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Abstract

Divergence in land carbon cycle simulation is persistent and widespread. Regardless of model
intercomparison project, results from individual models diverge significantly from each other and, in
consequence, from reference datasets. Here we link model spread to structure using a 15-member
ensemble of land surface models from the Multi-scale synthesis and Terrestrial Model Intercompar-
ison Project (MsTMIP) as a test case. Our analysis uses functional benchmarks and model structure as
predicted by model skill in a machine learning framework to isolate discrete aspects of model structure
associated with divergence. We also quantify how initial conditions prejudice present-day model
outcomes after centennial-scale transient simulations. Overall, the functional benchmark and
machine learning exercises emphasize the importance of ecosystem structure in correctly simulating
carbon and water cycling, highlight uncertainties in the structure of carbon pools, and advise against
hard parametric limits on ecosystem function. We also find that initial conditions explain 90% of
variation in global satellite-era values—initial conditions largely predetermine transient endpoints,
historical environmental change notwithstanding. As MsTMIP prescribes forcing data and spin-up
protocol, the range in initial conditions and high levels of predetermination are also structural. Our
results suggest that methodological tools linking divergence to discrete aspects of model structure
would complement current community best practices in model development.

1. Introduction

We define divergence as the spread in output from multiple models or, equivalently, the spread in the difference
between model outputs and an observational constraint. Results from offline land surface simulations and fully-
coupled Earth system models (ESMs) show persistent divergence in carbon cycling (e.g., Schwalm et al 2010,
Fisher et al 2014, Friedlingstein et al 2014, Huntzinger et al 2017, Merryfield et al 2017, Giuntoli et al 2018).
Furthermore, the added complexity of including more physical and biological processes in recent model

©2019 The Author(s). Published by IOP Publishing Ltd


https://doi.org/10.1088/2515-7620/ab4a8a
https://orcid.org/0000-0002-5035-5681
https://orcid.org/0000-0002-5035-5681
https://orcid.org/0000-0002-8310-3261
https://orcid.org/0000-0002-8310-3261
https://orcid.org/0000-0001-6960-4193
https://orcid.org/0000-0001-6960-4193
https://orcid.org/0000-0003-3416-572X
https://orcid.org/0000-0003-3416-572X
mailto:cschwalm@whrc.org
https://doi.org/10.1088/2515-7620/ab4a8a
https://crossmark.crossref.org/dialog/?doi=10.1088/2515-7620/ab4a8a&domain=pdf&date_stamp=2019-10-21
https://crossmark.crossref.org/dialog/?doi=10.1088/2515-7620/ab4a8a&domain=pdf&date_stamp=2019-10-21
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

Environ. Res. Commun. 1(2019) 111004 W Letters

generations has not acted to reduce divergence or increase skill (Knutti and Sedldcek, 2013, Wuebbles e al 2014).
As models are, by definition, approximations of a set of physical and biogeochemical processes, inter-model
spread must reflect choices made in this approximation. Such choices include which processes are represented
(e.g., presence versus absence of carbon-nitrogen coupling; Huntzinger et al 2014), how they are coded
mathematically (e.g., light use efficiency versus enzyme kinetics for photosynthesis; Wangetal 2011), and
parameterizations used (Mendoza et al 2015). Divergence however also depends on spatiotemporal resolution
(Schwalm et al 2010, 2013), forcing data such as precipitation (Samaniego et al 2017) and boundary conditions
such asland cover history (Jain and Yang 2005). This complicates isolating useful approximations and therefore
more correct model representations (Prentice et al 2015).

Reducing divergence across models and identifying appropriate representations are however highly
desirable in Earth system modeling—both to ensure potential and realized predictability are commensurate
(Luo et al 2015) and to improve the quality of predictions and projections under anticipated global
environmental change. As model improvement assumes better agreement with observed values, resolving
model divergence requires validation. That is, a model formulation is useful if it matches a reference set of
observations within some tolerance (Luo et al 2012). Here we link model spread to model structure by moving
beyond point-based benchmarking, e.g., calculating the distance between simulated and observed values.
Instead, we apply three analytical approaches to link model-data mismatch to its source. First, we use functional
benchmarks to help localize model subroutines that contribute to mismatch. Second, we use information on
model structure to predict model skill in a machine learning framework. Third, we quantify how initial
conditions prejudice model outcomes after centennial-scale transient simulations.

We demonstrate these three approaches using the Multi-scale synthesis and Terrestrial Model
Intercomparison Project (MsTMIP; Huntzinger et al 2013, 2017), a 15-member model ensemble of
standardized simulations and their outputs, as our analysis test bed. MsTMIP is focused on carbon and water
cycling in land surface models—the land component of ESMs—and is based on a constrained model protocol
that prescribes spatiotemporal resolution, forcing data, boundary conditions, and spin-up procedures. In
additional, divergence seen in previous MIPs (model-intercomparison projects) is present in MsTMIP. For
example, global mean satellite-era gross primary productivity (GPP) varies 2-fold from 91 to 185 PgC per
annum across the ensemble relative to a benchmark value based on upscaled FLUXNET data of 117 PgC per
annum. Using individual eddy covariance towers and corresponding model grid cells reveals a similar 2-fold
range (2.2 to 4.4 gC/m”/d) in GPP, relative to the benchmark value of 3.3 gC/m?/d. Metrics of ecosystem
structure vary wider still—global mean satellite-era leaf area index (LAI) ranges from 1.4 to 4.1 m* m™* relative
toa AVHRR benchmark value of 1.5 m* m 2. Overall, the MsMTIP ensemble provides the correct ‘model space’
to link skill to structure as it excludes confounding factors while preserving inter-model spread.

2. Methods

2.1. Benchmarking

Even though our emphasis herein is on addressing why models diverge we still need to quantity model-data
mismatch to calculate divergence, model skill, and functional benchmarks. Here we use ILAMB (International
Land Model Benchmarking) (https://ilamb.ornl.gov/doc/; Collier et al 2018), a generic benchmarking
framework based on a series of python widgets that allows for the standardized comparison of simulation output
and reference datasets. [ILAMB can also calculate functional benchmarks relating one variable to another such as
GPP as a function of LAL For this study we use the Permafrost Benchmark System (PBS) version of ILAMB
(https://permamodel.github.io/pbs). This version is hosted on the Community Surface Dynamics Modeling
System (CSDMS; https://csdms.colorado.edu) and removes the need for individual modelers to install ILAMB
locally. Instead, through an ingest tool, simulation output is uploaded to a server host and ILAMB is executed
server-side on a high-performance computing cluster controlled through a simple web interface.

2.2.Reference datasets

ILAMB contains a default set of monthly, point-based and gridded reference datasets. In this study, composite
skill—used as the target variable in the skill-to-structure mapping exercise—is calculated globally for (1) four
fluxes (evapotranspiration [ET] or latent heat, GPP, TER [total ecosystem respiration], and NEP [net ecosystem
productivity]) using upscaled and tower-based (model grid cells containing the flux tower are used in the
intercomparison) FLUXNET data, (2) LAI from AVHRR and MODIS satellite data, and (3) four mapped
biomass reference products (Collier et al 2018). Composite skill for each variable ranges from zero (no
agreement) to unity (perfect agreement with all reference datasets) and is based on a weighted combination
across all skill metrics: correlation, bias, root mean square error, and phase shift (Collier et al 2018). For this
study the default configuration of weights and score metrics is used.
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Table 1. Summary of MsTMIP simulation experiments. Simulation
codes reference enabling of historical time-varying climate (SG1), CO,
concentration (SG2), land cover/land use (SG3) and nitrogen subsidy
(BG1). These are sequentially enabled after steady state (RG1) is reached.
Capital letters indicate runs used for benchmarking.
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2.3. Simulation results

Simulation output is taken from Version 1 of MsTMIP—the Multi-scale synthesis and Terrestrial Model
Intercomparison Project (Huntzinger et al 2018; data portal: https://doi.org/10.3334/ORNLDAAC/1225).
MsTMIP is a 15-member model ensemble that uses a standardized simulation protocol—historical forcing data,
boundary conditions, and spin-up procedures are uniform across all models (Huntzinger et al, 2013, Wei et al
2014)—to isolate structural differences (table 1). MsTMIP runs are global (0.5° spatial resolution), monthly
from 1901 to 2010 and use a semi-factorial set of simulations where historical time-varying climate, CO,
concentration, land cover/land use, and nitrogen subsidy are sequentially enabled after steady state is reached.
For the subset of models with nitrogen cycling (BIOME-BGC, CLASS-CTEM-N, CLM, CLM4VIC, DLEM,
ISAM, TEM6, and TRIPLEX-GHG) MsTMIP Version 1 output based on all time-varying factors (simulation
BG1)is used. Otherwise, MsTMIP Version 1 model output based on time-varying climate, CO, concentration
and land cover/land use only (simulation SG3) is used (GTEC, LPJ-wsl, ORCHIDEE-LSCE, SiB3, SiBCASA,
VEGAS?2.1, and VISIT). Note that not all models simulate all variables (table 2). As an example, SiB3 lacks carbon
pools and only 6 models (CLASS-CTEM-N, CLM4, CLM4VIC, ISAM, LPJ-wsl, and SiB3) simulate snow depth.

2.4. Skill-to-structure mapping

Linking skill to a discrete aspect of model structure is a data-driven exercise. Initially, model structure
(Huntzinger et al 2014) is encoded as a set of indicator variables. These variables span all aspects of model
structure and are grouped into four broad themes: carbon cycling, energy exchange, nitrogen cycling, and
vegetation dynamics (supplementary tables 1-4). As an example, we use a vegetation dynamics indicator variable
based on the presence or absence of a maximum value of LAl beyond which there is no allocation of biomass to
leaves. As a second step, ILAMB is used to determine composite skill by variable (Collier et al 2018). For this
exercise we use GPP, ET and LAl as in the functional benchmarking exercise as well as TER, NEP and total live
biomass. Lastly, we predict skill using only structure. Here, the Random Forests algorithm is used to generate

10 000 individual decision trees for each MsTMIP output variable (n = 6) separately to simultaneously predict
composite skill for all models using the same set of presence/absence indicator variables from the full MsTMIP
model ensemble. The variance explained ranges from 69% to 96%: NEP, 69%; GPP, 78%; LAI, 79%; TER, 81%;
ET, 94% and biomass, 96%, i.e., the structural determinants of skill are well-captured. We also calculate the gain
in skill for each structural indicator variable in the topmost position—the initial splitting variable—across all

10 000 decision trees for each MsTMIP variable separately. Gain quantifies skill improvement based on
structural choice. For this we first navigate each decision tree from top to bottom to maximize composite skill at
each decision point through to the terminal node. Second, we calculate the difference in skill—the initial
composite skill based on using the topmost structural indicator variable only is subtracted from the composite
skill from the terminal node—across all 10 000 decision trees. Gain is then the mean skill difference across all
decision trees by MsTMIP variable, is always positive, and is expressed in units of standard deviation of skill
across the MsTMIP ensemble; analogous to a z-score transformation. Before calculating gain, variable
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Table 2. Influence of initial conditions on transient simulation
endpoints by variable. Correlation is based on global integrals between
initial conditions (see Methods) and the 1981-2010 satellite-era mean.
Only vegetated land pixels are used. For snow variables only those
pixels with seasonal snow cover are used. There are 15 models in the full
MsMTIP Version 1 ensemble (table 1).

Variable Number of models Correlation
Autotrophic respiration 14 0.95
Evapotranspiration 14 0.35
Fire flux 5 0.98
Gross primary productivity 15 0.87
Heterotrophic respiration 14 0.95
Leafarea index 9 0.95
Net ecosystem productivity 15 0.88
Net primary productivity 13 0.93
Snow depth 6 0.99
Snow water equivalent 6 0.99
Soil carbon 14 0.98
Soil temperature 7 0.99
Soil wetness 4 0.99
Surface runoff 11 0.92
Total ecosystem respiration 15 0.87
Total live biomass 13 0.96

importance is used to select relevant model structural attributes. Variable importance quantifies how much
predictive power each predictor variable has, i.e., serves as an indicator for the overall impact of a predictor on
composite skill. The permutation variable importance measure used herein quantifies the loss in skill, the
algorithm’s ability to predict composite score based on structural indicator variables, by randomly permuting
the values of a single predictor variable and comparing that to the unpermuted version. We use this metric to
filter structural indicator variables not useful in understanding how structure impacts composite skill, i.e., those
with negative values are excluded from further analysis (Janitza et al 2018). Using variable importance scores as a
filter and then calculating gain for topmost splitting variables allows us to identify which structural attributes are
most relevant to divergence and to quantify this dependence.

2.5. Initial conditions

To further explore divergence we examine initial conditions (Xj,z;) relative to satellite-era conditions
(Xiransient)» Where X refers to a given variable and the subscripts denote initial conditions and those after

110 years of transient forcings, respectively. X, is taken from the first 30 years (nominally 1901-1930) of

the MsTMIP control run (simulation RG1). This is an extension of the steady state run based on randomized
meteorological forcing (Huntzinger et al 2013, Wei et al 2014) and represents initial conditions after steady-state
is reached but before transient forcings are applied. In contrast, Xyusiens is taken from the last 30 years (1981-
2010, the satellite era) of transient run SG3 or, for models with nitrogen cycling, BG1 (table 1). All variables
output by at least 4 MsTMIP models are included (table 2).

3. Results

3.1. Functional benchmarking

For functional benchmarking we highlight GPP, LAI, and latent heat. GPP represents the dominant input of
carbon into the terrestrial carbon cycle. If a model does not correctly simulate GPP, it cannot correctly simulate
biomass and respiration. All models in this study simulate GPP for a single leaf and scale this to the entire canopy
using LAI, defined as the ratio of leaf area to ground area. For GPP as a function of LAI (figure 1), reference data
supports a5 m?/m?* upper limit for LAI while modeled values reach 15 m* m 2. Both models and observations
show a near linear response. All models however underestimate GPP as a function of LA i.e., the benchmark
functional response serves as an upper limit for the models. This is supported by the ratio of GPP to LAI (ratio of
totals) of 1.8 gC/m?>/d for observations relative to the lower modeled values of 0.6 to 1.7 gC/m?*/d (—59 to —2%
difference with a mean difference of —31%). This could result from an underestimation in either simulated
stomatal conductance or leaf-to-canopy scaling. Both GPP and latent heat flux depend very strongly on
simulated stomatal conductance. Looking further, we see that the models—similar to GPP versus LAI—also
underestimate latent heat as a function of LAI (differences range from —66 to 0% with a mean of —27%). In
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Figure 1. Relationship between GPP, LAI and latent heat from functional benchmarking. Panels show functional relationships
between GPP and LAI (top), GPP and latent heat (middle), and latent heat and LAI (bottom). Red lines show individual models. Thick
black line is based on covariation between reference datasets; upscaled FLUXNET for GPP and latent heat as well as AVHRR-based
LALIL Data values are binned satellite-era long-term averages by pixel, using the x-axis, across global vegetated land surface at

0.5 m*> m™*increments for LAl and at 10 W m ™ increments for latent heat. Where red lines continue past the black reference line
indicates aphysical simulated values.

contrast, the models all roughly get the right ratio of GPP to latent heat flux; the percent difference ranges from
—74t0 +26% with 7 of 9 models between —26 and +20% and a mean difference of +13%. This suggests that the
models are better able to simulate stomatal conductance, but underestimate leaf-to-canopy scaling and
overestimate LAI.

3.2. Model structure to predict model skill

Using the Random Forests machine learning algorithm, we find several model structural characteristics that
serve as important controls of skill for multiple MsTMIP variables. For instance, the absence of a carbohydrate
reserve pool is associated with higher skill for GPP, LAL, and TER (figure 2) while yielding an average skill gain of
0.750, where o is the standard deviation of skill across the full ensemble. In contrast, while the presence ofa
below ground litter pool is associated with above average skill for LAI, the absence of this same structural
characteristic is linked to skill gains for NEP. A similar pattern is also present for the below ground sapwood
carbon pool. More broadly, the analysis is does not reveal an optimal structure of carbon pools bur rather
suggests a trade-off between carbon pool structure—or allocation heuristics—and skill by variable within a
given model.

A second general tendency is that the absence of thresholds is associated with higher skill. As an example, ET
skill increases by 0.88c when not considering nitrogen limitation on GPP. Similarly, higher skill in GPP and TER
is linked to not having autotrophic respiration limited by nitrogen availability. Finally, the absence of a non-zero
threshold light level for GPP (figure 2)—GPP may occur at the lowest levels of insolation as opposed to a
parameterized threshold—is associated with higher skill for both GPP and TER (0.650). The otherwise largest
gains in skill are achieved by (1) not using whole canopy stomatal conductance parameters to better simulate LAI




10P Publishing

Environ. Res. Commun. 1(2019) 111004

P  Letters

Gross Primary Productivi

Manure application
Nonzero light threshold considered for cropland
for photosynthesis
Autotrophic respiration

limited by N availability

Carbohydrate reserve

biomass pool Structural

litter pool

Net Ecosystem Productivity

Fruits and flowers

Above ground ;
it biomass pool

litter pool

Below ground
litter pool

Prescribed
leaf albedo Sapwood below

ground biomass pool

Total Live Biomass

Vegetation types
2-stream canopy compete for water

radiation transfer

Critical leaf age
for senescence

Beer's law canopy

radiation transfer Metabolic

litter pool

model structural attribute.

Total Ecosystem Respiration

Carbohydrate reserve
biomass pool

Prescribed
leaf albedo

Parameterizes
whole canopy
stomatal
conductance

Carbohydrate reserve
biomass pool

LAI dynamically
calculated

Sapwood above
ground biomass pool

Figure 2. Relevance of model structural characteristics to skill. Treemap shows skill gain (change in skill in units of standard deviation
of skill across the ensemble, inset number) by structural attribute (text labels) for each variable. Rectangle colors match attributes, i.e.,
Critical leaf age for senescence is dark blue in all treemaps. Text label color denotes presence (black) or absence (red) of the relevant

Prognostic change
in canopy heat

Autotrophic respiration
limited by N availability
Nonzero light threshold

for photosynthesis

Leaf Area Index

Below ground

075 litter pool

Prognostic change
in canopy heat

Sapwood below ground
biomass pool

Evapotranspiration
Manure application
considered for cropland

Critical leaf age
for senescence

GPP limited by
N availability

(0.750), (2) not having LAI dynamically calculated for higher skill in ET (0.97¢), and (3) not prescribing leaf

albedo for TER and NEP (0.89¢ and 0.94¢ respectively). These recommendations all highlight the skill-

relevance of correctly simulating LAI and leaf-to-canopy scaling as revealed by functional relationships.
Overall, the skill-to-structure mapping exercise emphasizes the importance of ecosystem structure in

correctly simulating carbon and water cycling, highlights uncertainties in the structure of carbon pools, and
advises against hard parametric limits on ecosystem function. This latter point does not suggest that hard limits,
such as cell denaturation at critical temperatures, are wrong, merely that constraining the shape of an idealized
response function limits skill and/or that the parameters controlling these hinges are misspecified or

unnecessarily invariant across enviroclimatic space (Mendoza et al 2014).

3.3.Initial conditions as conditional endpoints

Beyond functional benchmarking and machine learning we find that divergence is embedded a priori in all
MsTMIP variables due to initial conditions. As an example, soil carbon is known to be particularly ‘sticky’ and
predetermined by initial pool size, i.e., levels of soil carbon before transient forcings persist with minimal change
(Exbrayat et al 2014; Todd-Brown et al 2013). Across MsTMIP (figure 3) initial conditions explain, in a least-
squares sense, 90% (median value; table 2) of variation in transient endpoints. Alternatively, 110-years of
MsTMIP transient forcings (i.e., dynamic climate, land cover, CO, fertilization and nitrogen subsidy; see
Methods) explain but one-tenth of variance in the Earth system globally whereas nine-tenths is based on initial

conditions.

This prejudice is not solely limited to global mean values but is also broadly uniformly present across the
land surface at pixel scale as well. Spatially, initial conditions predetermine transient endpoints to the largest
degree in the Northern Hemisphere (80% variance explained on average by pixel; figure 4, supplementary figure
1 is available online at stacks.iop.org/ERC/1/111004/mmedia). There is a weak tendency, especially for ET, for
marginal productivity areas to show the lowest level of predetermination. Despite this, the proportion of
vegetated land area where initial conditions predetermine transient endpoints by 50% or greater (inset values;
figure 4) is atleast 0.43 (for ET) and rises to 0.91 (soil carbon). Variability (quantified as standard deviation;
figure 4 and supplementary figure 2) and extreme behavior (quantified as the 95th%ile; figure 4 and

supplementary figure 3) show similar degrees of prejudice and spatial patterns. Here, the proportion of vegetated
land area where initial conditions predetermine transient endpoints by 50% or greater is at least 0.47 for
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Figure 3. Influence of initial conditions on transient simulation endpoints. Each panel shows, for a given variable (row-wise labels),
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Figure 4. Relationship between initial conditions and transient simulation endpoints. Panels show pixelwise linear correlation of
initial condition and satellite-era mean (p,, left column), standard deviation (p,, middle column), and 95th%ile (pgshosile» Tight
column) values across all models by variable (rows). Vegetated land surface only. Inset values give proportion of land surface where at
least 95%, 75%, and 50% variance (from top to bottom respectively) in satellite-era values is explained by initial conditions. ET, NEP
and soil carbon are a representative sample of all MsTMIP variables (see table 2 and supplementary information).

variability (biomass) and 0.62 for extreme behavior (ET). Maximum values are 0.86 for variability (GPP) and
0.95 for extreme behavior (soil carbon). This occurs over manifold variations in initial conditions, e.g., initial
condition ET varies more than 4-fold from 0.68 to 2.99 mm/d. Snow depth and net ecosystem productivity
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(NEP) show 12-fold variation (figure 3). Across all variables, the departure from the 1:1 line for initial and
satellite-era values is small regardless of the initial value which effectively serves to anchors transient run
endpoints.

4. Discussion

Carbon cycle modeling continues to evolve, as does model evaluation and benchmarking (Collier et al 2018,
Haughton et al 2018, Luo et al 2012, Medlyn et al 2015, Prentice et al 2015). Missing from these developments,
however, is a set of tools that allow us to address why models diverge by mapping model skill to model structure.
In other words, as a community, carbon cycling modeling needs a mechanism to attribute poor skill to
identifiable aspects of model structure. Our study suggests a three-pronged approach to achieve this goal:

(1) Emphasize functional benchmarking over comparing individual variables to reference values. Simulated
point estimates are invariably different from any observational point estimate. Incorporating uncertainty in
the comparison is useful as the best any model can do is to match observations within uncertainty (Schaefer
etal2012, Schwalm et al 2010, 2015). This also points to the limit of benchmarking because we cannot
improve models until we improve observations. However, using confidence bounds does not provide a
pathway to assess structure per se. As an example, if GPP at some level of spatiotemporal aggregation is 20%
larger than observed (and this 20% is outside the uncertainty envelope of the observation) there is no insight
into which model choice produced the mismatch. In the past, we’ve focused on adding new processes to
improve skill, made practical by advances in computational frameworks and improvements in our
knowledge base (Maslin and Austin, 2012, Stockmann et al 2013, Bailey et al 2018). However, the added
complexity of including more physical and biological processes does not equate to reduced divergence or
increased skill (Knutti and Sedlédcek, 2013, Wuebbles et al 2014). Functional benchmarking allows one to
identify a specific process independent of model complexity. For MsTMIP, looking at GPP, LAI, and latent
heat in isolation does not highlight leaf-to-canopy scaling.

(2) Encode metadata on model structure to allow data analytics. Apart from MsTMIP no large-scale MIP
includes, as published metadata with a controlled vocabulary, a systemic survey or database of model
structural characteristics. The MsTMIP case nonetheless offers scope for improvement as the structural
metadata does not capture all information about a given model and, subsequently, the full ensemble
undersamples the range in process representations (cf Annan etal2011). A 15-model ensemble, as in
MSTMIP, allows for 2'° or 32,768 unique process representations using presence,/absence coding. In this
study, only 135 structural variables are inventoried which are then truncated to 69 (only 0.2% of the
theoretical potential) after semantic duplicates are removed. Any extension in structure encoding need not
be limited to presence/absence but should also include increases in ensemble size to better sample model
structural space overall, ordered categorical variables (e.g., to traverse a complexity gradient of radiation
transfer schemes) as well as a range in parameter values (e.g., to link within-parameter uncertainty to
divergence, cf Zaehle and Friend 2010). Here it’s important to note that MsTMIP structural attributes
highlighted through functional benchmarking have key parameters, with emphasis on V., (unstressed
Rubisco catalytic capacity) or J ., (the maximum electron transport rate) for limits on GPP, that may
potentially compensate leaf-to-canopy scaling (Schaefer et al 2012). More broadly and regardless of MIP
size, model structural characteristics must be encoded in a form amenable to machine learning and
traceability (Zhou et al 2018). This allows process representations to be linked to gradients of skill and thus
provides a mechanism to isolate ‘winners’ from ‘losers’. Process representations that are repeatedly
associated with below-average skill levels across multiple MIPs merit consideration for possible deletion
from the catalogue of model structural choice. Our results highlight the need for careful curation of
metadata on model structure and ensemble broadness to maximize the discriminatory power of our data-
driven approach. Model structure encoding combined with data analytics offers a heretofore underutilized
approach to discriminate among thousands of model choice decisions and thus improve model reliability
(Prentice etal 2015).

(3) Acknowledge and resolve how initial conditions prejudice transient endpoints. Initial conditions explain
(median value; table 2) 90% of transient endpoint values. This is despite nontrivial changes in MsTMIP
transient forcings over the 110-year simulation period. From 1901 to 2010 air temperature increases from
12.7 °Cto 13.8 °C (1901 and 2001 decade global means respectively) and the global mean concentration of
CO, increases monotonically from 295 ppm (1910) to 388 ppm (2010). Nitrogen subsidy increases by a
factor of five; land cover and land use changes result in a 17% net loss in forest cover, a five-fold increase in
grasslands, and a doubling of cropland extent (Wei et al 2014). The changes in forcing data over the
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simulation period do not however translate into large departures from initial conditions across MsTMIP
simulation outputs. Superimposed on this is a large range in initial conditions themselves (figure 3), which
are in turn solely attributable to structural differences due to the MsTMIP protocol that constrains forcing
data, boundary conditions, and steady-state spin-up protocols.

The assumption of steady state results from a lack of knowledge on ecosystem state, especially for carbon
pools (Carvalhais et al 2010). The most common approach is to assume human impacts in the preindustrial era
(typically before 1750) were nonexistent and thus a steady-state equilibrium condition was the norm. Thus,
models are fed thousands of trend-free randomized blocks of forcing data until the net change in, at least, carbon
poolsis zero over an arbitrary time period within some tolerance. When steady state is achieved the
corresponding values for all simulated quantities form the catalogue of initial conditions. While mathematically
tractable—and historically computational expensive (Xia et al 2012 )—the basis for this assumption is inaccurate
(Ruddiman 2003, 2007, Kaplan et al 2011, Lewis and Maslin, 2015, Ruddiman et al 2015). In the preindustrial
Holocene alone humans caused a 9 ppm CO, increase (Ruddiman 2007). This is 10% of the change in CO, seen
in MsTMIP from 1901 to 2010 but is at odds with equilibrium conditions prior to industrialization or the
existence of a pre-anthropogenic baseline in the mid to late Holocene (Ruddiman, 2007) that underpins the
steady-state modeling assumption. Furthermore, there is evidence that skill improves in the absence of steady
state (Carvalhais et al 2008, 2010, Hashimoto et al 2011). Recent developments in semi-analytical solutions for
steady state (Huang et al 2018 Xia etal 2012, Luo et al 2017) treat transfers between carbon and nitrogen pools in
asingle unified matrix solution and greatly reduce spin-up time. This suggests a land carbon MIP centered on
steady state, something missing from the landscape of existent and planned MIPs, is both needed and achievable.
Such a MIP must include simulation experiments that include varying degrees of steady state relaxation (e.g.,
Carvalhais eral 2008, 2010), random initial or seed values (e.g., Hashimoto et al 2011) of carbon pools, and a
gradient for the number of grid cells or sites that are required to achieve some threshold (usually no change over
an arbitrary time period). Only such an effort can determine how steady state itselfleads to divergence.

While these tools provide a means to link divergence to discrete aspects of model code they are not perfect.
Using model skill conditions on the truthfulness of the reference datasets. Similarly, the linkage between skill
and structure is data-driven and not aware of mechanistic interdependencies in a given model. Lastly, the
predetermination of endpoints through initial states requires follow-on research, our analysis is necessarily
descriptive. Nonetheless, the persistence of divergence in carbon cycle simulation over several generations of
models suggests an urgent need for additional methodological approaches, as described herein, to inform model
development.
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