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Abstract Multimodel ensembles (MME) are commonplace in Earth system modeling. Here we perform
MME integration using a 10-member ensemble of terrestrial biosphere models (TBMs) from the Multiscale
synthesis and Terrestrial Model Intercomparison Project (MsTMIP). We contrast optimal (skill based for
present-day carbon cycling) versus naive (“one model-one vote”) integration. MsTMIP optimal and naive
mean land sink strength estimates (—1.16 versus —1.15 Pg C per annum respectively) are statistically
indistinguishable. This holds also for grid cell values and extends to gross uptake, biomass, and net ecosystem
productivity. TBM skill is similarly indistinguishable. The added complexity of skill-based integration does
not materially change MME values. This suggests that carbon metabolism has predictability limits and/or
that all models and references are misspecified. Resolving this issue requires addressing specific uncertainty
types (initial conditions, structure, and references) and a change in model development paradigms currently
dominant in the TBM community.

1. Introduction

Multimodel ensembles (MME) are common in Earth system modeling and are routinely generated for model
intercomparison projects (MIPs), e.g., Coupled Model Intercomparison Project Phase 3 (CMIP3) [Meehl et al.,
20071, CAMIP [Friedlingstein et al, 2006], CMIP5 [Taylor et al., 2012], and Intersectoral Impact Model
Intercomparison Project [Warszawski et al, 2013]. Two central challenges associated with MMEs are integration
(how individual ensemble members are combined into a single-ensemble value) and interpretation (how
MMEs inform our understanding of Earth system processes and their uncertainties) [Annan and Hargreaves,
2010; Christensen and Boberg, 2012; Knutti, 2010; Hacker et al,, 2011; Stephenson et al, 2012; von Storch and
Zwiers, 2013; Zhao et al, 2013]. Integration methods range from “model democracy” or “one model-one
vote” where ensemble integration is the mean across all models [Zhao et al, 2013] to linear combinations of
ensemble members informed by model error [Eckel and Mass, 2005], degree of independence [Abramowitz
and Gupta, 2008; Abramowitz, 2010; Masson and Knutti, 2011], or model skill, e.g., Bayesian model averaging
[Raftery et al, 2005], reliability ensemble averaging [Giorgi and Mearns, 2002], and “superensembles” [Stefanova
and Krishnamurti, 2002]. Regardless of approach, integrated ensembles typically show higher skill than all
or most of the ensemble members [Raftery et al.,, 2005] and are often used as the “best estimate” in climate
change assessments [Intergovernmental Panel on Climate Change, 2007, 2010, 2013].
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Ensemble methods may also be used to explore the uncertainty in model simulations that arises from internal
variability, boundary conditions, parameter values for a given model structure, or structural uncertainty due to
different model formulations [Fisher et al., 2014; Hawkins and Sutton, 2009; Huntzinger et al., 2013; Knultti et al.,
2010]. Uncertainty is typically quantified as some measure of spread across the ensemble, e.g., standard
deviation. An important consideration here is whether the ensemble is broad enough to represent
uncertainty [Annan et al,, 2011]. “Broadness” relates to how well the ensemble samples representations of a
particular process. As an example, an ensemble that does not represent subgrid scale cloud formation or the
soil moisture-precipitation feedback will not directly inform uncertainty related to these processes.

Traditionally, MME studies have focused primarily on the atmospheric component of Earth system models. This
is related to the legacy of numerical weather prediction (NWP), which serves as the basis for the atmospheric
component of climate models [Sigalotti et al, 2014; Lynch, 2008], and where leveraging ensemble forecasts
has a long tradition [e.g., Epstein, 1969]. In contrast, analyses of MME integration and interpretation
have received significantly less attention for terrestrial biosphere models (TBMs)—the land component
of climate or Earth system models—despite several large-scale model intercomparison projects, eg.,
Vegetation/Ecosystem Modeling and Analysis Project [Melillo, 1995], Potsdam net primary productivity (NPP)
MIP [Cramer et al, 1999], the North American Carbon Program Interim Site [Schwalm et al, 2010] and Regional
Syntheses [Huntzinger et al.,, 2012], the Trends in Net Land-Atmosphere Carbon Exchange [Piao et al, 2013], and
the Multiscale synthesis and Terrestrial Model Intercomparison Project (MsTMIP) [Huntzinger et al,, 2013].

Apart from equal weighting, MME integration generally requires some basis (e.g,, model skill and error) to
inform a linear combination of ensemble members. However, uncertainties or model error are not routinely
available for TBM outputs, e.g., perturbed-physics ensembles are rare [e.g., Booth et al, 2012; Huntingford
et al, 2009; Zaehle et al, 2005]; and “truth” for TBMs, especially at the coarse spatial resolutions that typify
TBM output, is not well constrained. Furthermore, total simulation duration for TBMs (years to centuries) is
usually much longer than for NWP (days to weeks), resulting in a longer validation cycle. Despite these
ongoing challenges for TBM ensemble integration, there is a clear need to better compare TBMs to each
other and other independent estimates of land-atmosphere carbon dynamics to better constrain the past
and future evolution of the terrestrial carbon land sink.

In this study, we develop a methodology that uses an MME to generate a best estimate of land-atmosphere
CO, flux and its associated uncertainty. Our approach uses 10 state-of-the-art TBM simulations from a model
intercomparison study with a prescribed simulation protocol [Huntzinger et al., 2013; Wei et al.,, 2014]. The
principal goal of this study is to contrast the extent to which an “intelligent” skill-based integration differs
from naive integration. In the following section, we describe the model ensemble and its integration with
optimal weights derived using model-reference mismatch or benchmarking [Luo et al,, 2012]. In section 3,
we contrast the naive case (one model-one vote) with the optimal case. Lastly, in section 4 we discuss the
implications of our findings and suggestions for future research.

2. Model Ensemble and Integration

The model ensemble is drawn from the Multiscale synthesis and Terrestrial Model Intercomparison Project
(MsTMIP) [Huntzinger et al, 2013]. MsTMIP uses a prescribed simulation protocol to isolate structural
differences in model output, with driving data, land cover, and steady state spin-up all standardized across
models [Wei et al, 2014]. MsTMIP global monthly model runs span a 110year period (1901-2010) and use a
semifactorial set of simulations where time-varying climate, CO, concentration, land cover, and nitrogen
deposition are sequentially “turned on” after steady state is achieved [Huntzinger et al,, 2013]. For this study,
we use the simulation results from 10 TBMs (Table 1) released under MsTMIP version 1 (http://nacp.ornl.gov/
mstmipdata/mstmip_simulation_results_global_v1.jsp). Here simulations have all factors enabled (MsTMIP
simulation BG1). For the subset of models that do not include a nitrogen cycle, SG3 runs (which exclude
nitrogen deposition but are otherwise identical to BG1) are used.

For model integration, i.e., combining ensemble members to a single-integrated value, we contrast two use
cases (i) the ensemble mean where each model is weighted equally (hereafter: naive case), and (ii) an optimal
case where weights are derived using reliability ensemble averaging (REA) [Giorgi and Mearns, 2002]. We
apply these two use cases to four variables: net ecosystem exchange (NEE, i.e., land sink strength), gross
primary productivity (GPP), vegetation biomass, and net ecosystem productivity (NEP). MsTMIP definitions
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Table 1. Characteristics of Terrestrial Biosphere Models and Reference Data Sets®

NEE NEE NEP GPP Vegetation
Model Run Components (PgC yr71) (PgC yrq) (PgC yr71) Biomass (Gt C) Reference
BIOME-BGC BG1 F —0.38 6.46 138 1138 Thornton et al. [2002]
cLm BG1 D/F/E\ yc/P 0.16 4.46 142 668 Mao et al. [2012]
CLMm4VIC BG1 D/F/E yc/P —0.15 3,57 112 550 Lei et al. [2014]
DLEM BG1 ELuc/P —1.51 2.18 105 475 Tian et al. [2012]
GTEC SG3 P —2.79 9.67 187 986 King et al. [1997] and
Ricciuto et al. [2011]
ISAM BG1 Eruc 0.24 1.49 99 642 Jain and Yang [2005]
LPJ SG3 F/ELuc —0.53 10.55 138 536 Sitch et al. [2003]
ORCHIDEE-LSCE SG3 E uc/P —1.84 6.68 118 460 Krinner et al. [2005]
VEGAS2.1 SG3 F/E yc/P —-1.11 4.48 117 597 Zeng et al. [2005]
VISIT SG3 - —3.63 3.63 122 763 Ito [2010]
MsTMIP median - - - - 120 620 This study
FLUXNET-based GPP - - - - 119 - Jung et al. [2011]
IPCC vegetation Biomass - - - - - 491 Ruesch and Gibbs [2008]
Naive integration - - —1.15 532 128 681 This study
Optimal integration - - —1.16 5.76 136 699 This study

¥Native 0.5° spatial resolution for all TBMs. NEE components refer to aspects of biosphere-atmosphere exchange included in NEE: D, maintenance respiration
deficit; F, fire emissions; E, ¢, land use change emissions; P, product decay emissions. VISIT does not include any of these components. The MsTMIP median model
is used for convergence-based reference factors. Carbon fluxes and biomass model values are 1982-2008 global means.

for NEP and NEE are NEP=GPP — R, —R; and NEE=R, + R, + E,yc + P — GPP, respectively, where Ry, is
heterotrophic respiration, R, autotrophic respiration, E yc emissions from anthropogenic activities (e.g.,
deforestation, shifting agriculture, and biomass burning) that cause land use change [Le Quéré et al.,
2013], and P is emissions due to harvested wood product decay.

The weights required for the optimal case are derived using REA. This method uses reference data products
and model-reference mismatch [Luo et al., 2012] as well as intermodel spread [Giorgi and Mearns, 2002] to
determine model reliability:

Ri =TI,f}” (1)

where R; is the model reliability factor for model i at a given land grid cell, f; represents model skill relative to
reference factor j, and m; is a weighting factor. The m; exponent term gives the relative importance of model
skill for each reference factor j [Eum et al,, 2012]. In this study, all m; are initially assumed equal at unity and we
calculate reference factors for gross uptake and biomass. We note that while more directly observable
quantities (e.g., evapotranspiration per basin or the global residual carbon sink) are available, we use
gridded references to recover the spatial morphology of skill and reliability at the scale at which MsTMIP
simulations are executed.

For gross uptake, we use the global GPP MPI-BGC product based on upscaled eddy covariance (FLUXNET)
data [Beer et al, 2010; Jung et al, 2011]. GPP is the largest global carbon flux [Beer et al, 2010], the
dominant carbon input source for terrestrial ecosystems [Chapin et al., 2006], and is important in model
benchmarking as TBMs simulate carbon dynamics “downstream” of GPP, i.e,, errors in GPP propagate to
errors in carbon stocks and other fluxes [Schaefer et al, 2012]. The MPI-BGC GPP data set is available
monthly at 0.5° spatial resolution from 1982 to 2008 and is routinely used in benchmarking [e.g., Anav et al.,
2013; Piao et al,, 2013]. While the MPI-BGC product also includes NEE (—17.1 £4.7 Pg C per annum), it differs
markedly from other estimates, e.g., —2.6 + 0.8 Pg C per annum from the Global Carbon Project [Le Quéré
et al., 2013; http://www.globalcarbonproject.org/]. This bias is also present in upscaled ecosystem
respiration and is related to processes not well resolved [Jung et al, 2011] by FLUXNET (e.g., land use
change, fire emissions, postdisturbance recovery, export of carbon by biomass harvesting and soil erosion
[Regnier et al., 2013], and carbon emissions from reduced carbon species [Ciais et al., 2008]).

The biomass reference is taken from the Intergovernmental Panel on Climate Change (IPCC) Tier-1 vegetation
biomass product [Ruesch and Gibbs, 2008]. This product is based on specific biomass (above and belowground)
values for 124 carbon zones mapped using geospatial data sets of global land cover, continent, ecofloristic
zone, and forest age. On multidecadal scales, vegetation biomass contributes to net land-atmosphere
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exchange of carbon [Houghton, 2005] and has direct implications for assessing forest deforestation [Keith et al,
2009], especially reductions in emissions from deforestation and forest degradation in tropical forests [Gibbs
et al, 2007]. This data set is available for circa 2000 on a 10 min global grid and is regridded using box
averaging to 0.5° spatial resolution.

Using these two reference products, we derive, for each grid cell over the 1982-2008 period, seven reference
factors (Table S1 in the supporting information) used to calculate R;. These factors are bound by zero and unity,
and quantify (i) bias in mean long-term GPP (fg)), (ii) bias in the standard deviation of mean long-term GPP (f, ),
(iii) convergence [Giorgi and Mearns, 2002] in simulated GPP (f¢), (iv) bias in GPP trend (fr;), (v) correlation in
GPP (f,)), (vi) bias in biomass (f3,), and (vii) convergence in simulated biomass (f,;). The convergence factors
address intermodel spread whereby higher convergence indicates that simulation output is largely insensitive
to TBM, i.e, a robust signal is found across the majority of models [Giorgi and Mearns, 2002]. All reference
factors (except f,)) are based on normalizing uncertainty by the absolute difference between the reference and
simulation. Finally, all factors use well-established skill metrics from intercomparison studies [e.g., Cadule et al,
2010; Exbrayat et al,, 2013; Fisher et al, 2014; Luo et al, 2012] and address both the distance between simulated
and reference values as well as their correlation and variability in time and space.

With each reference factor defined and equal importance, equation (1) simplifies to

R,’ = fB‘i X fgr,' X fc,‘ X fT‘,‘ X fPJ X fﬁ‘,' X fy‘,' (2)

These R; values are then normalized to composite model reliability (E;) for each model, i.e., R;is scaled to sum

to unity across all n models in the ensemble (ZL R = 1> for each grid cell. These reliabilities, R, serve as

optimal weights for MME integration
F=>"TRF 3)

where Fis one of NEE, GPP, vegetation biomass, or NEP for model i, and F, optimally integrated F, is calculated
for each vegetated grid cell, i.e., although R; is derived using GPP and vegetation biomass, it is used for all
four variables.

To assess uncertainty of the optimal integration, we generate 1000 bootstrap replicates by randomly varying
the relative importance of each reference factor m; from 0 (i.e., excluded from reliability calculations) to 7
(i.e, only factor considered). Uncertainty is given as either a confidence bound (the 2.5th to 97.5th percentiles)
or the standard deviation across all bootstrap replicates where each represents an alternative, albeit
plausible, optimal integration.

3. Naive Versus Optimal Cases

For global aggregates, the naive and optimal cases are indistinguishable despite strong spatial variability in
composite model reliability (Figure S1) and individual reference factors (Figures S2-S11). Naive case NEE is
estimated as —1.15 versus —1.16 Pg C per annum for the optimal case, values reference 1982-2008 means.
This difference of —0.01 PgC per annum is small (Figure 1) relative to the uncertainty of optimal integration
(1o across 1000 replicates: 0.09 Pg C per annum) and relative to interannual variability (1o across 27 global
annual values: 1.13 (naive) versus 1.02 (optimal) Pg C per annum).

For NEE, the lack of significant difference occurs (i) despite variations in components included in simulated
NEE (Table 1), (ii) even though the reference flux GPP does not fully constrain NEE, and (iii) despite smaller
ranges in GPP and biomass compared to NEE (Table 1): GPP varies by a factor of ~ 2 (from 99 (Integrated
Science Assessment Model (ISAM)) to 187 Global Terrestrial Ecosystem Carbon (GTEC) Pg C per annum),
and biomass varies by a factor of ~ 2.5 (from 460 (Organizing Carbon and Hydrology in Dynamic
Ecosystems-Laboratoire des Sciences du Climat et de I'Environnement (ORCHIDEE-LSCE) to 1138 (BIOME-
BioGeochemical Cycles (BGC)) Gt C), whereas NEE ranges from +0.24 (a weak source; ISAM) to —3.63 (a
strong sink; Vegetation Integrative SImulator for Trace gases (VISIT)) Pg C per annum.

The lack of difference between naive and optimal cases globally is supported by uniformly small grid cell
differences. The uncertainty of the optimal integration is greater than the difference between the cases
for 84% of the vegetated land surface (Figure 1). Also, the spatial morphology of both cases shows a high
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Figure 1. Difference between optimal and naive cases for NEE, GPP, biomass, and NEP. (left column) Histograms (gray), fitted normal distribution (black line), naive case
(blue line), optimal case (dark red line), and optimal case uncertainty bounds (light dashed red lines) for global values. Distributions of optimal case based on 1000
bootstrap replicates with varying reference factor importance. Uncertainty bounds are given by the 2.5th to 97.5th percentiles. (middle column) Difference map of
optimal and naive cases. (right column) Black grid cells indicate where the naive is indistinguishable from the optimal case (values in parentheses show percentage of
indistinguishable grid cells for the vegetated land surface). All values reference 1982-2008 means.

degree of similarity without any region that skews the global integrals; only a weak tendency for slightly
larger (albeit statistically insignificant) differences in tropical forests is present (Figure 2). This holds for
composite model reliability as well as considering each reference factor singly (Figure $12).

In using TBM skill for GPP and biomass to estimate reliability for NEE, we assume model skill is transitive, i.e., skill
in the former is relevant for a model’s ability to simulate the latter. As a test, we evaluate integration differences
for GPP and biomass as well. A result in contrast to NEE would violate this assumption. While there are
larger magnitude differences between the optimal and naive case for GPP (128 and 136 PgC per annum
for naive and optimal, respectively) and biomass (681 and 699 GtC for naive and optimal, respectively),
these differences are statistically insignificant relative to the uncertainty of the optimal case (Figure 1).

A key concern in the comparison of naive and optimal values is the semantic differences in NEE [Hayes and
Turner, 2012]. While all TBMs adhere to the MsTMIP protocol, not all TBMs are able to simulate all components
of NEE (Table 1). That is, if NEE is indistinguishable across naive and optimal integration, this begs the
question if the inclusion/exclusion of relevant NEE components acts in a compensatory manner. Thus, as
an additional check on the equivalence of naive and optimal cases, we test the impact of variable
NEE semantics directly using NEP. This test is based on using the largest subset of NEE components
simulated across the full ensemble. Here only gross uptake and gross loss are simulated by all TBMs. The
disequilibrium between these two fluxes is per definitionem NEP. As seen with GPP and biomass, which are
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Figure 2. Spatial patterns of naive and optimal cases. Maps show naive and optimal case 1982-2008 means for NEE, GPP,
biomass, and NEP.

also semantically equivalent across models, differences in NEP (5.32 and 5.76 Pg C per annum for naive and
optimal, respectively) are statistically insignificant relative to the uncertainty of the optimal case (Figure 1).

Furthermore, the lack of difference in global integrals is, as seen for NEE, supported by the small magnitudes
of grid cell difference between cases (Figure 1) and the high degree of similarity in spatial morphology across
cases (Figure 2) for NEP, GPP, and biomass. No region skews the global values with only a weak tendency
for slightly larger differences in tropical forests, especially for GPP. For NEP, GPP, and biomass, the percent
of grid cells where the difference between naive and optimal values is less than the uncertainty of the
optimal integration is 87%, 87%, and 86%, respectively (Figure 1).

Does that lack of a significant difference in integrated values indicate that the naive case is “correct”? The
naive case presupposes equal weighting, i.e,, one model-one vote. For composite model reliabilities (ﬁ,-),

this implies weights of unity normalized by the number of ensemble members, i.e., uncertainty bounds

derived from the 1000 replicates must contain a global mean R; of 0.1 for each model. This is the case for
8 of the 10 models; ISAM and ORCHIDEE-LSCE are near misses where the upper uncertainty bounds are
just below this cutoff (0.096 and 0.095, respectively). A similar pattern is seen with model rank, i.e., a one-
number assessment of relative skill (Figure S13). Here model ranks show considerable overlap without
any clear indication of “best” or “worst.” Furthermore, even when focusing on a single-bootstrap replicate,
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Figure 3. Preferred model. (top) Preferred model based on equal relative importance of all seven reference factors, the
default optimal case. Values in parenthesis show fraction of vegetated land surface where a given model is preferred. A
3 X% 3 majority filter is used for visualization purposes. (middle) Number of unique preferred models across all bootstrap
replicates, inset shows histogram. (bottom) Median reliability of preferred model across all 1000 bootstrap replicates; inset
shows cumulative distribution (y axis) over maximum (red), median (black), and minimum (blue) reliability (x axis).

a higher rank does not demonstrate that one model is “good” per se. As reliabilities do not exceed 0.25 (unity
indicates perfect agreement between TBM and references), a higher rank only shows that the predictive skill
of a higher ranked model is marginally higher than the next ranked model. Taken together, the equivalence
in global model reliabilities and rank strongly implies that the benchmarking and complexity inherent in
optimal integration add no value relative to the naive case.

Collapsing R; for each grid cell to ranks yields the preferred model (Figure 3). “Preferred” here indicates the

highest composite R. Applying this approach, the most skilled TBM is GTEC which is the preferred model for
~ 23% of the vegetated land surface. However, the preferred model is, as seen for global ranks, highly variable
(Figure 3). Depending on reference factor importance, ~ 75% of all vegetated grid cells have between 4 and 7
different preferred models (Figure 3, inset) with only 33 of 55,457 vegetated grid cells having the same
preferred model throughout. Lastly, while there is the suggestion (Figure 3) that some TBMs exhibit higher skill
levels, the associated variability emphasizes the equivalence of models (Figure 3, inset). That is, a given TBM
only posts higher reliability scores under a particular set of references and relative importance of those
reference factors. These conditions are not identifiable a priori such that skill-based discrimination is not
feasible as the signal (actual model skill) is dwarfed by the noise (plausible approaches to asses actual model skill).

4, Implications

The equivalence of the naive and optimal cases is a troubling but robust finding of this study. The difference
between both integrations is small in magnitude and less than the uncertainty associated with the optimal
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integration. This holds for global aggregates and is the overwhelmingly dominant pattern on a grid cell basis.
Equivalence also applies to both semantically identical (GPP, biomass, and NEP) and semantically diverse
(NEE) simulation outputs. Taken together, this indicates that TBM skill is largely indistinguishable as well as
malleable in that over a plausible set of skill assessments (i.e., the variants in REA from bootstrapping) a
model’s reliability ranges widely.

To better understand the interplay between TBM skill, ensemble integration, and benchmarking, several
innovations are needed: As with the atmospheric component of Earth system models, the land component
evaluated here must be regularly subject to perturbed-physics ensembles (where parameterizations are
varied within some tolerance). This is motivated by parameter tuning [Bindoff et al, 2013; Flato et al,, 2013]
and the social anchoring tendency of models to regress to the mean value of an existing ensemble or
reference [Knutti, 2010; Sanderson and Knuttj, 2012]. A systemic exploration of parameter-based divergence
in model outputs is needed to quantify and isolate sources of uncertainty and “detune” models (i.e., uncover
compensatory errors) [Collins et al, 2011]. A second innovation concerns steady state spin-up. Models are
routinely run to equilibrium states, where change in carbon stocks is zero within some tolerance [eg.,
Huntzinger et al, 2013] prior to actual simulation. However, the resultant initial carbon pool sizes vary
dramatically both for fully coupled Earth system models [Exbrayat et al, 2014] and TBMs. For the MsTMIP
ensemble evaluated here, starting soil carbon pools range from 409 to 2118 relative to a reference value of
890 to 1660 Gt C [Todd-Brown et al, 2013]. Given the interplay between carbon pool size and carbon flux
insuring a model's equilibrated state is similar to observations will materially affect TBM skill.

Systemically varying TBM structure [Curry and Webster, 2011; McWilliams, 2007] is also a needed innovation.
This is especially warranted given the recent emphasis on more comprehensive treatments of Earth
climate system dynamics. This additional complexity does not guarantee more accurate projections [Knutti
and Sedldcek, 2013] but represents another structural component to assess. Here a change in model
building is needed such that discrete subroutines can be altered systematically. Target subroutines must
include known problematic processes (e.g., phenology [Richardson et al.,, 2012], net land use flux [Pongratz
et al, 2014], or carbon allocation [De Kauwe et al,, 2014]) as well as, in the case of MSTMIP, key processes
with uneven (or absent) structural representation [Huntzinger et al., 2014] such as carbon-nitrogen
interactions [Zaehle et al.,, 2014], phosphorous limitation, fire emissions, forest management, and forest age
structure. Note that this is a refinement of the prescribed protocol used in MsTMIP which fixes nonstructural
TBM characteristics but does not guarantee that the ensemble range in structural characteristics equates
to a systematic sampling of all possible modeling algorithms.

A further protocol refinement concerns the use of offline runs. While this effectively controls for model-
specific implementations of atmospheric coupling, it can be considered biased as interactions between
the surface energy budget and atmospheric conditions are missing. This suggests a nested experimental
design whereby the components of a fully coupled Earth system model (land, cryosphere, atmosphere,
and ocean) are, in conjunction with the semifactorial base runs, systemically varied. A full factorial design
with systematically toggleable subroutines across all Earth system model domains, in turn, requires a
deeper understanding of the trade-offs between ensemble size, model complexity, and computational
resources [Ferro et al, 2012]. A corollary to this approach is to move model development toward using
stochastic treatments of unresolved processes [Palmer et al, 2014], and the realization that treating
ensemble spread as uncertainty is an approximation [Curry and Webster, 2011; Parker, 2010].

Another key innovation concerns “ground truth” for gridded model outputs. Here the analyst must contend
with multiple plausible references [e.g., Mitchard et al.,, 2014; Schwalm et al,, 2013] and/or references with
large uncertainty bounds [Todd-Brown et al,, 2013]. For point-based data upscaled to gridded reference
products, like the GPP product used here, representativeness is a further concern [Schwalm et al,, 2011].
The resultant ambiguity surrounding ground truth can render model reliability a pliable construct. As such,
we suggest a parallel track of MIPs and DIPs, i.e., data intercomparison projects where “data” encompass
observationally based reference products. Only when reference data sets themselves have been reconciled
and their uncertainty quantified at scales that typify TBM simulations can we unambiguously assess TBM
skill. This highlights an advantage of skill-based integration that generalizes to accommodate MIP- and/or
DIP-based uncertainties (using y*-based metrics) [Schwalm et al, 2010] where available. MIPs and DIPs
must also be viewed as necessary vehicles to explicitly link TBM skill gradients to intrinsic model structural
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characteristics. Effectively mapping uncertainty-aware skill gradients to structural attributes [Schwalm et al.,
2010; Xia et al, 2013] has great potential to inform future development of TBMs by identifying subroutines
associated with higher skill.

Finally, it is important to emphasize that the TBM equivalence shown here is in the context of carbon
metabolism for a given model ensemble with a given set of references. Previous work [Schwalm et al,, 2013]
showed similar results in model skill assessment using evapotranspiration from fully coupled CMIP5 runs,
and we expect this overall result to generalize across multiple land surface processes, especially when
ground truth is ambiguous. The equivalence between naive and optimal cases is, however, not a reason
to abandon skill-based integration or TBM skill assessment in general. Advancing our understanding
across the full taxonomy of uncertainties is necessary to resolve actual model skill as well as issues of MME
integration and interpretation. This taxonomy includes uncertainty relative to parameterization, steady
state spin-up (i.e,, initial conditions), structure, reference data, and forcing data (relatively well established
in the land surface modeling community) [e.g., Barman et al.,, 2014a, 2014b; Fekete et al., 2004; Haddeland
et al, 2011; Jain et al., 2013].

As is, the enduring popularity of the naive case is based both on ease (e.g., no references are needed) and the
higher skill generally shown by the naive case relative to most or all ensemble members singly. While it is
possible that land surface carbon metabolism has predictability limits similar to atmospheric dynamics
[Slingo and Palmer, 2011]—uvariously termed o¢jimate; “ifreducible imprecision,” or “irreducible ignorance”
[McWilliams, 2007; Walker et al, 2003]—only a full inventory of uncertainty types will allow an intelligent
skill-based integration and reveal if TBMs are subject to “reducible ignorance” (where additional insight
and predictive skill are achievable) [Luo et al,, 2014] or irreducible ignorance (where predictive skill is limited).
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