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Abstract
Divergence in land carbon cycle simulation is persistent andwidespread. Regardless ofmodel
intercomparison project, results from individualmodels diverge significantly from each other and, in
consequence, from reference datasets. Here we linkmodel spread to structure using a 15-member
ensemble of land surfacemodels from theMulti-scale synthesis andTerrestrialModel Intercompar-
ison Project (MsTMIP) as a test case. Our analysis uses functional benchmarks andmodel structure as
predicted bymodel skill in amachine learning framework to isolate discrete aspects ofmodel structure
associatedwith divergence.We also quantify how initial conditions prejudice present-daymodel
outcomes after centennial-scale transient simulations. Overall, the functional benchmark and
machine learning exercises emphasize the importance of ecosystem structure in correctly simulating
carbon andwater cycling, highlight uncertainties in the structure of carbon pools, and advise against
hard parametric limits on ecosystem function.We alsofind that initial conditions explain 90%of
variation in global satellite-era values—initial conditions largely predetermine transient endpoints,
historical environmental change notwithstanding. AsMsTMIPprescribes forcing data and spin-up
protocol, the range in initial conditions and high levels of predetermination are also structural. Our
results suggest thatmethodological tools linking divergence to discrete aspects ofmodel structure
would complement current community best practices inmodel development.

1. Introduction

Wedefine divergence as the spread in output frommultiplemodels or, equivalently, the spread in the difference
betweenmodel outputs and an observational constraint. Results fromoffline land surface simulations and fully-
coupled Earth systemmodels (ESMs) showpersistent divergence in carbon cycling (e.g., Schwalm et al 2010,
Fisher et al 2014, Friedlingstein et al 2014,Huntzinger et al 2017,Merryfield et al 2017, Giuntoli et al 2018).
Furthermore, the added complexity of includingmore physical and biological processes in recentmodel

OPEN ACCESS

RECEIVED

22May 2019

REVISED

20 September 2019

ACCEPTED FOR PUBLICATION

3October 2019

PUBLISHED

21October 2019

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2019TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/2515-7620/ab4a8a
https://orcid.org/0000-0002-5035-5681
https://orcid.org/0000-0002-5035-5681
https://orcid.org/0000-0002-8310-3261
https://orcid.org/0000-0002-8310-3261
https://orcid.org/0000-0001-6960-4193
https://orcid.org/0000-0001-6960-4193
https://orcid.org/0000-0003-3416-572X
https://orcid.org/0000-0003-3416-572X
mailto:cschwalm@whrc.org
https://doi.org/10.1088/2515-7620/ab4a8a
https://crossmark.crossref.org/dialog/?doi=10.1088/2515-7620/ab4a8a&domain=pdf&date_stamp=2019-10-21
https://crossmark.crossref.org/dialog/?doi=10.1088/2515-7620/ab4a8a&domain=pdf&date_stamp=2019-10-21
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


generations has not acted to reduce divergence or increase skill (Knutti and Sedláček, 2013,Wuebbles et al 2014).
Asmodels are, by definition, approximations of a set of physical and biogeochemical processes, inter-model
spreadmust reflect choicesmade in this approximation. Such choices includewhich processes are represented
(e.g., presence versus absence of carbon-nitrogen coupling;Huntzinger et al 2014), how they are coded
mathematically (e.g., light use efficiency versus enzyme kinetics for photosynthesis;Wang et al 2011), and
parameterizations used (Mendoza et al 2015). Divergence however also depends on spatiotemporal resolution
(Schwalm et al 2010, 2013), forcing data such as precipitation (Samaniego et al 2017) and boundary conditions
such as land cover history (Jain andYang 2005). This complicates isolating useful approximations and therefore
more correctmodel representations (Prentice et al 2015).

Reducing divergence acrossmodels and identifying appropriate representations are however highly
desirable in Earth systemmodeling—both to ensure potential and realized predictability are commensurate
(Luo et al 2015) and to improve the quality of predictions and projections under anticipated global
environmental change. Asmodel improvement assumes better agreement with observed values, resolving
model divergence requires validation. That is, amodel formulation is useful if itmatches a reference set of
observationswithin some tolerance (Luo et al 2012). Herewe linkmodel spread tomodel structure bymoving
beyond point-based benchmarking, e.g., calculating the distance between simulated and observed values.
Instead, we apply three analytical approaches to linkmodel-datamismatch to its source. First, we use functional
benchmarks to help localizemodel subroutines that contribute tomismatch. Second, we use information on
model structure to predictmodel skill in amachine learning framework. Third, we quantify how initial
conditions prejudicemodel outcomes after centennial-scale transient simulations.

We demonstrate these three approaches using theMulti-scale synthesis andTerrestrialModel
Intercomparison Project (MsTMIP;Huntzinger et al 2013, 2017), a 15-membermodel ensemble of
standardized simulations and their outputs, as our analysis test bed.MsTMIP is focused on carbon andwater
cycling in land surfacemodels—the land component of ESMs—and is based on a constrainedmodel protocol
that prescribes spatiotemporal resolution, forcing data, boundary conditions, and spin-up procedures. In
additional, divergence seen in previousMIPs (model-intercomparison projects) is present inMsTMIP. For
example, globalmean satellite-era gross primary productivity (GPP) varies 2-fold from91 to 185 PgC per
annumacross the ensemble relative to a benchmark value based on upscaled FLUXNETdata of 117 PgCper
annum.Using individual eddy covariance towers and correspondingmodel grid cells reveals a similar 2-fold
range (2.2 to 4.4 gC/m2/d) inGPP, relative to the benchmark value of 3.3 gC/m2/d.Metrics of ecosystem
structure varywider still—globalmean satellite-era leaf area index (LAI) ranges from1.4 to 4.1 m2 m−2 relative
to aAVHRRbenchmark value of 1.5 m2 m−2. Overall, theMsMTIP ensemble provides the correct ‘model space’
to link skill to structure as it excludes confounding factors while preserving inter-model spread.

2.Methods

2.1. Benchmarking
Even though our emphasis herein is on addressing whymodels diverge we still need to quantitymodel-data
mismatch to calculate divergence,model skill, and functional benchmarks. Herewe use ILAMB (International
LandModel Benchmarking) (https://ilamb.ornl.gov/doc/; Collier et al 2018), a generic benchmarking
framework based on a series of pythonwidgets that allows for the standardized comparison of simulation output
and reference datasets. ILAMB can also calculate functional benchmarks relating one variable to another such as
GPP as a function of LAI. For this studywe use the Permafrost Benchmark System (PBS) version of ILAMB
(https://permamodel.github.io/pbs). This version is hosted on theCommunity SurfaceDynamicsModeling
System (CSDMS; https://csdms.colorado.edu) and removes the need for individualmodelers to install ILAMB
locally. Instead, through an ingest tool, simulation output is uploaded to a server host and ILAMB is executed
server-side on a high-performance computing cluster controlled through a simpleweb interface.

2.2. Reference datasets
ILAMB contains a default set ofmonthly, point-based and gridded reference datasets. In this study, composite
skill—used as the target variable in the skill-to-structuremapping exercise—is calculated globally for (1) four
fluxes (evapotranspiration [ET] or latent heat, GPP, TER [total ecosystem respiration], andNEP [net ecosystem
productivity]) using upscaled and tower-based (model grid cells containing the flux tower are used in the
intercomparison) FLUXNETdata, (2) LAI fromAVHRRandMODIS satellite data, and (3) fourmapped
biomass reference products (Collier et al 2018). Composite skill for each variable ranges from zero (no
agreement) to unity (perfect agreementwith all reference datasets) and is based on aweighted combination
across all skillmetrics: correlation, bias, rootmean square error, and phase shift (Collier et al 2018). For this
study the default configuration of weights and scoremetrics is used.
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2.3. Simulation results
Simulation output is taken fromVersion 1 ofMsTMIP—theMulti-scale synthesis andTerrestrialModel
Intercomparison Project (Huntzinger et al 2018; data portal: https://doi.org/10.3334/ORNLDAAC/1225).
MsTMIP is a 15-membermodel ensemble that uses a standardized simulation protocol—historical forcing data,
boundary conditions, and spin-up procedures are uniform across allmodels (Huntzinger et al, 2013,Wei et al
2014)—to isolate structural differences (table 1).MsTMIP runs are global (0.5° spatial resolution), monthly
from1901 to 2010 and use a semi-factorial set of simulationswhere historical time-varying climate, CO2

concentration, land cover/land use, and nitrogen subsidy are sequentially enabled after steady state is reached.
For the subset ofmodels with nitrogen cycling (BIOME-BGC,CLASS-CTEM-N, CLM,CLM4VIC,DLEM,
ISAM,TEM6, andTRIPLEX-GHG)MsTMIPVersion 1 output based on all time-varying factors (simulation
BG1) is used. Otherwise,MsTMIPVersion 1model output based on time-varying climate, CO2 concentration
and land cover/land use only (simulation SG3) is used (GTEC, LPJ-wsl, ORCHIDEE-LSCE, SiB3, SiBCASA,
VEGAS2.1, andVISIT). Note that not allmodels simulate all variables (table 2). As an example, SiB3 lacks carbon
pools and only 6models (CLASS-CTEM-N, CLM4, CLM4VIC, ISAM, LPJ-wsl, and SiB3) simulate snowdepth.

2.4. Skill-to-structuremapping
Linking skill to a discrete aspect ofmodel structure is a data-driven exercise. Initially,model structure
(Huntzinger et al 2014) is encoded as a set of indicator variables. These variables span all aspects ofmodel
structure and are grouped into four broad themes: carbon cycling, energy exchange, nitrogen cycling, and
vegetation dynamics (supplementary tables 1–4). As an example, we use a vegetation dynamics indicator variable
based on the presence or absence of amaximumvalue of LAI beyondwhich there is no allocation of biomass to
leaves. As a second step, ILAMB is used to determine composite skill by variable (Collier et al 2018). For this
exercise we useGPP, ET and LAI as in the functional benchmarking exercise as well as TER,NEP and total live
biomass. Lastly, we predict skill using only structure. Here, the RandomForests algorithm is used to generate
10 000 individual decision trees for eachMsTMIP output variable (n=6) separately to simultaneously predict
composite skill for allmodels using the same set of presence/absence indicator variables from the fullMsTMIP
model ensemble. The variance explained ranges from69% to 96%:NEP, 69%;GPP, 78%; LAI, 79%; TER, 81%;
ET, 94% and biomass, 96%, i.e., the structural determinants of skill are well-captured.We also calculate the gain
in skill for each structural indicator variable in the topmost position—the initial splitting variable—across all
10 000 decision trees for eachMsTMIP variable separately. Gain quantifies skill improvement based on
structural choice. For this wefirst navigate each decision tree from top to bottom tomaximize composite skill at
each decision point through to the terminal node. Second, we calculate the difference in skill—the initial
composite skill based on using the topmost structural indicator variable only is subtracted from the composite
skill from the terminal node—across all 10 000 decision trees. Gain is then themean skill difference across all
decision trees byMsTMIP variable, is always positive, and is expressed in units of standard deviation of skill
across theMsTMIP ensemble; analogous to a z-score transformation. Before calculating gain, variable

Table 1. Summary ofMsTMIP simulation experiments. Simulation
codes reference enabling of historical time-varying climate (SG1), CO2

concentration (SG2), land cover/land use (SG3) and nitrogen subsidy
(BG1). These are sequentially enabled after steady state (RG1) is reached.
Capital letters indicate runs used for benchmarking.

Model name
Simulation availability

RG1 SG1 SG2 SG3 BG1

BIOME-BGC y y Y
CLASS-CTEM-N y y y y Y
CLM y y y y Y
CLM4VIC y y y y Y
DLEM y y y y Y
GTEC y y y Y
ISAM y y y y Y
LPJ-wsl y y y Y
ORCHIDEE-LSCE y y y Y
SiB3 y y y Y
SiBCASA y y y Y
TEM6 y y y y Y
TRIPLEX-GHG y y y Y
VEGAS2.1 y y y y
VISIT y y y y
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importance is used to select relevantmodel structural attributes. Variable importance quantifies howmuch
predictive power each predictor variable has, i.e., serves as an indicator for the overall impact of a predictor on
composite skill. The permutation variable importancemeasure used herein quantifies the loss in skill, the
algorithm’s ability to predict composite score based on structural indicator variables, by randomly permuting
the values of a single predictor variable and comparing that to the unpermuted version.We use thismetric to
filter structural indicator variables not useful in understanding how structure impacts composite skill, i.e., those
with negative values are excluded from further analysis (Janitza et al 2018). Using variable importance scores as a
filter and then calculating gain for topmost splitting variables allows us to identify which structural attributes are
most relevant to divergence and to quantify this dependence.

2.5. Initial conditions
To further explore divergence we examine initial conditions (Xintital) relative to satellite-era conditions
(Xtransient ), where X refers to a given variable and the subscripts denote initial conditions and those after
110 years of transient forcings, respectively. Xintital is taken from the first 30 years (nominally 1901-1930) of
theMsTMIP control run (simulation RG1). This is an extension of the steady state run based on randomized
meteorological forcing (Huntzinger et al 2013,Wei et al 2014) and represents initial conditions after steady-state
is reached but before transient forcings are applied. In contrast, Xtransient is taken from the last 30 years (1981-
2010, the satellite era) of transient run SG3 or, formodels with nitrogen cycling, BG1 (table 1). All variables
output by at least 4MsTMIPmodels are included (table 2).

3. Results

3.1. Functional benchmarking
For functional benchmarkingwe highlight GPP, LAI, and latent heat. GPP represents the dominant input of
carbon into the terrestrial carbon cycle. If amodel does not correctly simulateGPP, it cannot correctly simulate
biomass and respiration. Allmodels in this study simulateGPP for a single leaf and scale this to the entire canopy
using LAI, defined as the ratio of leaf area to ground area. ForGPP as a function of LAI (figure 1), reference data
supports a 5 m2/m2upper limit for LAIwhilemodeled values reach 15 m2m−2. Bothmodels and observations
show a near linear response. Allmodels however underestimate GPP as a function of LAI, i.e., the benchmark
functional response serves as an upper limit for themodels. This is supported by the ratio of GPP to LAI (ratio of
totals) of 1.8 gC/m2/d for observations relative to the lowermodeled values of 0.6 to 1.7 gC/m2/d (−59 to−2%
difference with amean difference of−31%). This could result from anunderestimation in either simulated
stomatal conductance or leaf-to-canopy scaling. BothGPP and latent heat flux depend very strongly on
simulated stomatal conductance. Looking further, we see that themodels—similar toGPP versus LAI—also
underestimate latent heat as a function of LAI (differences range from−66 to 0%with amean of−27%). In

Table 2. Influence of initial conditions on transient simulation
endpoints by variable. Correlation is based on global integrals between
initial conditions (seeMethods) and the 1981-2010 satellite-eramean.
Only vegetated land pixels are used. For snow variables only those
pixels with seasonal snow cover are used. There are 15models in the full
MsMTIPVersion 1 ensemble (table 1).

Variable Number ofmodels Correlation

Autotrophic respiration 14 0.95
Evapotranspiration 14 0.35
Fireflux 5 0.98
Gross primary productivity 15 0.87
Heterotrophic respiration 14 0.95
Leaf area index 9 0.95
Net ecosystem productivity 15 0.88
Net primary productivity 13 0.93
Snowdepth 6 0.99
Snowwater equivalent 6 0.99
Soil carbon 14 0.98
Soil temperature 7 0.99
Soil wetness 4 0.99
Surface runoff 11 0.92
Total ecosystem respiration 15 0.87
Total live biomass 13 0.96
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contrast, themodels all roughly get the right ratio ofGPP to latent heat flux; the percent difference ranges from
−74 to+26%with 7 of 9models between−26 and+20%and amean difference of+13%. This suggests that the
models are better able to simulate stomatal conductance, but underestimate leaf-to-canopy scaling and
overestimate LAI.

3.2.Model structure to predictmodel skill
Using the RandomForestsmachine learning algorithm, wefind severalmodel structural characteristics that
serve as important controls of skill formultipleMsTMIP variables. For instance, the absence of a carbohydrate
reserve pool is associatedwith higher skill forGPP, LAI, andTER (figure 2)while yielding an average skill gain of
0.75σ, whereσ is the standard deviation of skill across the full ensemble. In contrast, while the presence of a
below ground litter pool is associatedwith above average skill for LAI, the absence of this same structural
characteristic is linked to skill gains forNEP. A similar pattern is also present for the below ground sapwood
carbon pool.More broadly, the analysis is does not reveal an optimal structure of carbon pools bur rather
suggests a trade-off between carbon pool structure—or allocation heuristics—and skill by variable within a
givenmodel.

A second general tendency is that the absence of thresholds is associatedwith higher skill. As an example, ET
skill increases by 0.88σwhen not considering nitrogen limitation onGPP. Similarly, higher skill inGPP andTER
is linked to not having autotrophic respiration limited by nitrogen availability. Finally, the absence of a non-zero
threshold light level for GPP (figure 2)—GPPmay occur at the lowest levels of insolation as opposed to a
parameterized threshold—is associatedwith higher skill for bothGPP andTER (0.65σ). The otherwise largest
gains in skill are achieved by (1)not usingwhole canopy stomatal conductance parameters to better simulate LAI

Figure 1.Relationship betweenGPP, LAI and latent heat from functional benchmarking. Panels show functional relationships
betweenGPP and LAI (top), GPP and latent heat (middle), and latent heat and LAI (bottom). Red lines show individualmodels. Thick
black line is based on covariation between reference datasets; upscaled FLUXNET forGPP and latent heat as well as AVHRR-based
LAI. Data values are binned satellite-era long-term averages by pixel, using the x-axis, across global vegetated land surface at
0.5 m2 m−2 increments for LAI and at 10 W m−2 increments for latent heat.Where red lines continue past the black reference line
indicates aphysical simulated values.
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(0.75σ), (2)not having LAI dynamically calculated for higher skill in ET (0.97σ), and (3)not prescribing leaf
albedo for TER andNEP (0.89σ and 0.94σ respectively). These recommendations all highlight the skill-
relevance of correctly simulating LAI and leaf-to-canopy scaling as revealed by functional relationships.

Overall, the skill-to-structuremapping exercise emphasizes the importance of ecosystem structure in
correctly simulating carbon andwater cycling, highlights uncertainties in the structure of carbon pools, and
advises against hard parametric limits on ecosystem function. This latter point does not suggest that hard limits,
such as cell denaturation at critical temperatures, arewrong,merely that constraining the shape of an idealized
response function limits skill and/or that the parameters controlling these hinges aremisspecified or
unnecessarily invariant across enviroclimatic space (Mendoza et al 2014).

3.3. Initial conditions as conditional endpoints
Beyond functional benchmarking andmachine learningwefind that divergence is embedded a priori in all
MsTMIP variables due to initial conditions. As an example, soil carbon is known to be particularly ‘sticky’ and
predetermined by initial pool size, i.e., levels of soil carbon before transient forcings persist withminimal change
(Exbrayat et al 2014; Todd-Brown et al 2013). AcrossMsTMIP (figure 3) initial conditions explain, in a least-
squares sense, 90% (median value; table 2) of variation in transient endpoints. Alternatively, 110-years of
MsTMIP transient forcings (i.e., dynamic climate, land cover, CO2 fertilization and nitrogen subsidy; see
Methods) explain but one-tenth of variance in the Earth system globally whereas nine-tenths is based on initial
conditions.

This prejudice is not solely limited to globalmean values but is also broadly uniformly present across the
land surface at pixel scale aswell. Spatially, initial conditions predetermine transient endpoints to the largest
degree in theNorthernHemisphere (80%variance explained on average by pixel; figure 4, supplementary figure
1 is available online at stacks.iop.org/ERC/1/111004/mmedia). There is aweak tendency, especially for ET, for
marginal productivity areas to show the lowest level of predetermination. Despite this, the proportion of
vegetated land areawhere initial conditions predetermine transient endpoints by 50%or greater (inset values;
figure 4) is at least 0.43 (for ET) and rises to 0.91 (soil carbon). Variability (quantified as standard deviation;
figure 4 and supplementary figure 2) and extreme behavior (quantified as the 95th%ile;figure 4 and
supplementary figure 3) show similar degrees of prejudice and spatial patterns. Here, the proportion of vegetated
land areawhere initial conditions predetermine transient endpoints by 50%or greater is at least 0.47 for

Figure 2.Relevance ofmodel structural characteristics to skill. Treemap shows skill gain (change in skill in units of standard deviation
of skill across the ensemble, inset number) by structural attribute (text labels) for each variable. Rectangle colorsmatch attributes, i.e.,
Critical leaf age for senescence is dark blue in all treemaps. Text label color denotes presence (black) or absence (red) of the relevant
model structural attribute.

6

Environ. Res. Commun. 1 (2019) 111004

http://stacks.iop.org/ERC/1/111004/mmedia


variability (biomass) and 0.62 for extreme behavior (ET).Maximumvalues are 0.86 for variability (GPP) and
0.95 for extreme behavior (soil carbon). This occurs overmanifold variations in initial conditions, e.g., initial
condition ET variesmore than 4-fold from0.68 to 2.99 mm/d. Snowdepth and net ecosystemproductivity

Figure 3. Influence of initial conditions on transient simulation endpoints. Each panel shows, for a given variable (row-wise labels),
satellite-era transient simulation (y-axis) versus initial condition (x-axis) global aggregate across allmodels. Individualmodels (circles;
outlyingmodels are labeled), 1:1 reference (line), and correlation (inset values) shown for each variable. Correlation excluding labeled
outliers is 0.99 for ET and 0.56 forNEP.Variance explained, in a least-squares sense, is the square of correlation and ranges from0.1%
for ETwith the SiB3 outlier to 96% for soil carbon.

Figure 4.Relationship between initial conditions and transient simulation endpoints. Panels showpixelwise linear correlation of
initial condition and satellite-eramean (ρμ, left column), standard deviation (ρσ, middle column), and 95th%ile (ρ95th%ile, right
column) values across allmodels by variable (rows). Vegetated land surface only. Inset values give proportion of land surfacewhere at
least 95%, 75%, and 50%variance (from top to bottom respectively) in satellite-era values is explained by initial conditions. ET,NEP
and soil carbon are a representative sample of allMsTMIP variables (see table 2 and supplementary information).
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(NEP) show 12-fold variation (figure 3). Across all variables, the departure from the 1:1 line for initial and
satellite-era values is small regardless of the initial value which effectively serves to anchors transient run
endpoints.

4.Discussion

Carbon cyclemodeling continues to evolve, as doesmodel evaluation and benchmarking (Collier et al 2018,
Haughton et al 2018, Luo et al 2012,Medlyn et al 2015, Prentice et al 2015).Missing from these developments,
however, is a set of tools that allowus to address whymodels diverge bymappingmodel skill tomodel structure.
In otherwords, as a community, carbon cyclingmodeling needs amechanism to attribute poor skill to
identifiable aspects ofmodel structure. Our study suggests a three-pronged approach to achieve this goal:

(1) Emphasize functional benchmarking over comparing individual variables to reference values. Simulated
point estimates are invariably different from any observational point estimate. Incorporating uncertainty in
the comparison is useful as the best anymodel can do is tomatch observations within uncertainty (Schaefer
et al 2012, Schwalm et al 2010, 2015). This also points to the limit of benchmarking becausewe cannot
improvemodels until we improve observations.However, using confidence bounds does not provide a
pathway to assess structure per se. As an example, if GPP at some level of spatiotemporal aggregation is 20%
larger than observed (and this 20% is outside the uncertainty envelope of the observation) there is no insight
intowhichmodel choice produced themismatch. In the past, we’ve focused on adding new processes to
improve skill,made practical by advances in computational frameworks and improvements in our
knowledge base (Maslin andAustin, 2012, Stockmann et al 2013, Bailey et al 2018). However, the added
complexity of includingmore physical and biological processes does not equate to reduced divergence or
increased skill (Knutti and Sedláček, 2013,Wuebbles et al 2014). Functional benchmarking allows one to
identify a specific process independent ofmodel complexity. ForMsTMIP, looking at GPP, LAI, and latent
heat in isolation does not highlight leaf-to-canopy scaling.

(2) Encode metadata on model structure to allow data analytics. Apart from MsTMIP no large-scale MIP
includes, as publishedmetadata with a controlled vocabulary, a systemic survey or database ofmodel
structural characteristics. TheMsTMIP case nonetheless offers scope for improvement as the structural
metadata does not capture all information about a givenmodel and, subsequently, the full ensemble
undersamples the range in process representations (cf Annan et al 2011). A 15-model ensemble, as in
MsTMIP, allows for 215 or 32,768 unique process representations using presence/absence coding. In this
study, only 135 structural variables are inventoriedwhich are then truncated to 69 (only 0.2%of the
theoretical potential) after semantic duplicates are removed. Any extension in structure encoding need not
be limited to presence/absence but should also include increases in ensemble size to better samplemodel
structural space overall, ordered categorical variables (e.g., to traverse a complexity gradient of radiation
transfer schemes) as well as a range in parameter values (e.g., to linkwithin-parameter uncertainty to
divergence, cf Zaehle and Friend 2010). Here it’s important to note thatMsTMIP structural attributes
highlighted through functional benchmarking have key parameters, with emphasis onVcmax (unstressed
Rubisco catalytic capacity) or Jmax (themaximumelectron transport rate) for limits onGPP, thatmay
potentially compensate leaf-to-canopy scaling (Schaefer et al 2012).More broadly and regardless ofMIP
size,model structural characteristicsmust be encoded in a form amenable tomachine learning and
traceability (Zhou et al 2018). This allows process representations to be linked to gradients of skill and thus
provides amechanism to isolate ‘winners’ from ‘losers’. Process representations that are repeatedly
associatedwith below-average skill levels acrossmultipleMIPsmerit consideration for possible deletion
from the catalogue ofmodel structural choice. Our results highlight the need for careful curation of
metadata onmodel structure and ensemble broadness tomaximize the discriminatory power of our data-
driven approach.Model structure encoding combinedwith data analytics offers a heretofore underutilized
approach to discriminate among thousands ofmodel choice decisions and thus improvemodel reliability
(Prentice et al 2015).

(3) Acknowledge and resolve how initial conditions prejudice transient endpoints. Initial conditions explain
(median value; table 2) 90%of transient endpoint values. This is despite nontrivial changes inMsTMIP
transient forcings over the 110-year simulation period. From1901 to 2010 air temperature increases from
12.7 °C to 13.8 °C (1901 and 2001 decade globalmeans respectively) and the globalmean concentration of
CO2 increasesmonotonically from295 ppm (1910) to 388 ppm (2010). Nitrogen subsidy increases by a
factor offive; land cover and land use changes result in a 17%net loss in forest cover, afive-fold increase in
grasslands, and a doubling of cropland extent (Wei et al 2014). The changes in forcing data over the
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simulation period do not however translate into large departures from initial conditions acrossMsTMIP
simulation outputs. Superimposed on this is a large range in initial conditions themselves (figure 3), which
are in turn solely attributable to structural differences due to theMsTMIP protocol that constrains forcing
data, boundary conditions, and steady-state spin-up protocols.

The assumption of steady state results from a lack of knowledge on ecosystem state, especially for carbon
pools (Carvalhais et al 2010). Themost common approach is to assume human impacts in the preindustrial era
(typically before 1750)were nonexistent and thus a steady-state equilibrium conditionwas the norm. Thus,
models are fed thousands of trend-free randomized blocks of forcing data until the net change in, at least, carbon
pools is zero over an arbitrary time periodwithin some tolerance.When steady state is achieved the
corresponding values for all simulated quantities form the catalogue of initial conditions.Whilemathematically
tractable—and historically computational expensive (Xia et al 2012)—the basis for this assumption is inaccurate
(Ruddiman 2003, 2007, Kaplan et al 2011, Lewis andMaslin, 2015, Ruddiman et al 2015). In the preindustrial
Holocene alone humans caused a 9 ppmCO2 increase (Ruddiman 2007). This is 10%of the change inCO2 seen
inMsTMIP from1901 to 2010 but is at oddswith equilibrium conditions prior to industrialization or the
existence of a pre-anthropogenic baseline in themid to lateHolocene (Ruddiman, 2007) that underpins the
steady-statemodeling assumption. Furthermore, there is evidence that skill improves in the absence of steady
state (Carvalhais et al 2008, 2010,Hashimoto et al 2011). Recent developments in semi-analytical solutions for
steady state (Huang et al 2018Xia et al 2012, Luo et al 2017) treat transfers between carbon and nitrogen pools in
a single unifiedmatrix solution and greatly reduce spin-up time. This suggests a land carbonMIP centered on
steady state, somethingmissing from the landscape of existent and plannedMIPs, is both needed and achievable.
Such aMIPmust include simulation experiments that include varying degrees of steady state relaxation (e.g.,
Carvalhais et al 2008, 2010), random initial or seed values (e.g., Hashimoto et al 2011) of carbon pools, and a
gradient for the number of grid cells or sites that are required to achieve some threshold (usually no change over
an arbitrary time period). Only such an effort can determine how steady state itself leads to divergence.

While these tools provide ameans to link divergence to discrete aspects ofmodel code they are not perfect.
Usingmodel skill conditions on the truthfulness of the reference datasets. Similarly, the linkage between skill
and structure is data-driven and not aware ofmechanistic interdependencies in a givenmodel. Lastly, the
predetermination of endpoints through initial states requires follow-on research, our analysis is necessarily
descriptive. Nonetheless, the persistence of divergence in carbon cycle simulation over several generations of
models suggests an urgent need for additionalmethodological approaches, as described herein, to informmodel
development.
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