) and

biome type. There are now sites spanning the climate

range (key drivers for carbon cycling) and covering

most biome types. This broad coverage permits the

development of empirical models and is central in

developing process model parameterizations (Beer

et al., 2010; Jung et al., 2011). Figure 3 shows current

estimates of the global distribution of GPP and total

carbon storage (soils plus vegetation) from a recent

multimodel ensemble (Piao et al., 2013).

Figure 3 also presents a histogram of the distribution

of FLUXNET sites zonally, resulting in quite a different

view of its coverage. Viewed this way, it is apparent

that while FLUXNET’s coverage extends throughout

the world and spans terrestrial climates, the sampling

is biased relative to carbon fluxes. About 85% of FLUX-

NET sites are between 30 and 55 degrees north latitude,

in a region of low GPP and intermediate-to-low carbon

storage. The broad distribution of FLUXNET sites has

demonstrated their value in understanding the princi-

ples of ecosystem carbon exchange (Churkina et al.,

2005; Baldocchi, 2008; Stoy et al., 2009), but using these

data to describe the state of the planet’s carbon cycle

remain problematic (Beer et al., 2010; Jung et al., 2011).

Fig. 2 Eddy covariance sites span much of the world’s climate

variation. FLUXNET sites plotted in climate space (red points),

with the distribution of ecosystems in climate space shown in

gray. Temperature and precipitation are annual means for 1°

latitude–longitude cells. This figure shows the climate-based

coverage of the network: Fig. 3 shows its area-weighted cover-

age, which is quite different.

© 2014 John Wiley & Sons Ltd, Global Change Biology, 21, 1762–1776
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The ability of these data to benchmark global models

depends on extending process-level validation from the

better-sampled to the under-sampled regions, and

given the differences in biotic and abiotic conditions,

this is unlikely to reduce uncertainty sufficiently for

skillful prediction.

The FLUXNET sites span a wide range of variability

in drivers of carbon exchange, but do not sample the full

range of likely variability in rates of carbon exchange.

FLUXNET coverage is severely limited in the high

GPP/high carbon storage tropics, and in the low GPP

but high storage ABZ. Current sampling of the variabil-

ity of ecosystem fluxes is lowest in the regions with

high flux or storage. Extremely low tropical and ABZ

coverage implies near-certain biases, contributing to

uncertainty in model parameterization (Galbraith et al.,

2010; Fisher et al., 2014a,b). Perhaps even more serious,

the ability of such a biased global observing system to

serve as an early warning system for carbon cycle or

ecosystem change may be compromised by low cover-

age in critical regions.

While model development and evaluation have his-

torically focused on in situ data, new remote sensing

technologies are expanding the number of ecosystem

properties that can be quantified from space. Many of

the key stocks and fluxes in Fig. 3 above can, or will

soon, be estimated using remote sensing. Given the

challenges of long-term in situ observations in tropical

and ABZ regions, satellite measurements can make an

increasingly important contribution. Remote sensing

complements the detailed information available in situ

by providing broad spatial and temporal coverage.

Photosynthetic carbon uptake or GPP has been

mapped, somewhat indirectly, from satellite estimates

of light interception using light-use efficiency models

(Sellers et al., 1996), and this product has produced an

increasingly clear view of the distribution of GPP over

the planet, agreeing well spatially with eddy covariance

estimates (Verma et al., 2014). These calculations are

based on the light-use efficiency model where:

GPP ¼ ePARðPAR� FPARÞ ð1Þ
where ePAR is the intrinsic light-use efficiency, FPAR is

the fractional photosynthetically active radiation

absorbed by the canopy and PAR is the incident

amount. Additional terms are typically included to

describe reductions due to stress (water, high tempera-

ture) not captured by the observables. In remote sens-

ing-based approaches, the observables are APAR and

PAR. The actual GPP is constrained by these observa-

tions but can only be calibrated and validated locally

using eddy covariance or other methods (Verma et al.,

2014). These satellite-constrained models of GPP also

show trends (Hasenauer et al. 2012), but the accuracy of

these trends is hard to assess, as few independent data

exist.

A new, related method uses solar-induced fluores-

cence (SIF) to estimate GPP. SIF can be described by:

SIF ¼ eFðPAR� FPARÞ ð2Þ

where eF is the ratio between fluorescence photons

emitted and light absorption. As a result, the two

approaches are related by:

GPP ¼ ePAR

eF
SIF ð3Þ

The combination of SIF and FPAR observations pro-

vides information on both the right-hand side and the

Fig. 3 The two ‘poles’ – tropical and arctic/boreal – of the terrestrial carbon cycle. The modeled distribution of GPP and total (soil plus

vegetation) carbon storage. FLUXNET sampling spans the latitude range of global land, but sampling is sparse in regions with high flux

(GPP) and storage.

© 2014 John Wiley & Sons Ltd, Global Change Biology, 21, 1762–1776
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left of the carbon balance equation. As a result not only

is the driver (FPAR) constrained by observation (e.g.,

from MODIS), the responses (SIF and GPP) are as well.

SIF is important, first, because the efficiencies (eF and

ePAR) are now also constrained by earth observations

and, second, because, during stress, rates of GPP and

hence SIF may respond before leaf area (the control

over FPAR) changes.

The scaling between fluorescence and photosynthesis

from seconds to seasons is complex, and the observed

linear global relationship is not well understood (Van

der Tol et al., 2009; Frankenberg et al., 2011). The satel-

lite measurement is made consistently at mid-day,

under high light conditions and with repeat intervals of

days to weeks (Frankenberg et al., 2012). The satellite

measurement also reflects the canopy SIF response to

absorbed PAR, and so its variation in time and space

reflects incident and absorbed radiation, adding many

factors not usually present in the laboratory. In situ

studies show clear positive correlations between can-

opy SIF and GPP. The efficiency (eF) is determined from

the slope of the SIF: (PAR 9 FPAR) relationship, and

this efficiency seems to vary systematically with stress

(Flexas et al., 2002). While considerable research is

required to fully understand these new observations,

early indications are very promising (Joiner et al., 2012;

Lee et al., 2013). Solar-induced fluorescence can provide

observations and estimates of vegetation stress

responses in regions where flux sites are sparse (Fig. 4).

The space-based technique for measuring SIF makes

use of high spectral resolution remote sensing (Fran-

kenberg et al., 2012; Joiner et al., 2012). Solar-induced

fluorescence photons are emitted in proportional

response to photosynthesis and can be observed by

appropriate instruments in saturated absorption fea-

tures where no reflected sunlight is present (Berry et al.,

2012). SIF measurements are now available, by seren-

dipity, from orbiting sensors like GOSAT and the OCO-

2 satellite, launched in July 2014, but only at low spatial

resolution and coverage (Fig. 5).

This new measurement already shows high correla-

tion with other measures of GPP (Frankenberg et al.,

2011) and has provided information on previously

unknown variability in global photosynthetic rates

(Guanter et al., 2014). While leaf-level relationships

between fluorescence and photosynthetic rates are com-

plex, available data show predictable scaling between

variability in space-based SIF and GPP. SIF comple-

ments the inference of NEE from gradients of CO2 in

the atmosphere from sensors such as GOSAT and

OCO-2 (Miller et al., 2007; Crisp et al., 2008). No direct

measurement of respiration is currently available, but it

could be constrained by simultaneous estimates of GPP

from SIF and NEE from spaceborne measurements of

CO2.

Global estimates of carbon storage are uncertain

(Fig. 3). We assessed the distribution of forest inventory

data compared to a recent space-based estimate of glo-

bal biomass stocks (Fig. 5). Today’s forest inventory

data are biased globally toward the mid-latitudes, with

limited coverage in the high biomass tropical and bor-

eal forests. The distribution of total carbon stored in

live woody vegetation (above- and belowground) along

with the samples of in situ measurements from national

forest inventories (Fig. 5) shows that forests in temper-

ate and boreal regions dominate observations, with

5–15 plots 1000 km�2. Tropical regions are grossly

undersampled by comparison, with <1 plot 1000 km�2

Fig. 4 The global distribution of solar-induced fluorescence, showing its strong correlation to modeled GPP (Fig. 3), compared to

FLUXNET’s distribution. SIF may provide global coverage of GPP, with extensive data in high flux regions, but using existing and

planned satellites, it will provide low resolution in space and time compared to eddy covariance.

© 2014 John Wiley & Sons Ltd, Global Change Biology, 21, 1762–1776
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or about 1000 tropical plots globally. As a result, maps

of tropical carbon do not agree more than suggested by

chance and biases could easily be as high as 30% (Mit-

chard et al., 2014). Brazil is developing a new forest

inventory which will bring coverage to about 2 plots

1000 km�2 (de Freitas et al., 2009). Because of the sparse

plot coverage in the tropics, where much of the world’s

forest biomass is concentrated, spaceborne measure-

ments are critical to expand sample sizes and reduce

bias error (Asner et al., 2014a,b; Saatchi et al., 2014).

Repeat space coverage may also be the best means for

assessing long-term changes to forest carbon stocks, if

sufficient accuracy and length of record can be

achieved to enable quantification of change over time.

Despite the significant aboveground biomass concen-

trated in boreal forests, ABZ carbon storage is domi-

nated by vast stocks of soil carbon (Fig. 5). Because

high-latitude carbon storage is dominated by soils

whose dynamics are controlled by the growing season

length and moisture availability, biomass measure-

ments will be a weaker constraint on the ecosystem

model predictions compared to that in the tropics (Kim-

ball et al., 2000; Kim et al., 2012; Barichivich et al., 2013).

Total and soil carbon storage cannot be observed

directly using remote sensing with current or proposed

technology, but aboveground carbon storage (particu-

larly in wood) can be estimated using active remote

sensing techniques from a combination of radar and

light detection and ranging (LiDAR) sensors globally

(Saatchi et al., 2011). Both radar and LiDAR (Lefsky

et al., 2005; Saatchi et al., 2011; Asner et al., 2012) have

proven extremely useful, although each technology has

somewhat different strengths and weaknesses. LiDAR

measurements provide the most direct estimate of for-

est structure and can be used to estimate forest biomass

(Drake et al., 2002; Lefsky et al., 2005; Asner & Mascaro,

2014). Previous spaceborne LiDAR provided systematic

but sparse sampling of the world with high spatial res-

olution (~0.25 ha) (Lefsky et al., 2005), measuring can-

opy height (Simard et al., 2011), which can be related

statistically to biomass (Saatchi et al., 2011; Baccini

et al., 2012). The recently selected GEDI mission could

update this record with optimized LiDAR sampling for

biomass using the International Space Station as a plat-

form.

Radar observations at long wavelengths (20–80 cm)

are sensitive to the amount of biomass present at land-

scape scales (≥1-ha), by indirectly measuring forest

structure (volume and height) (Shugart et al., 2010).

Radar sensors, unlike LiDAR, provide comprehensive

coverage, and because of their ability to penetrate

through clouds, radar sensors complement LiDAR and

will be used for global observation of forest carbon stor-

age and changes from disturbance and recovery pro-

cesses as part of ESA’s Earth Explorer mission concept

(BIOMASS) and NASA’s Decadal Survey mission (pre-

viously called DESDynl-R, now called NISAR) (Hall

et al., 2011; Le Toan et al., 2011).

Remote sensing complements in situ observations by

providing more extensive and less biased sampling,

while in situ calibration and validation are required to

define allometric ratios and wood density. However,

data from spaceborne sensors overcome the statistically

biased sampling of research plots, particularly in tropi-

cal forests where national forest inventory is not avail-

able and substantially reduce or eliminate spatial

undersampling (Asner & Mascaro, 2014; Saatchi et al.,

2014). LiDAR, radar and even in situ sampling

Fig. 5 The distribution of woody (forest and shrub land) area and biomass, estimated by radar–LiDAR fusion compared to data avail-

ability from forest inventory. The red histogram shows forest inventory plot density in plots 1000 km�2. Similar to flux observations,

biomass data is sparse in regions of maximum storage.

© 2014 John Wiley & Sons Ltd, Global Change Biology, 21, 1762–1776
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approaches require information about wood density

and/or regional variations of biomass allometry to

quantify the vegetation carbon storage accurately, but

these limitations apply to in situ and remote sensing

approaches, emphasizing the need for close coordina-

tion of ground and space-based data collection.

Diversity and functional diversity

Uncertainty about key plant and ecosystem properties,

captured today in plant functional type (PFT) distribu-

tions, is high. Models include a small number of plant

traits to capture functional differences and focus on, for

example, nitrogen concentration, leaf mass per unit

area, the maximum velocity of photosynthesis, lignin

concentration as an index of decomposability and

root : shoot ratios. These plant traits influence growth,

competition, environmental sensitivity and carbon stor-

age, and many of these can be estimated from remote

sensing (Table 1). Traits influence plant’s interactions

with each other, and with other trophic levels, and

determine trajectories of change as competition and

other successional processes occur. These processes

cannot be understood without characterizing the range

of these properties within regions or biomes, and mean

values, as are used in today’s models, are not sufficient.

Today, models use extremely reduced descriptions of

functional diversity to simulate processes. The roughly

250 000 vascular plant species worldwide are repre-

sented in models by 7–22 PFTs (Poulter et al., 2011).

Disaggregation of the information today lumped into a

small number of global PFTs is needed to understand

how ecosystem carbon storage and climate sensitivity

will evolve into the future, and this requires more, and

more systematically collected, knowledge of plant

traits. Models group vegetation into a small number of

PFTs and assign parameter values to each PFT. The

majority of biome-specific parameters in ecosystem

models reflect plant traits affecting photosynthesis, car-

bon allocation, decomposability and other processes.

Table 1 Certain key plant traits may be estimated from spaceborne sensors

Trait name Units

Description/

significance Global range

Measurement

accuracy from

remote sensing

Corresponding

model

quantity/

function Citation

Foliar nitrogen

concentration

mg g�1 Rubisco content,

CO2 fixation, GPP,

decomposition

3–64 mg g�1 <20% RMSE Foliar N, model

state variable

and control

over GPP

Wright et al.

(2004)

[GLOPNET

database];

Reich &

Oleksyn

(2004)

Leaf mass per

area

g m�2 Leaf structure/

density, leaf

physiological

strategy, leaf

longevity

12–1516 g m�2 <3% RMSE LMA, model

state variable

and control

over leaf

longevity

Wright et al.

(2004);

Poorter et al.

(2009)

Chlorophyll

(a + b)

mg cm�2 Light harvesting,

ATP/NADPH

synthesis, RuBP

regeneration

1–150 mg cm�2 <10% RMSE Chlorophyll,

leaf optical

properties,

albedo, Vcmax

Coste et al.

(2010);

Asner &

Martin

(2008)

Lignin

concentration

% Decomposition,

leaf water

transport

2–65% 2 < 5% RMSE Lignin, model

state variable

and control

over

decomposition

Asner &

Martin

(2011)

Maximum rate

of RuBP

carboxylation

lmol m2 s�1 Photosynthetic

capacity/

performance,

CO2 uptake,

0–200 l mol m2 s�1 <15 l mol m2 s�1 Vcmax, model

parameter,

regulates GPP

Singh et al.

(in press);

Kattge et al.

(2011)

The table describes the traits, their global ranges, their measurement accuracy from remote sensing and their role in terrestrial car-

bon models.

© 2014 John Wiley & Sons Ltd, Global Change Biology, 21, 1762–1776
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To assess the data available to characterize plant

functional diversity and PFTs, we examined currently

available data for overall plant diversity (as a measure

of how many PFTs might be required) and functional

diversity, or the data available to estimate parameter

values of an increased number of PFTs. Figure 6 shows

the output of a statistical model of global vascular plant

biodiversity (Kreft & Jetz, 2007), with diversity given in

estimated species per unit area (‘a’ diversity, or rich-

ness). The model predicts diversity as a function of cli-

mate, orography (some data sets span a wide range of

altitudes) and evolutionary history. The figure shows

the estimated diversity for each ~1° grid cell within a

latitude band and indicates the zonal heterogeneity of

diversity at that latitude.

Plant diversity is highest in the tropics, with second-

ary maxima in both hemispheres. High-latitude regions

have low diversity in both hemispheres. Figure 6 also

shows the distribution of observations of important

plant functional traits (used to estimate model parame-

ters) from a major international database (TRY; Kattge

et al., 2011). The figure shows the proportion of all data

on a set of key traits needed by models (Table 1) at any

given latitude. While the total number of observations

is quite large (millions), the observations are most lim-

ited, particularly relative to the level of diversity found

there, in the diverse tropics. The distribution of obser-

vations is biased to the northern hemisphere mid-lati-

tudes, from regions of intermediate-to-low diversity,

while regions of high diversity are under-sampled.

The tropics, containing the bulk of the world’s plant

species, are the most sparsely sampled region. Sam-

pling challenges are worse than might appear from the

plot as the data are dominated by observations from a

few well-studied sites. For example, the large number

of observations at 10°N all come from a single site (the

Smithsonian Tropical Research Institute’s Barro Colo-

rado site in Panama: 9.15 N, 79.85 W), and so sample a

single cell of the many cells at that latitude. Other grid

cells in that latitude have entirely different species and

significantly different climates: the latitude includes

lands in Africa and Indonesia. This sampling outcome

results in the lowest number of trait observations per

unit diversity where diversity is highest. The lack of

coverage in tropical trait data may contribute to current

asymmetries in model parameterization: the species-

rich tropics are represented in the widely used IGBP

system by two forest types (Eidenshink & Faundeen,

1994), while the far less-diverse temperate and boreal

zones have three forest PFTs each. This distribution of

PFTs is determined more by what can be observed with

moderate resolution remote sensing than the actual lev-

els of functional diversity in these regions. Experiments

and models suggest that representation of diversity

influences the way in which ecosystems respond to

change, and so limited representation of heterogeneity

affects system behavior and predictive skill (Hooper

et al., 2005; Alton, 2011; Pavlick et al., 2013; Antonarakis

et al., 2014).

Imaging spectroscopy can quantitatively map plant

diversity because structural and chemical traits influ-

encing spectral reflectance are often distinctive to spe-

cies and have lower variability within species than

between species (Asner et al., 2014a,b; fig. 7). Remotely

observable traits include chemical composition (nitro-

gen and other elements), leaf mass per unit area and

chlorophyll content. This technique, long under devel-

opment, is now routinely applied using aircraft sensors

Fig. 6 Global plant diversity and functional diversity data. The black dots show the estimated number of vascular plant species per

equal area grid cell (�12, 0 km2, �1° latitude 9 1° longitude near the equator) from a statistical model (Kreft & Jetz, 2007). The red his-

togram shows the number of existing in situ measurements of leaf nitrogen concentration in a global trait trait database (Kattge et al.,

2011) per degree latitude. Most data on plant functional diversity come from regions of low to intermediate overall diversity.
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(Asner et al., 2012, 2014a,b), and spaceborne application

is proposed for the 2020s through NASA’s HyspIRI

mission concept (http://hyspiri.jpl.nasa.gov/). Remote

estimates of plant traits are quite different from in situ

estimates, like other remote sensing techniques. Spec-

troscopic estimates of traits integrate over pixels, are

influenced most by the upper canopy and typically

have precision (R2) of 60–90%, with accuracy from 10%

to 20% RMSE (Asner et al., 2014a,b). These uncertainties

are comparable to the precision needs of ecosystem

models (Papale et al., 2006). These are comparable to

estimates from chemical analyses of individual leaves

scaled to canopies (Serbin et al., 2014).

Imaging spectroscopy can estimate the variety, rela-

tive abundance and community turnover of plant spe-

cies at large scales because of the spectral uniqueness of

many plant species (corresponding to species-specific

chemical and leaf structural properties), resulting in an

estimate of diversity parallel to ground-based esti-

mates. This allows estimation of biological diversity

without direct reference to taxonomic identity and so

complements traditional field techniques, but on a spa-

tially explicit basis (F�eret & Asner, 2014). Figure 7

shows an image from the humid tropics, converted first

into a diversity and then into b diversity, or turnover,

using the methods of F�eret & Asner (2014). Figure 7d

shows the range of spectra collected within this region.

Plant traits influencing the observed spectral reflectance

include nitrogen, which in this ecosystem ranges from

~1% to more than 5%, chlorophyll and other pigments.

The low number of PFTs used in the tropics implies

that all the species there are functionally equivalent:

these results suggest functional diversity as great or

possibly much greater than in other ecosystems. Can-

opy reflectances at a benchmark wavelength of

1000 nm range from 30% to 60%, similar to the range

observed globally across all vegetated biomes. The

wide range of canopy traits observed suggests poten-

tially high functional diversity: the range of N contents

in this one forest span nearly the global range (Table 1).

Plant traits influencing growth rate tend to be corre-

lated with wood density (Chazdon, 2014), so improved

mapping of plant traits may also reduce uncertainty in

aboveground biomass estimates. This all suggests that

the classification of the tropical biome as a single func-

tional type reflects the limitations of current remote

sensing instruments and sparse in situ data, and not the

relative functional diversity of tropical forests.

In addition to quantifying patterns of plant diversity,

imaging spectroscopy can be used to quantify aspects of

plant functional diversity. Imaging spectroscopy allows

a number of key plant parameters to be estimated

(Table 1). These parameters largely define plant growth

strategies and can be used to understand plant responses

to climate, competition and herbivory (Coley & Kursar,

2014). Particularly, powerful results can be achieved by

integrating estimates of chlorophyll, nitrogen, LMA and

Vcmax (Wright et al., 2004), which may reveal trade-offs

in canopy growth traits associated with climate change

over time. Table 1 shows the ability of remote sensing to

estimate the key traits described above. Models must

resolve global gradients in these traits, and these global

gradients can be well resolved with anticipated accuracy

and precision. As HyspIRI’s launch is not even sched-

uled yet, and no analogous global mission has ever

flown, this technology cannot be demonstrated in the

same way as GPP (MODIS, GOSAT) and biomass (ICE-

Sat) can, and so is a crucial new Earth observation. How-

ever, space-based hyperspectral sensors are

technologically mature: instruments with similar perfor-

mance to that needed for remote sensing of terrestrial

ecosystems have successfully flown around Mars (Pel-

key et al., 2007) and the Moon (Pieters et al., 2009).

The increase in knowledge of plant functional diver-

sity data that would result from space-based observa-

tions is extraordinary. As Fig. 6 demonstrates, current

observations of plant traits are sparse and biased on

their distribution and the most diverse ecosystems

have the most limited data. Figure 8 shows the

increase in plant trait data that could be obtained via

an imaging spectrometer housed on NASA’s Interna-

tional Space Station (ISS), the most likely location for a

near-term instrument deployment. The simulation

assumes 30 m2 pixels, and a swath width of about

30 km, and an 18-month mission, typical for the ISS.

The simulation takes into account the ISS orbital alti-

tude and path, as the ISS is in an inclined orbit with

varying overpass times, and cloud statistics to generate

an estimate of cloud-free pixels. The simulation

includes only land pixels. The typical number of plant

trait records per degree of latitude is about 10, with

maxima around 1000. For each degree of latitude, a

mission like this could collect 500 million pixels, for a

500 000-fold increase in coverage. As in many cases,

the underlying in situ data are measurements of a few

individual plants or leaves, scaled to the canopy, and

the remote observations are of areas of 10 s of m2, the

information difference is actually hard to compare out-

side of a formal modeling framework. The actual

increase in information is less because of spatial auto-

correlation, redundancy and measurement uncertainty,

but would allow characterizing many more PFTs and

the spatial distributions of traits within biomes and

environmental correlations in far more detail than

available now. Global coverage of plant trait distribu-

tions data would fundamentally change the vegetation

modeling paradigm from its current data-poor to a

data-rich framework (Luo et al., 2012).
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The suite of measurements and mission opportuni-

ties described here does not do justice to the full range

of spaceborne data contributing to global ecology,

which covers a far wider range of properties than

described here, including climate drivers of ecological

processes, land use and land cover change and the

hydrological cycle. An overview of some of these capa-

bilities, focused on climate and hydrological correlates

of carbon cycle processes, is provided in Table 2. The

full range of capabilities related to land imaging of land

use and land cover change is outside the scope of this

perspective, but see NRC (2013).

Conclusions

Important gaps exist in our observations of the terres-

trial carbon cycle, resulting from sparse and biased

sampling of high flux and high storage regions.

Scientists have a sense of these gaps: here, we present

an in-depth analysis of sampling relative to current

(a) (b) (c)

Fig. 7 Airborne high-fidelity imaging spectroscopy provides a direct path to estimation of vegetation diversity. In this example, (a) vis-

ible-to-shortwave infrared (VSWIR; 400–2500 nm) imagery over an Amazonian rainforest was acquired using the Carnegie Airborne

Observatory. The spectral diversity of the forest canopy has been translated into estimates of local-scale (alpha) and landscape-scale

(beta) diversity using the concept of spectral species distributions (F�eret & Asner, 2014). (b) Alpha diversity is shown as the evenness of

canopy species relative abundances within one-hectare grid cells based on the Shannon index. (c) Beta diversity is shown as the dissim-

ilarity of canopy species composition among grid cells based on the Bray–Curtis index. The remotely sensed alpha and beta diversity

were well validated with an extensive field plot network (F�eret & Asner, 2014).
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knowledge of carbon geography. Networks or data sets

assembled post hoc will almost always contain sampling

bias that will limit, or at least influence the inferences

that may be drawn (Lindenmayer & Likens, 2013). New

space-based observations can strongly complement in

situ observations in providing required quantitative

ecosystem information globally. While spaceborne mea-

surements have uncertainty and bias errors of their

Fig. 8 Simulated gain in information from in situ relative to spaceborne plant trait data. Spaceborne data could increase the amount

and coverage of plant trait data by many orders of magnitude. The red histogram shows log of the number of existing in situ measure-

ments of leaf nitrogen concentration in a global trait database (Kattge et al., 2011) per degree latitude on a log scale. The gray histogram

shows the potential number of cloud-free retrievals possible with a proposed 2-year imaging spectroscopy investigation be flown

aboard the International Space Station. Each retrieval would provide data for four critical traits (leaf mass per unit area, chlorophyll

concentration, nitrogen concentration and photosynthetic capacity).

Table 2 The range of quantities available or soon to be available from missions which are either on-orbit or well along in planning

and funding

Model variable

type and identity Technology

Current missions

and mission

concepts* Status Quantity retrieved Key references

Soil water, plant water

stress (canopy water

content, vegetation

optical depth, land

surface temperature)

Passive and/

or active

microwave.

Thermal

SMOS, SMAP,

Aquarius,

ECOSTRESS

On orbit (SMOS)

2015 (SMAP),

ECOSTRESS

(2017–18)

Soil moisture, plant

canopy water

content,

evapotranspiration,

soil freeze/thaw,

surface inundation

Entekhabi et al.

(2010), Lee et al.

(2013)

Precipitation Radar GPM On orbit Rainfall Hou et al. (2014)

Land surface

temperature

Thermal MODIS, VIIRS,

LANDSAT 8,

Sentinel-2,

ECOSTRESS*

On orbit or planned

(Sentinel-2) 2015,

proposed 2018

(ECOSTRESS)

Temperature Wan (2008)

*denotes a mission concept.

Remote sensing can increasingly quantify drivers of ecosystem response, such as land surface temperature, precipitation, soil

moisture and freeze/thaw at spatial and temporal scales useful for model development and in simulations. The range of

quantities available or soon to be available from missions that are either on-orbit or well along in planning and funding.

Combining information on drivers (temperature, precipitation, etc.) with responses (GPP, NEE, NBP), sensitivities or the

derivatives of carbon variables with respect to climate variables can be estimated at large scales, for example, D(GPP)/D
(water stress). Remote sensing is routinely used for quantifying land use, land cover and land cover change. We do not

address remote sensing of land use and land cover change in detail, an area of long-term success using remote sensing

approaches.
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own, they can aid greatly in reducing bias errors associ-

ated with relatively sparse in situ systems through their

coverage and large sample size and can be used to

assess bias and extrapolate limited local information. A

number of questions remain:

What is the minimum observing system needed to

understand and detect change in terrestrial carbon

dynamics? Whatever that minimum is, current networks

do not reach it. Gaps exist in knowledge of the terres-

trial carbon cycle, resulting from sparse and biased

sampling of high flux and high storage regions. Sam-

pling of fluxes is sparse in regions of potentially high

fluxes, sampling of biomass is next to nonexistent in the

highest biomass regions of the world, and plant traits

are least known where their diversity may be highest.

Networks or data sets assembled post hoc will almost

always contain sampling biases that will limit, or at

least influence the inferences that may be drawn (Lin-

denmayer & Likens, 2013). Formal network design

studies should become a required precursor to large or

even individual investment in site selection and infra-

structure development (Schimel et al., 2007; Hoffman

et al., 2013).

Can adequate coverage realistically be achieved by increas-

ing the investment in in situ observations of fluxes, biomass

and plant properties? Although it is tempting to see a

simple explanation for the current distribution of ter-

restrial research sites and data in the distribution of

wealth globally, and the tendency of funding agencies

to support research within their own territories, the

reality is different. The tropics and ABZ face serious

access challenges, with limited or no roads, and

restricted access to electrical power. Complex terrain in

some of the most productive and diverse parts of the

tropics, for example, the western Amazon and much of

southeast Asia, further complicates access and adds to

the challenge of implementing eddy covariance sites.

Installing large towers is expensive and may be in con-

flict with conservation objectives. The incessant biologi-

cal activity of tropical plants and animals and

mechanical effects of ABZ temperatures, freezing and

wind create maintenance issues of their own. Logistical

constraints will limit the number and distribution of

site locations, even if financial resources were available

to achieve sampling density similar to the mid-lati-

tudes. Other approaches must be used to obtain suffi-

cient coverage.

Can remote sensing provide quantitative and compelling

information on ecosystem structure, function and functional

diversity? New space-based observations of structural

variables such as biomass, function, captured in flux

estimates, and key plant traits and functional diversity,

estimated from the spatial variability of fluxes and

traits, can strongly complement in situ observations and

provide quantitative ecosystem information globally,

beyond that available from remote sensing traditional

indices. Spaceborne measurements can reduce bias

errors associated with relatively sparse in situ systems

through their spatial coverage and large sample size

and can be used to assess bias and extrapolate limited

local information. Space-based systems can also mea-

sure drivers of ecological change (Table 2). The evolu-

tion of remote sensing systems that combine estimates

of drivers of ecological change (Table 2) and carbon

cycle responses (Table 3) can, in concert with appropri-

ate and coordinated in situ and calibration/validation

efforts, allow the testing of ecological theory at previ-

ously inaccessible scales.

Can combining in situ and remote observations reduce

sampling bias? Assembling networks and data sets post

hoc carries with it the near certainty of biases: for global

models where calculating the correct integral or aver-

age value is critical, this is a particularly serious issue

(Lindenmayer & Likens, 2013; Soranno and Schimel

2014). In some cases, more data may provide less

insight than the right data from a careful design.

Remote observations, while containing biases of their

own, provide a largely independent reference for

assessing bias in in situ networks and identifying poten-

tial covariates for correction of spatial sampling bias.

What about variables that cannot be sensed remotely?

Using remote sensing for key properties of the bio-

sphere may allow redirection of in situ emphasis to

equally important measurements and experiments, on

soil properties, microbial processes, genomics and tro-

phic processes that cannot be sensed remotely and that

are equally important to prediction. This may be partic-

ularly important at high latitudes where soil processes

dominate potential tipping element processes. Coordi-

nation of in situ and remote observations is critical and

helps with calibration and validation.

Without a coherent set of observations of terrestrial ecosys-

tems and the carbon cycle, can we achieve early warning and

prediction of carbon cycle–climate feedbacks? Most ecosys-

tem observations are initiated for project purposes and,

unlike meteorological observations, not as part of a glo-

bal design to inform or evaluate models and predic-

tions. As a result, and as a consequence of logistical

issues, the current in situ network is sparse in the

regions where carbon cycle feedbacks are most likely,

making detection of changes difficult. Detection alone

is not sufficient: to enable prediction, attribution of

changes to quantified mechanisms is also essential. To

know carbon stocks and fluxes always and everywhere,

coordination of in situ and remote observations is

needed.
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