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Modeling suggests fossil fuel 
emissions have been driving 
increased land carbon uptake since 
the turn of the 20th Century
Christopher R. Schwalm1,2 ✉, Deborah N. Huntinzger3, Anna M. Michalak4, Kevin Schaefer5, 
Joshua B. Fisher6, Yuanyuan Fang4 & Yaxing Wei7

Terrestrial vegetation removes CO2 from the atmosphere; an important climate regulation service that 
slows global warming. This 119 Pg C per annum transfer of CO2 into plants—gross primary productivity 
(GPP)—is the largest land carbon flux globally. While understanding past and anticipated future 
GPP changes is necessary to support carbon management, the factors driving long-term changes in 
GPP are largely unknown. Here we show that 1901 to 2010 changes in GPP have been dominated 
by anthropogenic activity. Our dual constraint attribution approach provides three insights into the 
spatiotemporal patterns of GPP change. First, anthropogenic controls on GPP change have increased 
from 57% (1901 decade) to 94% (2001 decade) of the vegetated land surface. Second, CO2 fertilization 
and nitro  gen deposition are the most important drivers of change, 19.8 and 11.1 Pg C per annum (2001 
decade) respectively, especially in the tropics and industrialized areas since the 1970’s. Third, changes 
in climate have functioned as fertilization to enhance GPP (1.4 Pg C per annum in the 2001 decade). 
These findings suggest that, from a land carbon balance perspective, the Anthropocene began over 100 
years ago and that global change drivers have allowed GPP uptake to keep pace with anthropogenic 
emissions.

Our understanding of changes in Earth system processes depends on models1,2. Model-based attribution, quan-
tifying the importance and magnitude of causal factors for a detected change3, is routinely used to assess the 
relative contributions of anthropogenic factors and natural variability on Earth system phenomena, ranging from 
precipitation extremes to decadal-scale changes in net carbon uptake4–8. For land carbon metabolism, attribution 
typically focuses on net land uptake of CO2 (ref. 9). While this quantity is important to inform climate policy, e.g., 
Paris Climate Accords, it is the disequilibrium across many processes—such as heterotrophic respiration and fire 
emissions—with uncertain magnitude and spatiotemporal patterns7,9,10. This suggests that an improved under-
standing of the net land-atmosphere CO2 signal can be achieved by examining each component flux, and relevant 
drivers of change, individually.

Here we use a novel dual constraint approach to attribute centennial scale changes in GPP at grid cell to 
global scales. GPP is of central importance for the net carbon balance as it represents the entry of carbon into 
land ecosystems such that all other processes are downstream. We quantify changes in GPP due to natural cli-
mate variability, land use/land cover change, greenhouse gases, and nitrogen deposition. Our approach uses two 
broad ensembles of Earth system models (ESMs): (1) a 11-member ensemble of observation-driven land surface 
models—corresponding to the land component of ESMs in offline mode—from the Multi-scale synthesis and 
Terrestrial Model Intercomparison Project (MsTMIP) (ref. 11); and (2) an 13-member ensemble of fully coupled 
ESMs from CMIP5, the fifth phase of the Coupled Model Intercomparison Project12. We also use machine learn-
ing to recover the change in GPP for the individual offline climatic factors of heat (near-surface air temperature), 
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water (precipitation), and light (downwelling shortwave radiation). This is based on the emulation (see Methods) 
of MsTMIP where only climate varies and then sequentially retrieving the contribution of each climatic factor by 
simulation differencing9.

Enhanced GPP is the basis by which land ecosystems buffer climate change. Model-based reconstructions 
indicate significant changes in gross uptake of carbon by the vegetated land surface over the 20th Century. From 
1901 to 2010 GPP has increased globally (Fig. 1) by 10.5 Pg C per annum (uncertainty range: +8.2 to +12.4 Pg C 
per annum), in qualitative agreement with long-term atmospheric records of carbonyl sulfide13, and equivalent 
to 9% of current satellite-era global GPP of 119 Pg C per annum2. Increases in GPP are centered on the tropics as 
well as forested regions of the USA and Eurasia. In addition, both amplitude (difference between seasonal maxi-
mum and minimum) and volatility (changes in year-to-year variation) have increased. Changes in amplitude are 
most pronounced in the Northern Hemisphere (Fig. 1) and are overwhelmingly positive; by area 60% of vegetated 
land ecosystems have seen an increase versus only 2% where a decline occurred. The spatial footprint of changes 
in volatility shows that 62% of vegetated land ecosystems have seen at least a doubling of volatility versus <1% 
where volatility decreased. The largest changes in volatility, where year-to-year changes are at least tenfold larger 
in the satellite-era, are centered on the northern high latitudes and the Eurasian Steppe (Fig. 1), supporting the 
importance of these regions—particularly arid and dryland systems–in driving the interannual variability and 
trend of net carbon uptake14.

We find that anthropogenic forcings—primarily well-mixed greenhouse gases (see Methods)—are the source 
of these changes in GPP. Indeed, from the perspective of GPP we had already entered the Anthropocene, where 
human agency represents the most important geological forcing15, no later than the turn of the 20th Century. 
Integrated globally, the impactof anthropogenic forcings has increased from -0.1 (1901 decade) to +15.6 Pg C 
per annum (2001 decade) and acts to enhance GPP. In contrast, natural forcings (solar irradiance and volcanic 
aerosols) show an ever changing, over space and time, pattern of small effect sizes (typically <1 Pg C per annum 
globally in absolute value with a mean of -0.02 Pg C per annum from 1901 to 2010; Extended Data Fig. 1) with 

Figure 1.  Long-term (1901–2010) changes in gross primary productivity (GPP). Changes in (a), mean annual 
GPP.; (b), monthly GPP amplitude.; and (c), interannual variability. Mean and amplitude values calculated 
as the difference between 1981–2010 and 1901–1930 periods; positive values indicate an increase over time. 
Interannual variability, an index of volatility in land ecosystem carbon metabolism, is the ratio of standard 
deviations using deseasonalized GPP, e.g., a value of 2 indicates that 1981–2010 variability in gross uptake is 
twice that of the 1901–1930 period. All maps based on CMIP5 and MsTMIP. White grid cells are water, barren, 
or exhibited no significant change. Note difference in color scales. Figure created in Matlab version R2019a 
(http://www.mathworks.com/products/matlab/).
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the largest volatility in the tropics. Spatial footprints in the first decade of both the 20th and 21st Centuries show a 
predominance of anthropogenic factors (Fig. 2) with changes in GPP across 57% (1901 decade) and 94% (2001 
decade) of all vegetated land ecosystems linked to human agency. Through time there is a clear trend toward total 
anthropogenic control of changes in GPP.

Among individual attribution factors considered, changes associated with the CO2 fertilization effect and 
nitrogen deposition are largest (Fig. 3). The CO2 effect has monotonically increased from +3.7 (1901 decade) 
to +19.8 Pg C per annum (2001 decade); a fivefold increase now equivalent to 17% of contemporary global 
GPP2. The impact of CO2 fertilization is most pronounced in the tropics and Southeast Asia (Fig. 3) and shows 
an increasing trend and spatial footprint poleward from the equator since the 1960’s (Extended Data Fig. 2). 
Nitrogen deposition (Fig. 3) has similarly acted to enhance GPP. This effect has grown from +1.6 (1901 decade) 
to +11.1 Pg C per annum (2001 decade) and is focused on industrialized areas in North America, Europe, and 
China (Extended Data Fig. 2). In contrast, land use and land cover change (LULCC) is associated with a negative 
impact globally (-1.3 Pg C per annum across all decades or 1% of contemporary global GPP) and the most relative 
uncertainty (Fig. 3). These impacts —driven by degrading high GPP systems (forests) to low GPP systems (shrub-
lands)—are dominant in the eastern USA, Europe, China, and the tropics. Unlike CO2 and nitrogen deposition, 
the LULCC effect is less variable in time; it shows a relatively static spatial footprint through the 20th Century 
(Extended Data Fig. 2).

Using a machine learning-based approach to decompose the net climate signal from the MsTMIP ensemble 
into temperature, precipitation, and radiation effects (see Methods) we find that climate change has functioned 
as climate fertilization—changes in climate have acted to increase gross uptake. Globally this effect is modest 
(Fig. 4), with a long-term average of +0.3 Pg C per annum, but has increased in recent decades to +1.4 Pg C 
per annum (2001 decade), equivalent to 50% of the contemporary net land sink1. Of all three climate effects 
temperature elicits the largest changes in GPP (Fig. 4) and has the largest spatial footprint (Fig. 5) while changes 
in radiation exhibit only a weak influence on GPP. Spatially, and in agreement with the effect of growing season 
temperature on peak GPP16, we find that temperature has enhanced GPP in the mid to northern latitudes. In 
contrast, 20th Century changes in temperature and precipitation have acted to depress GPP in the tropics (Fig. 4). 
Even though changes in climate are important regionally and exhibit a similar overall areal extent as LULCC, 
the spatial footprint of changes in GPP is driven by CO2 fertilization. Across 58% of the vegetated land surface 
changes in CO2 serve as the most dominant factor (Fig. 5).

While ESMs agree that anthropogenic factors have dominated changes in GPP over the 20th Century, care 
is warranted in interpretation. What constitutes an anthropogenic forcing varies across the CMIP5 ensemble 
and not all MsMTIP models simulate each sequential control. This is reflected in the confidence bounds (see 
Methods) for each factor. The total change due to CMIP5 anthropogenic forcings in the 2001 decade is +15.6 
Pg C per annum, albeit with substantial uncertainty (+10.4 to +43.5 Pg C per annum). This is lower than but 
consistent with the corresponding figure from MsTMIP—equating the effects of CO2 fertilization, nitrogen dep-
osition, and LULCC to anthropogenic forcings—of +25.6 Pg C per annum (uncertainty range: +16.1 to +35.8 Pg 

Figure 2.  Spatial pattern of changes in gross primary productivity (GPP) due to anthropogenic forcings. (a), 
Map of 1901 decade. (b), Map of 2001 decade. Areal extent of GPP change due to anthropogenic forcings: 
57% and 94% for 1901 and 2001 decades respectively. Values calculated as the ratio of absolute values of 
anthropogenic to natural forcing-induced changes in GPP using CMIP5 models only (see Methods). A ratio 
greater than unity (brown) indicates that anthropogenic forcings (primarily well-mixed greenhouse gases) 
dominate; whereas green indicates natural forcings (solar irradiance and volcanic aerosols) dominate. Figure 
created in Matlab version R2019a (http://www.mathworks.com/products/matlab/).
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C per annum). This, in turn, matches the sum, +29.3 Pg C per annum (uncertainty range: +19.6 to +39.7 Pg C 
per annum), of individual anthropogenic factors (CO2 fertilization, nitrogen deposition, and LULCC) explicitly 
considered across both CMIP5 and MsTMIP ensembles. This consistency is supported by the similar effect sizes 
of CO2 fertilization and LULCC individually (nitrogen subsidy is only addressed in MsTMIP) across both ensem-
bles (Extended Data Fig. 3). Finally, adjusting the CO2 effect downward to correct for the missing (and negative) 
vegetation-carbon feedback component of CO2 fertilization17 lowers this human agency effect to +24.8 Pg C per 
annum, again consistent with both CMIP5 and MsTMIP ensembles. In any case, the dominance of anthropogenic 
drivers in controlling changes in GPP since 1901 is clear, with CO2 fertilization and nitrogen subsidy the most 
important drivers in time, space (for CO2 only), and magnitude.

Despite this secular trend in GPP, there is substantial unresolved ambiguity surrounding both leading anthro-
pogenic drivers in CMIP5 and MsTMIP. Evidence supporting the CO2 fertilization effect—the dominant driver 
of GPP enhancement since 1901—is supported by first principles of plant physiology but is otherwise mixed. 
According to recent studies, the CO2 fertilization effect is simultaneously underestimated for GPP in ESMs18, 
overestimated for NPP (GPP after autotrophic respiration has been subtracted) relative to satellite-derived 

Figure 3.  Anthropogenic controls of changes in gross primary productivity (GPP). Spatial long-term mean 
(1901–2010) changes in GPP due to (a), CO2 fertilization (CMIP5 and MsTMIP); (b), nitrogen deposition 
(MsTMIP only); and (c), LULCC (CMIP5 and MsTMIP). White grid cells are water, barren, or exhibited 
no significant change. Note difference in color scales. (d), Decadal changes in GPP due to CO2 fertilization 
(brown), nitrogen deposition (purple) and land use and land cover change (LULCC; green). Color envelope: 
90% confidence interval around mean (black line). Figure created in Matlab version R2019a (http://www.
mathworks.com/products/matlab/).
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products19, or not present in biomass growth for undisturbed tropical forests20 or in tree growth for western 
Canadian subalpine forests21. In contrast, a 100 ppm increase (roughly the 20th Century) in CO2 is linked to 
a 35% increase in net photosynthesis based on isotopic signatures of deuterium in historic plant material and 
manipulation experiments22. Furthermore, when warming and CO2 fertilization are considered jointly, the latter 
is not associated with any growth enhancement, as seen in the Canadian boreal forest23 and in high-elevation 
forests of central Mexico24. Moreover, there are clear indications of sink saturation, suggesting on upper limit of 
uptake, especially in forest systems25. Finally, neither CMIP5 nor MsTMIP allow the vegetation-carbon feedback 
component of increasing CO2 concentrations to be quantified, potentially resulting in a 30% overestimation of 
the CO2 fertilization effect17.

A similar ambiguity concerns the effects of nitrogen subsidy. These occur in the context of a critical load past 
which additional nitrogen inputs have potentially deleterious impacts on ecosystem function, from mortality to 
changes in community composition, carbon allocation and growth rates26,27. For extratropical forests this critical 
load is estimated at 10 to 20 kg N/ha per annum overall26 but can be significantly lower for specific forest types, 
e.g., USA northern forests show declined survivorship at as low as 3 kg N/ha per annum27. In tropical forests 

Figure 4.  Climatic controls of changes in gross primary productivity (GPP). Spatial long-term mean (1901–
2010) changes in GPP due to (a), air temperature; (b), precipitation; and (c), downwelling shortwave radiation. 
White grid cells are water, barren, or exhibited no significant change. (d), Decadal changes in GPP due to air 
temperature (cyan), precipitation (green) and downwelling shortwave radiation (gold). Color envelope: 90% 
confidence interval around mean (black line). All values derived from MsTMIP only. Figure created in Matlab 
version R2019a (http://www.mathworks.com/products/matlab/).

https://doi.org/10.1038/s41598-020-66103-9
http://www.mathworks.com/products/matlab/


6Scientific Reports |         (2020) 10:9059  | https://doi.org/10.1038/s41598-020-66103-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

the knowledge base is more limited and experimental evidence for a significant positive effect equivocal28,29. 
This holds especially in primary and lowland forests and is linked to phosphorous availability28,30, which is not 
addressed in either ensemble. Focusing on MsTMIP, where nitrogen subsidy increases by a factor of five, the 
percent area of impacted extratropical forests where positive nitrogen subsidy exceeds the minimum threshold 
increases monotonically from 1% (1901 decade) to 29% (2001 decade). External nitrogen inputs also always 
enhance gross uptake in tropical forests (Fig. 3), with a mean subsidy of 3.5 kg N/ha per annum—increasing 
monotonically from 1.1 (1901 decade) to 8.6 kg N/ha per annum (2001 decade)—eliciting a mean GPP increase 
of 30.1 g C/m2 per annum.

Both CMIP5 and MsTMIP heavily condition on the CO2 fertilization effect and—especially for MsTMIP 
models with carbon-nitrogen coupling9—external nitrogen to drive positive changes in gross carbon uptake. This 
occurs without any sign of agnostic effects or saturation; both nitrogen subsidy and levels of CO2 are highly corre-
lated (ρ = 0.99) with GPP across decades globally. This is problematic in that resolving the efficacy of both anthro-
pogenic drivers is a prerequisite to reducing the persistent and large uncertainties in the carbon cycle-climate 
feedback10,31. Beyond this, there are other innovations needed to narrow the range in simulated values. Especially 
relevant for changes in GPP is the treatment of agricultural systems where there is strong evidence that modeled 
estimates of GPP are systematically biased low32. As CMIP5 and MsTMIP do not include explicit crop modeling, 
attributed changes in GPP, particularly in the context of LULCC, are likely skewed. Evidence that recent enhanced 
global GPP is driven by croplands33 reinforces the nascent trend of embedding agriculture submodules into cou-
pled Earth system models32,34.

More generally, state-of-the-art land modeling frameworks still lack processes that materially impact trajec-
tories of GPP; such as nutrient cycling, dynamic vegetation and disturbance35,36. The increasing complexity of 
modeling frameworks and questions asked of them itself requires an updated approach to address heterogeneity 
in process representation, tiling schemes that vary by process within model, and tracking changes in parametriz-
able ecosystem properties36. Focusing on the lead anthropogenic drivers over the 20th Century, knowledge base 
improvements for the CO2 fertilization effect and explicit parameterizable linkages between carbon cycling to 
nitrogen and phosphorus biogeochemistry37 are crucial to better constrain global GPP. This, in turn, points to 
the need of continuous iteration between modeling, data science, and experimental communities to improve pre-
dictive capacity36. As there is already evidence that future estimates of net carbon cycling may be biased upward 
when nutrient limitation is not considered9,38, a more robust treatment is more urgent still given the diminish-
ing climate policy window to effect meaningful change in the trajectory of global change, past drivers of GPP 
enhancement notwithstanding.

Figure 5.  Controlling factors for changes in gross primary productivity (GPP). Spatial long-term mean 
(1901–2010) changes in GPP due to (a), individual climatic factors (emulator-based; see Methods) and; (b), 
climate, land use and land cover change (LULCC), CO2 fertilization, and nitrogen deposition (N) factors 
(based on simulation differencing). Values in parenthesis give percent of vegetated land surface where the effect 
predominates. Maps derived using MsTMIP models only (see Methods). White grid cells are water, barren, or 
exhibited no significant change (28% of the vegetated land surface for individual climatic factors and 6% for 
overall factors). Figure created in Matlab version R2019a (http://www.mathworks.com/products/matlab/).
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Methods
Approach.  We use historical reconstructions of gross primary productivity (GPP) from offline and fully cou-
pled state-of-the-art Earth system models (ESMs). Offline reconstructions are drawn from 11 terrestrial bio-
sphere simulators in the Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP Version 
1; https://doi.org/10.3334/ORNLDAAC/1225) (ref. 11,39). MsTMIP uses a constrained simulation protocol (driv-
ing data, vegetation cover, boundary conditions, and steady-state spin-up protocol are all standardized; only 
model structure varies). All runs use observation-based driving d ata to replicate 1901 to 2010 historical condi-
tions34 with a semi-factorial design where time-varying factors of climate (SG1), land cover and land use change 
(LULCC) (SG2), [CO2] (SG3), and nitrogen deposition (BG1) are sequentially enabled after steady-state (RG1)—
the reference run11,39 based on a repeated cycle of a randomized 30-yr block of trend-free weather—is achieved 
(MsTMIP simulation name in parenthesis). MsTMIP models used for this study are CLM, CLM4VIC, DLEM, 
GTEC, ISAM, LPJ-wsl, ORCHIDEE-LSCE, SiBCASA, TEM6, VEGAS2.1 and VISIT. Only CLM, CLM4VIC, 
DLEM and TEM6 simulate BG1, i.e., have carbon-nitrogen coupling.

Fully coupled reconstructions for 1901 to 2010 for 13 ESMs (Extended Data Table 1) are taken from the 
CMIP5 archive (http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html). CMIP5, the fifth phase of the Coupled 
Model Intercomparison Project, serves as a central repository for ESM simulations that inform the Fifth 
Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) (https://ipcc.ch/report/
ar5/). CMIP5 is designed to provide a multi-model framework to investigate model differences in carbon cycle 
and cloud-based feedbacks as well as climate predictability and the range in ESM responses from similar forcing 
inputs12. For this study ESMs are chosen based on simulation experiment availability. Each ESM has, at a mini-
mum, a preindustrial control (piControl) and historical (historical) experiments (CMIP5 simulation experiment 
name in parenthesis; see Extended Data Table 1). In addition, experiments that differ from piControl or histor-
ical by a single factor (or factor set, e.g., all anthropogenic forcings) are also included: (1) with greenhouse gas 
forcing only (historicalGHG), (2) with natural forcing only (historicalNat), (3) with LULCC only and/or (4) with 
anthropogenic forcings only (variants of historicalMisc). Finally, two fully coupled carbon/climate experiments 
are included if available: (1) the carbon cycle sees preindustrial levels of CO2 but the radiation code sees histor-
ical conditions (esmFdbk2) and (2) the radiation code sees preindustrial levels of CO2 but the carbon cycle sees 
historical CO2 (esmFixClim2). In all cases only one realization per ESM is used; land carbon cycling is driven by 
model structure and therefore insensitive to initial conditions.

For both offline and coupled reconstructions we analyze annual values as global aggregates as well as by 
grid cell. For mapped values CMIP5 reconstructions are resampled to a half-degree spatial resolution to match 
the MsTMIP land mask and use the barren mask from a contemporary upscaled eddy covariance product2. 
Our results are based on integration over the full ensemble of ESMs—the consensus ensemble mean40—using 
“one-model-one-vote” (ref. 41) and assume that an unweighted multi-model mean is the best estimate42–44. We 
note that not all reconstructions share the same set of simulation experiments. Uncertainty is calculated as 
ensemble spread based on bootstrapping with 1000 bootstrap replicates and is expressed as 90% confidence inter-
vals throughout.

Attribution.  Attribution is based on differencing9. For CMIP5 and MsTMIP, we assume the difference 
between two simulations is solely attributable to the relevant factor, e.g., subtracting SG2 from SG3 recovers the 
effect of time-varying [CO2] as both MsTMIP simulations are identical apart from SG3 having dynamic [CO2] 
enabled. Similarly, in CMIP5, subtracting piControl from historicalNat GPP recovers the effect of natural forc-
ings only as both simulations are identical apart from historicalNat including changes in natural forcings–solar 
irradiance and volcanic aerosols.

For climatic factors (near-surface air temperature, precipitation, and downwelling shortwave radiation) the 
effect of each is recovered using a machine learning-based emulator of MsTMIP run SG1 (time-varying climate 
only). Here the random forest algorithm45 is trained with SG1 GPP as the target and near-surface air temperature, 
precipitation, and downwelling shortwave radiation as explanatory variables. The explanatory variables are those 
used in forcing all offline MsTMIP runs and are identical across all MsTMIP models. Training is done by grid cell 
at monthly time step for each MsTMIP model individually. For the SG1 emulation (Extended Data Fig. 4) median 
variance explained, in a least-squares sense based on those observations not used in training (out-of-bag data 
points), is at least 93% across all models and all grid cells. As the climate space used to force RG1 is a randomized 
subset of that used to force SG1 (ref. 33,34) the random forest algorithm does not have to extrapolate beyond the 
limits of the training data. As such the emulation of RG1 shows equivalent skill (Extended Data Fig. 4) with 
median variance explained of 96%. For both emulations, skill across space is highly similar with the lowest skill in 
the Indonesian tropics and Australia and the highest skill across the extratropical Northern Hemisphere.

The effect of each climatic factor is then calculated by differencing after sequentially enabling downwelling 
shortwave radiation, precipitation, and then near-surface air temperature in the emulator. As an illustration, the 
effect of downwelling shortwave radiation is recovered based on the difference between two emulations: the RG1 
case (all climate explanatory variables use RG1 climate) subtracted from the emulation where SG1 downwelling 
shortwave radiation is paired with RG1 precipitation and RG1 near-surface air temperature. While the emulator 
offers a computationally inexpensive approach to attribute changes in GPP to individual climate drivers it is 
not process-aware but rather maps changes in climate to instantaneous changes in GPP. As such, the emulator 
provides only a first-order assessment (interaction terms are excluded) of how each climate driver impacts GPP 
without having to formally execute additional MsTMIP simulations. It is important to note that climatic effects 
cannot be precisely attributed to anthropogenic or natural forcings. In MsTMIP prescribed forcing data is based 
on historical information, i.e., contains a mix of anthropogenic changes as well as natural variability in Earth’s 
climate system.
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In total we attribute changes in GPP from 1901 to 2010 to seven single factors and two factor sets: climate, 
LULCC, [CO2], nitrogen deposition, near-surface air temperature, precipitation, and downwelling shortwave 
radiation as well as all natural forcings (changes in solar irradiance and volcanic aerosols) vs. all anthropogenic 
forcings (with emphasis on well-mixed greenhouse gases and LULCC; see Extended Data Table 1). We note that 
attributed changes at 1901, the start of the analysis period, are not a priori zero as anthropogenic impacts on 
carbon cycling predate 1901.

Data availability
MsTMIP Version 1 data are available without restriction through the Oak Ridge National Laboratory’s Distributed 
Active Archive Center (ORNL DAAC; https://daac.ornl.gov/) at https://doi.org/10.3334/ORNLDAAC/1225. 
CMIP5 data are available without restriction through the Earth System Grid Federation (ESGF) as hosted at the 
Lawrence Livermore National Laboratory at https://esgf-node.llnl.gov/projects/esgf-llnl/.
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