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Summary

Global ecology – the study of the interactions among the Earth’s ecosystems, land, atmosphere

and oceans – depends crucially on global observations: this paper focuses on space-based

observations of global terrestrial ecosystems. Early global ecology relied on an extrapolation of

detailed site-level observations, using models of increasing complexity. Modern global ecology

has been enabled largely by vegetation indices (greenness) from operational space-based

imagery but current capabilities greatly expand scientific possibilities. New observations from

spacecraft in orbit allowed an estimation of gross carbon fluxes, photosynthesis, biomass

burning, evapotranspiration and biomass, to create virtual eddy covariance sites in the sky.

Planned missions will reveal the dimensions of the diversity of life itself. These observations will

improve our understanding of the global productivity and carbon storage, land use, carbon

cycle�climate feedback, diversity�productivity relationships and enable improved climate

forecasts. Advances in remote sensing challenge ecologists to relate information organised by

biome and species to new data arrayed by pixels and develop theory to address previously

unobserved scales.

I. Introduction

Global ecology studies the interactions among the Earth’s ecosys-
tems, land, atmosphere and oceans: this paper is focused on the
study of global terrestrial ecosystems. Global ecology involves the

understanding of ecosystems at the global scale, the distribution of
productivity, carbon storage, nutrients and energy partitioning
over the planet. Global ecology also involves quantifying how
ecosystems affect the trajectory of global change, through the
carbon and nitrogen cycles, as well as through the Earth’s energy
budget. Global ecology also studies the response of the Earth’s
regional ecosystems to global changes in the planet’s physics, for
example, through changes to rainfall patterns or ocean circulation.

The study of the Earth as a living planet has deep roots in
environmental science, for example inHumboldt’s classification of
ecosystems based on climate factors (Pausas & Bond, 2018), or
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Lovelock’s (2000) writings on Gaia. Global ecology was first
conceptualized in the early 20th century (Vernadsky, 1926), but
remained largely a concept until a few ground-breaking studies
began upscaling local measurements during the International
Biological Program (Aronova et al., 2010). Global measurements
and models emerged at a similar time, with the use of the
NormalizedDifferenceVegetation Index (NDVI) and the first land
surface models for coupling to climate models (Dickinson et al.,
1993).

Global ecologists have posed counterparts to many of the
questions that ecologists have studied locally:
� What is the primary productivity of the globe and how is it
controlled?

� How much carbon does the biosphere store and how could it
change?

� How does direct human exploitation of the biosphere affect
productivity and carbon storage?

� What is the biological diversity of the world and how does it
affect the function and stability of ecosystems?

In 1986, Tucker and colleagues showed that the seasonal
variation in atmospheric CO2 was correlated with the seasonal
phenology of vegetation by compiling a global record of greenness
from the Normalised Difference Vegetation Index, measured from
space, and demonstrated conclusively that the land biosphere
controls a key aspect of the carbon cycle (Tucker et al., 1986). Fung
et al. (1987) combined atmospheric CO2 data and the NDVI with
an atmospheric transportmodel thatwas able to replicate important
features of the surface in situ CO2 observations, laying the
foundation for the development of inverse models to estimate the
CO2 fluxes from atmospheric measurements (Tans et al., 1990).

The - inverse models inferred a large sink in the extratropical
Northern Hemisphere (Tans et al., 1990; Gurney et al., 2002),
instead of the tropical sink expected on ecological grounds. This led
to a 2-decade effort to locate, quantify and characterise the ‘missing’
Northern Hemisphere terrestrial sink (Schimel, 1995; reviewed in;
Schimel et al., 2013, 2015b). Early studies have focused on
estimating a static or climatological carbon budget, recognising
that the cycle was changing, but trying to estimate a stationary
budget, and possibly underestimating how fast change could
happen (Gaubert et al., 2018).

Early global ecologists relied on extrapolation of local-scale
observations, using schemes and models of complexity that have
steadily increased with time, from linear regressions to complex
simulations and machine learning (Rosenzweig, 1968; Field et al.,
1995; Jung et al., 2009) Researchers have studied global patterns of
primary productivity since at least 1968 (Rosenzweig, 1968), with
exponentially increasing amounts of data. For example, Rosen-
zweig used 23 sites, and acknowledged that some of these, and all of
his tropical sites, had questionable data. Fifty years later Smith et al.
(2016) used satellite estimates of annual global terrestrial produc-
tivity derived from > 900 million spatially resolved pixels and
> 1016 observations in the entire time series.

There are many sources of data for global ecology (for example
Wofsy et al., 1993;Ciais et al., 2005; Stephens et al., 2007), satellite

measurements have underpinned many major advances (Thomp-
son et al., 1996). Satellite measurements are increasingly central to
understanding trends in the biosphere as a whole, and as described
above, now characterise a far wider range of ecosystem properties
than just greenness. Today, researchers can begin to see patterns of
actual carbon exchange, storage and key controls emerging on
seasonal to short interannual times scales (Liu et al., 2017), setting
the stage for quantification and explanations of change (Sellers
et al., 2018).

Many global calculations have assumed the biosphere to be stable
or at least stationary, and characterised global properties such asNet
Primary Productivity as stable characteristics, asking what is the
global value of NPP? Early observations compiled data from a year
oryearswithin fairly longwindowsandso,whileRosenzweig (1968)
was forced to combine data collected over varying time periods over
more than a decade into a single regression against evapotranspi-
ration, Myneni et al. (1997), Smith et al. (2016), Baccini et al.
(2017), and Gaubert et al. (2018) have examined change over
decades, identifying strong trends in the behaviour of the biosphere
with increasing climate and land use using satellite greenness, laser
and microwave remote sensing and atmospheric CO2.

Studies of both the emerging biosphericmultidecadal time series
and the paleorecord revealed a dynamic biosphere, responding to
climate and other drivers on a range of time scales. Most of these
studies began in the early 1990s, although a few have made use of
fortuitous data such as Thoreau’s notebooks to create longer
records (Heberling et al., 2019). Progress in understanding
ecological change has more or less paralleled advances in observa-
tions and simulationmodels, while growing in sophistication, have
not yet advanced to convergence on even fundamental sensitivities.
There has been a steady increase in global ecology data, with new
and improved space-based and airborne remote sensing technolo-
gies coming on line (Disney, 2019), sensor networks in terrestrial
(Richardson, 2019) and marine (Roemmich et al., 2009) systems
and growing use of big data compiled from many investigators
(Butler et al., 2017).

Here, we review new observations that are expanding the ability
to understand global terrestrial ecosystems; some equivalent
advances inmarine ecology are described elsewhere (Muller-Karger
et al., 2018). We focus on space-based measurements and key
synergistic surface observing systems. We focus on the suite of flux
and ancillarymeasurements nowmade at eddy covariance flux sites,
as an organising theme. Eddy covariance has enabled break-
throughs by closing local (scales of 104–106 m2) carbon budgets, so
that photosynthesis, respiration and evapotranspiration could be
quantified. Global networks of eddy covariance flux towers
elucidated the large-scale (10–1000 km) controls over those fluxes
while process studies at flux sites revealed the controls over fluxes.
Space-based measurements of ecosystem fluxes and processes now
produce data analogous to eddy covariance sites, a virtual network
of ‘flux towers in the sky’ (Fig. 1).

II. Grand challenges in global ecology

New space technologies can measure a much wider range of
ecosystem properties. This presents both great opportunity and
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great challenge for understanding the Earth’s ecosystems. The
opportunities result from the massive increases in data made
available by remote sensing compared with in situ data collection,
and the reductions in site selection bias as well as the synergistic
nature of many of these observations (Saatchi et al., 2015; Schimel
et al., 2015a; Shiklomanov et al., 2019).

The challenges arise partly from the newness of the observations.
The algorithms to estimate ecological quantities from sensors are
not all mature and, in many cases, they have only been tested in a
limited range of environments. Their uncertainty may be poorly
quantified and all the error sources may not even all be known
(Thompson et al., 2018). For some measurements, or for mea-
surements only tested in a few environments, ecological process
research may have to wait on several field seasons of in situ
calibration and validation of the algorithmic approach!

The advent of the plethora of new space-based measurements,
across all parts of the electromagnetic spectrum, some active (that is,
the sensor emits radiation, not just receives it), means that there is
both a need and an opportunity for ecologists interested in building
the algorithms and refinements to instruments needed to produce
data products with well-quantified uncertainty as well as useful
accuracy and precision. For some new observables, empirical
calibration may be in advance of a theoretical basis explaining the
observed correlations and considerable workwill be required before
the observations are fully understood!

Ecologists have, however, been grappling with the issue of scale
for decades (Risser et al., 1988). The new technologies and
algorithms available from space present opportunities for resolving
or greatly reducing the uncertainty associated with important
questions and hypotheses. Below, we describe a few of the
opportunities presented by the array of new observables:

1. What is the primary productivity of the globe and what
controls it

Global gross and net primary productivity (GPP andNPP) and how
these are changing with climate and human land use are critical for
understanding the Earth as a biogeophysical system, for under-
standing carbon cycle�climate feedback, and for defining limits to
sustainability (Vitousek et al., 1986; Running, 2012; Sellers et al.,
2018). New remote sensing methodologies provide new constraints
on GPP (Frankenberg et al., 2011) and biomass observations over
time from radar and LiDAR provide a direct measure of above-
ground biomass accumulation and loss (Fatoyinbo et al., 2017).

2. How much carbon does the biosphere store and how
could it change

The possibility that carbon cycle�climate feedback currently
mitigates climate change, but could eventually weaken or even
amplify warming, has long been a concern (Woodwell &
Mackenzie, 1995). New, synergistic remote sensing observations
(Liu et al., 2017) have the potential to uniquely constrain the effects
of changing temperature, rainfall, humidity and incident solar
radiation on carbon uptake, respiration and disturbance (Sellers
et al., 2018). Understanding how climate affects the carbon cycle
requires observations at the scale of climate trends and variation and
in the critical, high carbon storage and flux regions of the world
(Schimel et al., 2015a). Space-based measurements have their own
uncertainties and carbonfluxobservationswill remain at a relatively
coarse spatial resolution for some time, but complement in situ
measurements with their coverage of remote regions and multiple
fluxes and controls.
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Fig. 1 Flux towers in the sky: carbon exchange
can now bemeasured at flux tower and global
scales, butwith very different spatial grain and
extent, and partition fluxes differently. Flux
towers have footprints of c. 1 km, while
satellite inversions resolve 100s of km. The
figure illustrates the variables and data sources
for the flux and ancillary measurements in situ
(left) and from space (right). Flux site-scale
measurements are made directly in situ (for
example, height, diameter breast height
(DBH)) or, like soil H2O and T°, leaf area (LAI)
and light interception (APAR), measured with
small-scale sensors while from space they are
estimates with a variety of remote sensing
instruments. See Box 1 for abbreviations.
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3. How does direct human exploitation of the biosphere
affect productivity and carbon storage

Quantifying the direct release of carbon from land use change
and deforestation has been a long-term goal of global ecologists
(Houghton et al., 1983), but precise estimates have long
remained elusive, and trends (decreases or increases) have been
difficult to determine with confidence. Combining the top-
down measurement of carbon budgets from space (Liu et al.,
2017; Sellers et al., 2018) with biomass estimates constrained by
LiDAR and radar holds great promise for determining the
impacts of deforestation and degradation on continental or
subcontinental scales (Bustamante et al., 2016). But besides the
direct human impact on the carbon budget, such as through
deforestation and biomass burning, there are also indirect
effects, for example through forest fragmentation (Brinck et al.,
2017) and biodiversity loss (Isbell et al., 2017).

4. What is the biological diversity of theworld and howdoes
it affect the function and stability of ecosystems

One of the longest running debates in ecology concerns the effects
of changing biodiversity on ecosystem performance (Hooper et al.,
2005; Ives &Carpenter, 2007).While consensus may be emerging
from large-scale experiments and meta-analysis (Hautier et al.,
2015;Oliver et al., 2015), the quantification of large-scale trends in
diversity, and their consequences at scale for ecosystem function
remains a grand challenge. Remote sensing can contribute to an
understanding of the changing ecological diversity and function by
linking remote observations of plant functional traits (Asner et al.,
2017; Schneider et al., 2017) to remote observations of function,
via solar-induced chlorophyll fluorescence (SIF), ET and estimates
of GPP, NPP and respiration (Sellers et al., 2018) rather than
linking taxonomic identity and function, as done in in situ studies.
This approach can provide a synoptic view across large regions (Jetz
et al., 2016), albeit with higher uncertainty and adrift from
taxonomic identity, complementing other sources of data (Sch-
neider et al., 2017).

All of these challenges build towards a critical capability.

5. Canwepredict the future of terrestrial carbon storage and
the role of ecosystems in the Earth system

Accurately predicting the future trajectory of a system requires
knowing its current state and recent past (May 2001). Earth system
models have attempted to predict the future trajectory of theEarth’s
ecosystems, and their carbon storage using very simple represen-
tations of initial conditions, estimated by running models to a
steady state, and constrained by a very limited number (of order <
30) of plant functional types representing the world’s c. 400 000
functionally distinct species. Above-ground and below-ground
processes are linked (as are species), so characterisation of above-
ground dynamicsmay better enable the constraint of below-ground
processes. Fungal species are thought to outnumber plants by c. 6 to
1, and recent estimates suggest as many as 1 trillion microbial
species (Locey & Lennon, 2016). This means that parameters

governing plant function are dramatically simplified from their
underlying complexity. While most current models were built in
the greenness era, modellers are responding to the advent of more
global observation types. Remote sensing of plant functional traits,
biomass (capturing some aspects of disturbance history) and plant
function (SIF and ET) can add substantial texture to the current
schematic representations of the diversity of life in current models,
and have already shown an ability to improve prediction (Fox et al.,
2018).

III. Current advances and capabilities for global
ecology from space

1. Ecosystem carbon balance: ecosystem productivity and
carbon storage

Ecosystem carbon balance has long formed a framework for
understanding ecosystems (Woodwell et al., 1973). Eddy covari-
ance is used to quantify carbon, sensible and latent heat fluxes over
ecosystems. It is the current observational method for understand-
ing the exchange of CO2 and water at the ecosystem scale and
approximating Net Ecosystem Carbon Balance. (NECB) is most
simply summarised as:

NECB ¼ dC=dt ; Eqn 1

or, the change in total ecosystem carbon storage per unit time
(Chapin et al., 2006). Some fluxes contribute to NECB, including
the uptake by photosynthesis, and numerous losses or horizontal
transfers, including respiration, methane production, erosion, and
emission of volatile organic compounds (Unger, 2014). NECB
may be approximated by net ecosystem exchange (NEE) at eddy
covariance spatial scales:

NEE ¼ GPP� Reco; Eqn 2

where GPP is gross primary productivity (photosynthesis) and Reco

is ecosystem respiration, itself the sum of autotrophic and
heterotrophic respiration, the largest fluxes at the scale of a flux
tower (Fig. 1). As will be discussed below, NECBmay also now be
estimated from space, but in a very different framework.

Observationally, NEE can be decomposed, approximately, into
the largest fluxes, GPP and Reco in a number of ways.WhenNEE is
measured using eddy covariance, Reco can be measured at night,
when no photosynthesis occurs and then daytime Reco estimated by
fitting models to the nighttime data (Reichstein et al., 2005).
Extrapolating nighttime Reco to daytime conditions is challenging
and leads to uncertainties resulting from the measurement itself,
deviation from the meteorological conditions or physiological
response assumed and from the fitted nighttimemodel (Wehr et al.,
2016; Keenan et al., 2019).

Remote sensing also allows inverse models to constrain
estimates of NECB, NEE, GPP and Reco as well, albeit at very
different scales. This finding is in contrast with inversions of
flask data that only estimate the net flux of carbon. Classically
(Smith et al., 2016) NPP was estimated by modelling the
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conversion efficiency from absorbed photosynthetically active
radiation (APAR) to accumulation of carbon as NPP, an
approach grounded in theory and local empirical studies
(Monteith, 1972; Running et al., 2004) using an expanded
version of the Light Use Efficiency (LUE) equation, and
estimating APAR from the MODIS sensor:

GPP ¼ e APAR; Eqn 3

where e is light use efficiency or carbon fixed per unit light absorbed
(Running et al., 2004). This approach has been shown to have great
value when implemented globally but depends on independent
estimates of e, as well as requiring empirical adjustment for
moisture and temperature stress, as well as other factors and so
requires complex tuned models for application.

NECB can be estimated from global gradients of atmospheric
CO2, measured by precise and accurate surface analysers or in
flasks, by inverting atmospheric transport models to estimate
regional sources and sinks (Tans et al., 1990; Gaubert et al., 2018).
These ‘inverse’ models are now applied to space-based observations
of atmospheric CO2 (technically the column averaged CO2 dry air
mole fraction, typically denoted XCO2

; see Eldering et al. (2017),
Liu et al. (2017)). These models generate global gridded estimates
of NECB, corrected for other fluxes from fossil fuels and the ocean,
albeit at relatively coarse spatiotemporal resolutions, for example
monthly at 4°9 5°.

However, the spectrometers used for greenhouse gas mea-
surements from space provide an additional benefit (Gu et al.,
2019): By measuring light with very high spectral resolution
(Dk/k c. 20 000) in the chlorophyll red edge (740–780 nm),
they capture SIF (Fig. 2), the waste light produced by
chlorophyll during photosynthesis regulation (Frankenberg
et al., 2011; Joiner et al., 2011) SIF provides a measurement
that has been shown to be largely and surprisingly linearly
related to GPP as measured at flux sites (Frankenberg et al.,

2011; Verma et al., 2017). As SIF is related to photosynthetic
activity, it responds to stress directly, in contrast with LUE
models, in which APAR, driven by leaf area, responds more
slowly. SIF therefore captures aspects of photosynthesis that
must be modelled in LUE approaches.

Using space-based observations, we can close the carbon budget
but quite differently than with eddy covariance, estimating Reco as
the residual of NECB from XCO2

, GPP from SIF and including an
additional disturbance component, fire emissions estimated from
atmospheric CO (Liu et al., 2017; Sellers et al., 2018):

Reco ¼ NECBðXCO2
Þ � GPPðSIFÞ � FireðCOÞ: Eqn 4

The space-based XCO2
measurement is considered NECB rather

than NEE, as it includes the disturbance flux from fire, and covers
large enough regions that horizontal (erosion) export largely occurs
within the grid cell, while the global flux to rivers is corrected in the
inverse model calculation. While the typical footprint of an eddy
covariance tower is in the order of 1 km2, the typical resolution of a
carbon cycle inverse model is 10 000 km2 or even coarser! The
information content of the satellitemeasurements does not support
arbitrary resolution, even if the transportmodelwere perfect (Liu&
Bowman, 2016).

GPP is estimated from SIF using the Berry equation (Sellers
et al., 2018):

GPP ¼ e SIF; Eqn 5

where this e is the amount of photosynthesis per unit SIF emitted,
or the SIF efficiency (Sellers et al., 2018).While e is a variable at the
molecule and leaf level, it appears surprisingly invariant globally
when SIF is measured vs GPP at flux sites, combining the surface
network with remote sensing (Sun et al., 2017), except perhaps
under extreme stress (Verma et al., 2017). These approaches allow
quantification of a few additional ecosystem characteristics, notably

sif ()

sif

0 0.8 1.6 2.4 3.2 4.0
Data min = –10.4, max = 8.3

Fig. 2 High resolution image of solar-induced
chlorophyll fluorescence (SIF) for North
America, capturing patterns of primary
productivity, using early data from the
TROPOMI mission (K€ohler et al., 2018).
TROPOMI has a wider swath and smaller
pixels than most previous missions capable of
measuring SIF, and so provides more frequent
(nearly daily) and high resolution (3.59 7 km)
coverage than previously available. Image
courtesy of Nicholas Parazoo, Troy Magney,
Philipp K€ohler and Christian Frankenberg.
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LUE from SIF and APAR (Verma et al., 2017; Zhang et al., 2018).
So, for example, LUE may be estimated as:

LUE ¼ GPPðSIFÞ=APARðMODISÞ: Eqn 6

Aswewill see later, see section 4.2 estimates of water use efficiency
(WUE) and even nutrient use efficiency (NUE) are also now
possible, though not yet widely implemented (Stavros et al., 2017).

Satellite measurements of CO2, XCO2
, complement the surface

observing network by providing many more measurements (c. 104

more usable measurements per day), and coverage in poorly
covered areas, especially in the tropics, but arguably the new science
enabled by satellite XCO2

results as much from synergism with SIF,
and as wewill see from other newmeasurements, as it does from the
improved coverage (W. Smith et al., unpublished).

How confident can we be of new satellite estimates of the carbon
cycle? There are many uncertainties in estimates from our flux
towers in the sky and not all of these are even understood (Liu et al.,
2018b). Are they comparable with our other sources of insight?
Even this question is difficult. For example, the uncertainties of
eddy covariance compared with remotely observed carbon budget
estimates are quantitatively and conceptually different. The two
approaches are similar in that they both begin with an estimate of
NECB that is itself quite uncertain, and must partition it into
component fluxes by integrating other uncertain estimates. Satellite
estimates may avoid some of the uncertainty issues discussed by
Lasslop et al. (2010) as the NECB and GPP estimates are
independent, while for eddy covariance, they are not. However,
the two estimates are at very different inherent scales. Each eddy
covariance site captures a footprint of c. 1 km2 while assimilation
model grid cells are > 100 km2. To bring uncertainties together at a
common scale could be done by ‘upscaling’ flux towers (Jung et al.,
2009), in which case the uncertainty at 100 km2 is likely to be
dominated by sampling error and ecosystem heterogeneity,
increasing the uncertainty as increasing aspects of the landscape
not sampled by the flux tower are included.

Alternatively, an assimilationmodel grid cell or ensemble of grid
cells could be ‘downscaled’, perhaps by assuming a SIF-NECB
correlation, taking advantage of the smaller pixel size for SIF. The
uncertainty thenwould likely be dominated by a number of factors:
such as noise in the SIF-NECB relationship and NECB uncer-
tainty, which grows as unresolved fine scales of atmosphericmotion
are approached. In either case, if eddy covariance fluxes are upscaled
to assimilation model resolution, or assimilation model fluxes are
downscaled to flux tower resolution, the uncertainty grows,making
finding the right scale to which to compare the estimates a research
challenge (Desai et al., 2011; Liu et al., 2018a). SIF itself may be
more readily compared with flux tower scales, as current satellites
have pixels 3–7 km on a side, comparable with the c. 1 km2

footprint of a flux tower.
The uncertainty of our flux towers in the sky, and the component

fluxes of the carbon cycle derived from these towers, has another
impact on addressing grand challenges, specifically when building
models to predict future carbon fluxes. Carbon cycle assimilation
models work by combining observations and theory within
simulation models. The relative impact of observations vs

‘theory’ (as embodied in the model equations) is determined by
the uncertainty assigned to the data vs the model at each location
and time step when they are compared (Dietze, 2017). Observa-
tional uncertainty is therefore critical when data are used to inform
a forecast, and to the extent that it is poorly understood, the ability
to use observations in prediction is reduced.

2. Water balance

Water fluxes are key to understanding ecosystem processes and
quite central to understanding the carbon cycle. In fact, early
extrapolations of site-level NPP data relied on far more spatially
extensive estimates of actual evapotranspiration, and used the
estimates of AET to estimate NPP (Rosenzweig, 1968; Running
et al., 2004), essentially estimating water use efficiency and
extrapolating via WUE (as opposed to the more recent LUE based
models). Countless analyses show the sensitivity of ecosystem
carbon flux and storage to water availability (Damm et al., 2018)
and recent all-satellite analyses have confirmed the sensitivity of
ecosystem fluxes to drought (Saatchi et al., 2011; Parazoo et al.,
2013; Liu et al., 2017).

As with flux towers, scientists can now studywatersheds from the
sky. Some ecosystem water variables can now be measured from
space. First, and directly relevant to carbon fluxes, is evapotran-
spiration itself. ET is estimated from imaging land surface
temperature (LST) measuring in the thermal infrared portion of
the spectrum (Fig. 3 and reviewed by Courault et al., 2005). If LST
is known, along with energy available (downwelling shortwave,
modelled or estimated from other sensors), and the surface to air
temperature gradient is known, then ET comprises the majority of
the remaining energy balance (Anderson et al., 2011; Bonan,
2015). By closure, using a small number of satellite observations,
ET can essentially be estimated through the cooling effect of water
use. This approach, implemented for a number of sensors, and in a
number of specific algorithms, is now widely used for estimates of
ET, and has been implemented in an innovative sensor,
ECOSTRESS, currently on the International Space Station
(Hulley et al., 2017).

The Earth’s gravity field provides another measure of the water
cycle, allowing total water storage to be estimated. From 2002 to
2017, the GRACE (Gravity Recovery and Climate Experiment)
mission, two satellites (dubbed Tom and Jerry), built jointly by
NASA and the German Aerospace Agency (DLR) orbited in
tandem, the distance between these was measured with great
precision. This measurement continues with GRACE-Follow-On
(GRACE-FO). Local variations in mass on the Earth cause the
satellites to accelerate relative to each other, and the distance
between these can be measured to within 10 lm over 220 km,
allowing a measurement of the gravity field 1000 times finer than
previous estimates (Tapley et al., 2004). As the total amount of
water stored varies with time, due to precipitation, runoff or
groundwater addition or depletion, the mass of a region changes,
and GRACE was able to measure those changes.

GRACE has been used to study the terrestrial water cycle in a
number ofways. For example, it is well known that the ElNi~no�La
Ni~na cycle affects precipitation over land. Boening et al. (2012)

� 2019 Jet Propulsion Lab, California Institute of Technology

New Phytologist� 2019 New Phytologist Trust
New Phytologist (2019) 224: 570–584

www.newphytologist.com

New
Phytologist Tansley review Review 575



showed that precipitation over Australia increased so much during
the 2011 LaNi~na that it had a discernible effect on sea level globally
by affecting soil water storage, measured by satellite altimeters. At
the same time, Poulter et al. (2014) demonstrated that the effects of
this water anomaly enhanced carbon uptake, connecting the carbon
and water cycles as they co-varied with climate. Bloom et al. (2010)
combined satellite measurements of methane and gravity to infer
large-scale controls over methanogenesis in the tropics, showing
correlations between gravity anomalies and CH4 concentrations to
diagnose the influence of the water cycle on CH4 production, and
extending the use of total water storage to a direct estimate of water
cycle controls over biogeochemistry.

Several components of water storage are constrained by
satellite observations. Passive and active microwave observations
can be used to estimate soil moisture, although these
measurements may be limited to water near the soil surface
and in the absence of extremely dense vegetation (Entekhabi
et al., 2010), and this measure of water availability for growth
is being used to inform estimates of carbon fluxes (Jones et al.,
2017).

Saatchi and co-workers have estimated canopy water storage or
vegetation optical depth (VOD), yet another water cycle measure-
ment made from space (Konings et al., 2019). Water in the plant
canopy interacts strongly with microwave radiation, allowing an
estimate of canopy water separate from other forms of water in the
soil or groundwater (Saatchi et al., 2013). Saatchi et al. (2013)
described this in a seminal paper to show that drought in the
Amazon has persistent impacts for multiple years after the actual
drought. Specifically, drought reduced the average VOD and
increased the amplitude of the diurnal cycle in VOD, suggesting
long-term canopy die-back and greater daily water losses with
drought. Lee et al. (2013) then showed that reductions inVODand
changes to the magnitude of its diurnal cycle (Konings et al., 2019)
were well correlated with reductions in SIF, implying a direct

relationship between canopy water changes and photosynthesis
(Damm et al., 2018).

Having addressed water storage and water flux, evapotranspira-
tion, what else might be observed globally and from space? The
SurfaceWater andOcean Topographymission, to launch in 2021,
will use highly precise radar interferometry tomeasurewater surface
heights and quantify, over time, changes to river stage for estimates
of runoff, closing an additional flux in the land surface water
budget. SWOT will improve the quantification of runoff down to
midsized rivers (down to 100 m width) and provide a major
additional constraint on continental and watershed scale water
budgets.

The terrestrial water budget is:

Storage ¼ Precipitation� Evapotranspiration� Runoff ;

Eqn 7

with storage partitioned into:

Storage ¼ Plantþ SoilþGroundþ Surface Inundation
þ Snow and ice:

Eqn 8

Newwater cyclemeasurements will deliver globalmeasurements
for all of the terms in Eqns 7, 8 and , all of which influence
ecosystems. There will be some remaining gaps in time and space
scales, but with far more coverage than available from upscaling
sparse surface data. Storage is constrained by both gravity and
VOD, and partitioned into soil moisture, canopy water (VOD),
surface inundation in wetlands and groundwater. Snow cover can
be estimated from MODIS; algorithms exist to estimate its water
content. ET can be estimated in thermal and runoff from radar
altimetry. Some methods exist for measuring inundation, most

Fig. 3 Evapotranspiration (ET) estimated from
ECOSTRESS on the International Space
Station, for a portion of the Brazilian Amazon,
showing subtle texture in the intact forest and
stark contrasts between intact and deforested
areas. Blue is open water, darker greens are
higher ET, and tans are areas of deforestation.
Image courtesy of Joshua Fisher.
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recently using ‘bistatic’ radar, or analysis of Global Positioning
System signals by special receivers (Jensen et al., 2018) (Fig. 4).

The water cycle links to the carbon cycle through total water
storage, affecting soil moisture, wetlands and soil moisture,
through ET, a direct link to photosynthesis and via VOD, which
is indicative of water stress to the vegetation. Just as eddy covariance
sites measure water flux and a host of correlates with other sensors,
new water cycle measurements extend the flux towers in the sky to
observe terrestrial water cycle. As with the carbon cycle, watersheds
in the sky provide information at scales larger than those typically
studied on the ground, with attendant scale mismatches for
validation, and mismatched uncertainties.

3. Ecosystem carbon storage, structure and diversity

Saatchi et al. (2011) characterised carbon stocks by combining
LiDAR (laser ranging) and radar measurements of vegetation
structure. Researchers have been exploring for some time the
ability of active remote sensing to quantify above-ground
biomass, and the earlier literature was replete with case studies
at site or landscape scales. The Saatchi et al. paper not only
established a baseline estimate based on millions of observa-
tions, rather than a few hundred plots extrapolated globally, but
also captured important systematic differences in canopy height
and biomass between tropical regions, starting to erode the
notion portrayed in models that tropical forests are uniform
across the continents, despite their considerable evolutionary,
geological and climatic differences.

In 2010, no space mission had been specifically designed for
biomass and forest structure measurements, so researchers have
exploited general-purpose radar missions and the GLAS LiDAR
(Box 1), built to measure ice sheet elevations, combined with
optical remote sensing for extrapolation between the relatively
sparse GLAS measurements of canopy height. Importantly, the
spaceborne approach to measuring biomass is fundamentally the
same as measurements on the ground. Canopy height is observed

and converted to biomass using allometric equations (Fischer et al.,
2019) capturing stem architecture with assumed wood densities.

The spaceborne measurement of height is similar to, or better
than, ground-based estimates and involves many more samples,
albeit with fewer corresponding measurements of stem diameter
and other quantities useful for refining allometry. While many
researchers have a higher degree of comfort with estimates made on
field plots, the far greater volume of data, with its ability to both
reduce sampling error and to quantify regional variation not
captured in models for extrapolation, lends remote sensing of
biomass singular advantages (Saatchi et al., 2015).

At this time, substantial investments in measuring biomass from
space have been made. The Global Ecosystem Dynamics Investi-
gation (GEDI), a multilaser LiDAR on the International Space
Station (ISS) is currently on orbit (Fig. 5) and two radar missions
have partial or primary focused on biomass, the European Space
Agency’s BIOMASS mission, and NASA and the Indian Space
Research Agency’s NISAR (NASA-ISRO Synthetic Aperture
Radar), to fly in the early 2020s. GEDI, on orbit from 2018, will
cover the world’s temperate and tropical forests from the ISS orbit
(bounded at 50N to 50S) while NISAR and BIOMASS will be
nearly global, limited by restrictions on the use of active radar in
some regions of the world.

Active remote sensing inherently provides some measure of
forest structure, as well as biomass, if only by characterising the
horizontal variability of canopy height. However, LiDARs provide
more information returning a waveform that captures the vertical
structure of foliage within the canopy, and so provide both vertical
and horizontal aspects of forest ecosystem structure (Lefsky et al.,
2002;Morsdorf et al., 2006), a capability implemented for space by
GEDI (Stavros et al., 2017).

Beyond simply characterising biomass and aspects of forest
structure, such as disturbance, that affect carbon storage, LiDAR
and radar have a great potential to characterise habitat for other
creatures (Zellweger et al., 2013). For example, Goetz et al. (2010)
used LiDAR to map breeding habitats for a migratory bird and the
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Fig. 4 Methane and wetland source region mapping. (a) CH4 in high latitude landscapes. Image from the ABoVE Field campaign, collected with the AVIRIS
instrument, showing strong and very localised enhancements surrounding an Arctic lake, occurring in inundated areas with high carbon availability.While this
instrumentdoesnotquantitatively retrieve theseenhancements as fluxes, it allowsmetre-squaredmappingwhere in a landscapefluxesaremost intense, critical
for trace gaseswhosefluxes are extremely patchy. (b) TropicalCH4 source regions,wetlandextent in theAmazon, derived frombistatic radar using theCyclone
Global Navigation Satellite System (CYGNSS) constellation of satellites, with a high signal to noise ratio (SNR) in blue indicating primarily open water (water
without any standing vegetation) or inundatedwetlands and low SNR in tan colours indicating noninundated vegetation. Images courtesy of (a) Clayton Elder
and (b) Erika Podest and Nereida Rodriguez-Alvarez.
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use of radar and LiDAR for mapping habitat was reviewed by
Bergen et al. (2009). Remote sensing of structure, coupled with
other measures used in situ and now available from space, to
characterise habitat, such as productivity, may allow the study of
migration and habitat use widely and in remote areas, especially in
conjunction with new animal tracking technologies (Wikelski &
Tertitski, 2016).

Over the past several decades, the capability to measure canopy
water, nitrogen (N), and phosphorus (P) composition, correlates of
vegetation function, has been developed (Ustin et al., 1991) to the
point at which it is now operational for airborne sensor retrievals
(Kampe et al., 2010, Fig. 6). This technology will soon be available
from space, initially from the ISS (instruments from Germany,
DESIS, Japan, HISUI and the US, EMIT) and later, globally, via
the US SBG concept (National Academies, 2018).

Visible and Shortwave InfraRed (VSWIR) imaging spectroscopy
can map vegetation and other surface properties over terrestrial

domains.Most studies analyse the properties of the spectral surface
reflectance, related to the fraction of light reflected from the surface
(Schaepman-Strub et al., 2006). Remote sensors do not measure
this value directly, but instead observe the radiance incident at the
aperture. An atmospheric correction is required to compensate for
the spectral radiance loss between the surface and the satellite sensor
due to atmospheric absorption and scattering (Thompson et al.,
2017). The radiative transfer theory required for atmospheric
correction is a mature science and current algorithms perform well
for nadir-looking observations in clear sky conditions (Fig. 6).

Once VSWIR data are corrected for the effects of the
atmosphere, and aspects of the scene such as topography, the
spectra can be used to estimate a wide range of plant functional
traits (Butler et al., 2017). Commonly measured traits are those
closely related to photosynthesis, growth and subsequent decom-
position of leaf material (Singh et al., 2015) (Table 1).

As a critical element in enzymes such as rubisco, amino acids and
chlorophyll, nitrogen has long been considered a key control over
terrestrial carbon uptake and storage (McGuire et al., 1995) and a
target for remote sensing (Schimel, 1995). The combination of
nitrogen and lignin is an important control over decomposition
(Aber &Melillo, 1982) while phosphorus may be limiting in some
ecosystems with highly weathered soils or where nitrogen is
abundant, for example through anthropogenic deposition. Detec-
tion of additional compounds (sugars, starches, phenolics) from
imaging spectroscopy may further enable the characterisation of
plant economic investment strategies, for example in defence,
reproduction, etc. Just as in situmeasurements of canopyNmay be
related to GPP and NEE at sites where carbon fluxes are measured
in situ, the large-scale relationships between canopy chemistry and
plant function may be assessed globally when canopy nutrients are
measured from space in conjunction with SIF, ET and other new
space-based measurements.

Remote observations of plant functional traits allows finer
distinctions geographically than the use of a small number of plant
functional types based on greenness, phenology and other
attributes accessible with multispectral sensors such as MODIS
(Asner et al., 2017). Aswith remote sensing of canopy structure, the
implications of remote sensing of canopy chemistry go far beyond
an understanding of the carbon balance of ecosystems, as chemical
traits may influence the export of nutrients to receiving waters,
defence against herbivory, food quality for herbivores and other
aspects of habitat.

Recently, it has been shown that VSWIR imaging spectroscopy
can even quantify plant diversity across landscapes and directly
contribute to the understanding of biodiversity (F�eret & Asner,
2014; Dahlin, 2016). Biodiversity analyses exploit the high
dimensionality of spectroscopic data: in which multispectral
sensors typically have around three significant principal compo-
nents, spectroscopic data may have 15–50, depending on method-
ology and scene (Schimel et al., 2013;Thompson et al., 2017). This
extraordinarily high information content suggests that current
algorithms may just have scratched the surface of the biological
information inherent in spectroscopy, much less in combination
with other remote sensing modalities (Asner et al., 2012; Cawse-
Nicholson et al., 2013).

Box 1Glossary

ABoVE Arctic Boreal Vulnerability Experiment
AET Actual EvapoTranspiration
APAR Absorbed Photosynthetically Active Radiation
AVIRIS Airborne Visible/Infrared Imaging Spectrometer
BIOMASS European Space Agency mission
CO Carbon Monoxide
DBH Diameter at Breast Height
DLR Deutsches Zentrum f€ur Luft- und Raumfahrt,

Germany
ECOSTRESS ECOsystem Spaceborne Thermal Radiometer

Experiment on Space Station
EMIT Earth Surface Mineral Dust Source Investigation
ESA European Space Agency
ET EvapoTranspiration
GEDI Global Ecosystem Dynamics Investigation LiDAR
GLAS Geoscience Laser Altimeter System
GPP Gross Primary Productivity
GRACE Gravity Recovery and Climate Experiment
HISUI HyperSpectral Imager Suite
ISRO Indian Space Research Agency
LAD Leaf Area Distribution, or leaf area by height
LAI Leaf Area Index
LST Land Surface Temperature
LUE Light Use Efficiency
MODIS MoDerate Resolution Imaging Spectroradiometer
NECB Net Ecosystem Carbon Balance
NEE Net Ecosystem Exchange
NISAR NASA-ISRO Synthetic Aperture Radar
NPP Net Primary Productivity
PAR Photosythetically Active Radiation
Reco Ecosystem Respiration
SIF Solar (or Sun)-Induced Fluorescence
SBG Surface Biology and Geology
TIR Thermal InfraRed
TROPOMI TROPOspheric Monitoring Instrument
VSIR Visible and Shortwave InfraRed
VOD Vegetation Optical Depth
XCH4 Column mole fraction of methane
XCO2 Column mole fraction of carbon dioxide
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While most current spectroscopic data have been acquired from
aircraft, or from sensorsmore limited than the emerging generation
capable of retrieving awide range of plant functional traits, data sets
now exist that can show how functional diversity may be
characterised across widely divergent ecosystems (Martin et al.,
2018) and various estimates related to plant functional diversity are
shown in Fig. 6. In concert with massive crowd-sourced data sets,
next-generation imaging spectroscopy retrievals will not only allow
plant functional traits to be related to plant function (photosyn-
thesis, respiration, evapotranspiration), but are also poised tomake
contributions to biogeography and macroecology (Butler et al.,
2017).

4. CH4, the other carbon

Methaneemissions (CH4)are an importantecosystemflux,andCH4

has been observed from space since the mid-1980s (Atmospheric
Trace Molecule Spectroscopy (ATMOS), Michelsen et al., 2000).
While, as noted above, Bloom and others have used global CH4

estimates from space and other Earth observations to model its flux,
CH4 can also be imaged at very high resolution using imaging
spectroscopy,making use of its very strong absorption features in the

shortwave infrared (Kort et al., 2014).This capability is beingused to
mapaspectsof thehumancarboncycle, suchasCH4leaks (Kort et al.,
2014), but can also be used to visualise patterns of CH4 flux at the
landscape scale, scales not practical to survey with in situ techniques,
and obscured by the low resolution of global sensors (Fig. 4). This
newcapability, availableonaircraft,but feasible fromspace,promises
to address scaling challenges that have plagued trace gas research for
decades (Matson et al., 1989). Methane, notoriously produced in
small regions of the landscape, as in Fig. 4(a), also benefits from am
ever-improving mapping of wetlands, as in Fig. 4(b).

IV. Meeting the challenge

Meeting the challenges of global ecology by integrating the plethora
of new observations to build a system of flux towers in the sky
requires addressing some outstanding issues. Key areas for effort
include:

1. Uncertainty quantification

To distinguish real phenomena, and combine observations from
multiple sources in model statistical and data assimilation models,
the uncertainty of each observation must be well quantified, to
balance its influence against other sources of information (Fox
et al., 2018). Individual satellite observations often have complex
sources of random and systematic errors (Hobbs et al., 2017)
therefore correctly computing the uncertainty becomes all themore
complex when using multiple satellite observation records (Liu
et al., 2017; Fox et al., 2018). At the same time, the extraordinary
coverage and detail from satellite remote sensing data reduces
sources of error that may dominate inference from in situmethods
(Saatchi et al., 2015; Schimel et al., 2015a).However, independent
validation of satellite estimates remains a serious challenge, in part
because of the mismatch in scale between in situ and remote
estimates, and novel techniques involving aircraft (Desai et al.,
2011) and networks (Jung et al., 2009) are needed.
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Fig. 5 Simulated GEDI observations, using data collected by an airborne LiDAR and algorithmically converted to emulate GEDI to characterise a Sierra Nevada
forest using the method of Hancock et al. (2019) to characterise it as would be observed from space. (a) GEDI sampling over imaging LiDAR, with each circle
showing aGEDI sample, colour-coded to indicate the corresponding height. (b) An inset image, showing the simulatedwaveformGEDIwould retrieve at each
sample point over a 2-yr observation period, over the reconstructed canopies from imaging LiDAR. The image shows mapped canopy height over a complex
mountain landscape. Image courtesy of Fabian Schneider and Antonio Ferraz.

Table 1 Targeted observables (specific quantities identified as priorities for
new NASA observing systems): plant functional traits and their estimated
uncertainty after retrieval, based on independent validation.

Functional trait Units
Normalised uncertainty,
retrieved (Singh et al., 2015)

LMA gm�2 11%
Nitrogen % dry mass 16%
Chlorophyll ngmg�1 8%
Lignin % dry mass 12%
Phosphorus % dry mass 16%

Normalised uncertainty, uncertainty in original units/mean value (Serbin
et al., 2014). LMA, leaf mass per unit area.
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2. Algorithm development

Algorithms – the mathematical procedures that convert sensor
measurements, usually counts of photons at a detector, into
meaningful biogeophysical quantities – for new satellite observ-
ables can be extraordinarily complex, and their development
constitutes a field in itself. In many cases, the usability of satellite
data products depends directly onhow the datawere processed. Yet,
for new satellite observables, a relatively small community is
engaged in developing and testing these procedures, and, in
contrast with the recognised subfield of satellite meteorology, few
programmes teach the foundational techniques. The mathematics
and computation underlying most satellite algorithms are well
within the experience of current ecology graduates, save perhaps for
the sheer data volumes that may be involved.

3. Modelling and data integration

The seamless fusion of new global satellite observations, in situ
measurements and modelling of biology is key to the success of
global ecology, combining observations of different processes and
at different scales (Wikle et al., 2001). Remote sensing can observe
over large scales and down to fairly fine detail while uniquely
observing landscape change, but the fundamental units of biology
are organisms or even genes, and these are not usually observable
from space since satellite observations usually characterise plant
canopies. Learning to combine the power of space-based global
observations with increasingly massive compilations of biological
measurements is a grand challenge, and the basis for predicting the
impacts of global change on the world’s ecosystems (Jetz et al.,
2016).

Measurements from satellites now on orbit and planned in the
near future open a second golden era of terrestrial remote sensing,
following the successes of the MODIS/LANDSAT era. MODIS,
LANDSAT and their international counterparts, saw the living
planet in shades of green, while the following generation of sensors
observed terrestrial ecosystems in terms of fluxes (SIF, GPP, CO2

and CH4), ecosystem state variables (height and biomass, canopy
chlorophyll and chemistry) andwater variables (precipitation, total
storage, soil moisture, canopymoisture and runoff). The transition
is analogous to the transition from monochrome black-and-white
(or green-and-white) TV to full colour: with multispectral sensors
we observe the world in shades of green; with the new generation of
sensors we begin to observe a full spectrum of ecosystem states and
fluxes.

In parallel, models greatly simplify the diversity of life and the
legacy of disturbance. Current Earth systemmodels paint the Earth
as having 10–30 plant functional types, although, in fact, the Earth
hosts > 350 000 plant species. Global models spin up initial
biomass to levels in equilibriumwith climate and fail to capture the
fine-grained mosaic of disturbance, degradation and regrowth, as
well as cohorts of less-disturbed vegetation affected by wind, fire,
insects, pests and pathogens and other influences that affect
biomass and species distribution. These factors are well known by
ecologists and have been addressed in local studies (B€urgi et al.,
2017) but data have simply been inadequate to address the
complexity of global ecosystems.

New observations from space as described above can potentially
provide huge volumes of synergistic data on ecosystem fluxes, state
variables and parameters. The new measurements are more
informative in combination, forming a virtual flux tower site,
and allowing flux partitioning and the analysis of relationships of
carbon flux to the water cycle, to ecosystem structure and
composition and to disturbance. Taken together, the suite of new
observations form an enhanced basis for prediction (Fox et al.,
2018). The ‘BlueMarble’ image of the view of the Earth emphasises
the role of life on Earth (Mayer, 2016) while new measurements
will expose the diversity of life on our living planet (Merow et al.,
2017). As physical flux tower sites do locally, flux towers in the sky
provide an integrative view of the Earth’s ecosystems.
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Fig. 6 Algorithms for canopy composition are approaching maturity for
global application and can provide comprehensive information on plant
functional traits and their diversity within biomes. Retrieved patterns of
canopynitrogen inRed�Green�Blue (RGB),phenolics and leafmassperunit
area in two contrasting ecosystems, Kluane, Yukon, Canada and Sholayar,
Kerala, India, retrieved with the same algorithm from AVIRIS airborne data.
The three traits are combined in the image using a Red�Green�Blue
algorithm. The inset maps show the site locations. Figure courtesy of Fabian
Schneider and Philip Townsend.
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