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Abstract
NASA’s Arctic-Boreal Vulnerability Experiment (ABoVE) integrates field and airborne data into
modeling and synthesis activities for understanding Arctic and Boreal ecosystem dynamics. The
ABoVEBenchmarking System (ABS) is an operational software package to evaluate terrestrial
biospheremodels against key indicators of Arctic and Boreal ecosystemdynamics, i.e.: carbon
biogeochemistry, vegetation, permafrost, hydrology, and disturbance. TheABS utilizes satellite
remote sensing data, airborne data, andfield data fromABoVE aswell as collaborating research
networks in the region, e.g.: the Permafrost CarbonNetwork, the International Soil CarbonNetwork,
theNorthernCircumpolar Soil CarbonDatabase, AmeriFlux sites, theModerate Resolution Imaging
Spectroradiometer, theOrbiting CarbonObservatory 2, and the SoilMoisture Active Passivemission.
TheABS is designed to be interactive for researchers interested in having theirmodels accurately
represent observations of key Arctic indicators: a user submitsmodel results to the system, the system
evaluates themodel results against a set of Arctic-Boreal benchmarks outlined in the ABoVEConcise
Experiment Plan, and the user then receives a quantitative scoring ofmodel strengths and deficiencies
through aweb interface. This interactivity allowsmodel developers to iteratively improve theirmodel
for the Arctic-Boreal Region by evaluating results from successivemodel versions.We showhere, for
illustration, the improvement of the Lund–Potsdam–Jena-Wald Schnee und Landschaft (LPJwsl)
versionmodel through theABoVEABS as a newpermafrostmodule is coupled to the existingmodel
framework. TheABSwill continue to incorporate new benchmarks that address indicators of Arctic-
Boreal ecosystemdynamics as they become available.

1. Introduction

TheArctic-BorealRegion (ABR) is experiencingunpre-
cedented terrestrial ecosystem change (Serreze et al
2000, Hinzman et al 2005, McGuire et al 2006, Chap-
man and Walsh 2007). During the past three decades,
the Arctic surface temperature has warmed at a rate of
1 °C per decade, which is substantially higher than the
midlatitudes and tropics (Christensen et al 2013).

On one hand, increased ABR temperatures are accel-
erating the permafrost-carbon feedback to climate,
wherein thawing permafrost enables the decomposi-
tion and release to the atmosphere of previously
inaccessible soil carbon as carbon dioxide (CO2) and
methane (CH4) (Hayes et al 2014), resulting in
increased warming and further permafrost thaw
(Schuur et al 2015). Conversely, temperature increases
in the ABR might facilitate plant growth via nutrient
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release from thawing permafrost, thus acting as a
negative feedback by increasing carbon CO2 uptake
from the atmosphere (Mack et al 2004, Natali et al
2012). Changes in disturbance and hydrology also
impact these nonlinear feedbacks, necessitating the use
of a process-basedmodeling approach to determine the
total impact of warming on ecosystems of the ABR,
particularly as it relates to terrestrial carbon source/
sink dynamics (Oechel et al 1993, McGuire et al 2009,
Schuur et al 2009, Hayes et al 2011, Koven et al 2011,
McGuire et al 2018).

While model simulations can elucidate ABR eco-
system dynamics, the accuracy of those simulations is
informed by observational data collected from the
region (Fisher et al 2018a). Until recently, data collec-
tion from the region was relatively sparse, due largely
to the extreme environment and sheer size of the area.
(Sitch et al 2007,McGuire et al 2012,Melton et al 2013,
Fisher et al 2014a, 2014b, Schuur et al 2015). To
address this, NASA has embarked on a decadal-scale
study: the Arctic-Boreal Vulnerability Experiment
(ABoVE), to collect additional in situ and airborne
measurements, and create new satellite data products,
of the ABR (https://above.nasa.gov; Goetz et al 2011,
Griffith et al 2012, Kasischke et al 2013).

Several model benchmarking systems are in use by
the modeling community to constrain model simula-
tions with observed data, including the International
LandModel Benchmarking (ILAMB) system (Luo et al
2012, Collier et al 2018, Hoffman et al 2017), the Eur-
opean Network for Earth System modeling (ENES)
Benchmark Suite (https://redmine.dkrz.de/projects/
enes-benchmark-suite/wiki), and the Permafrost
Benchmarking System (PBS) (https://permamodel.
github.io/pbs/). While ILAMB and ENES are com-
prehensive in their efforts to improve the performance
of land models via model-data intercomparison, their
global scope inhibits the development of benchmarks
that specifically address key indicators of Arctic and
Boreal ecosystem dynamics. The ABoVE Benchmark-
ing System (ABS) utilizes permafrost benchmarks
from the PBS (e.g. active layer depth) and adds addi-
tional benchmarks to address other ABR indicators
(carbon dynamics, disturbance, ecosystem structure
and function, and hydrology).

In addition to its mission of data collection,
ABoVE is tasked with integrating data collection dur-
ing the campaign with satellite data andmodel simula-
tion efforts. Our Model-Data Integration Framework
(MoDIF) is designed, in part, to ingest and organize
ABoVE data into a format that is comparable with
model output (e.g. NetCDF), thus facilitating the use
of the system for benchmarking and model improve-
ment (figure 1) (https://above.nasa.gov/cgi-bin/inv_
pgp.pl?pgid=3394). At the core of the ABoVEMoDIF
is the ABS, an ABR-focused model benchmarking sys-
tem that is the main user interface between modelers
and the ABoVE data (Stofferahn et al 2016). The ABS is
operational software residing on the ABoVE Science

Cloud (ASC, https://above.nasa.gov/sciencecloud.
html) and is designed to ingest different types of out-
put from terrestrial biospheremodels (TBMs) in order
to evaluate their efficacy—and improvement through
development—in simulating ABR ecosystem pro-
cesses. An example of such model evaluation is shown
in section 4, wherein the output from two versions of a
sample TBM are evaluated through the ABS in order
to make inference on the impact of changes between
model versions (in this case, a change in treatment of
permafrost) on overallmodel performance.

2.Observational data

The ABS incorporates data from in situ, airborne, and
satellite measurements for comparison against model
output. There has been one completed (2017) and one
planned (2019) airborne campaign in the ABoVE
region. The completed campaign has provided a
variety of co-located data, summarized in supplemen-
tary table 1 is available online at stacks.iop.org/ERL/
14/055002/mmedia: including Polarimetric Synthetic
Aperture Radar (P&L-band), used for active layer
thickness, AirSWOT (Ka-band Radar, used for detec-
tion of liquid water and topography), AVIRIS (hyper-
spectral data, for use in identifying vegetation), LVIS
(LIDAR, useful for determining vegetation height),
and CFIS (an instrument to measure solar-induced
fluorescence (SIF)). In addition to data collected for
the ABoVE campaign, there is also an enormous
wealth of data and information existing or in develop-
ment by non-ABoVE programs relevant to modelers.
These include, for example: the Permafrost Carbon
Network (Schuur and Abbott 2011, Schädel et al
2014), the International Soil Carbon Network (Jandl
et al 2014, Nave et al 2016), the Northern Circumpolar
Soil Carbon Database (Hugelius et al 2013), and
individual AmeriFlux sites (e.g. Oechel et al 2014).
This is in addition to measurements such as Gross
Primary Production (GPP), Net Primary Production
(NPP), and Evapotranspiration from the Moderate
Resolution Imaging Spectroradiometer satellite sys-
tem, SIF from theOrbiting CarbonObservatory 2, and
soil moisture and freeze/thaw dynamics from the Soil
Moisture Active Passive mission. The source data for
each variable currently in the ABS is shown in
supplementary table 2. It is expected that the list will
never be ‘complete’: as new benchmarks become
available, they will be added to the suite of existing
benchmarks for a given variable, refining our estimate
against which models will be evaluated. As any bench-
mark has an associated uncertainty (particularly those
which are model-based or derived quantities), the
addition of new benchmarks will reduce the overall
uncertainty, providing a tighter constraint on model
performance.
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3.Methods

3.1. Processing of observational data
Processing each benchmark dataset is done manually,
and the full details of this processing are provided in
the supplemental materials (S1). The data is trans-
formed from its native file format to a netCDF file that
has been re-projected to the ABoVE projection and
grid (Loboda et al 2017). In addition, coarser spatial
resolution files are formed, enabling the system to
quickly access a dataset at the resolution that matches
the incoming model file (e.g. an incoming model
spatial resolution at 0.5° is matched to a pre-generated
0.5° benchmark product). This ‘offline’ matching
greatly increases the speed at which the MoDIF ABS
generates results. For in situ and fine scale airborne
data, this coarsening can represent a significant scale
mismatch, while models that run on a finer scale can
take advantage of the finer resolution observational
data. Future work may include utilizing the wealth of
fine-scale data within a relatively coarse model cell to
generate cell statistics/uncertainty for use in the
scoring system.

3.2. ABoVEmodel benchmarking system
The ABS, written in Python, is an adaptation of the
ILAMB system but focused specifically on indicators
of ecosystem dynamics in the ABR. Its model and
observational domain encompasses the ABR of North
America (Loboda et al 2017). The ABS is also affiliated
with the PBS through shared datasets, functional
benchmarks, and statisticalmetrics associatedwith the
permafrost objectives of ABoVE.

The process flow of the ABS, shown in figure 2,
begins with a user submitting the model results of a
specific version of their model outputs (either as a sin-
gle NetCDF file or multiple NetCDF files) through the
web upload interface, which utilizes the php language
to move the model output to the ASC, wherein both
the data and MoDIF software also reside (at present,
only registered users to the ASC have direct access to

the ABS, necessitating an intermediary to upload
model output or observational data; see section 5.3 for
further discussion). Once the model output has been
uploaded to the ASC, the ABS automatically begins the
model evaluation. The process flow of the system code
is shown in table 1 lists the, where each of the seven
steps in the execution of the code has associated input
elements (Column ‘Input to Step’) and produces ele-
ments (Column ‘Output from Step’) at the conclusion
of the step. The full details of the process flow are out-
lined in the supplemental materials (S2), but a brief
summary for each step is provided here. Step 1 is to
load the shell of the scoring structure. The scoring
structure is populated with the statistics generated by
the benchmarks within the system, matched to the
ABoVE Ecosystem Dynamics Objectives and Tier 2
Science questions/indicators as per the ABoVE Con-
cise Experiment Plan (ACEP). The structure consists
of nested custom Python classes that dynamically
interact between data, model output, benchmarks,
statistics, and summary scoring (supplemental figure
(1)). Step 2 loads the model output that has been sub-
mitted by the user as a custom ModelOutput class,
which includes a dictionary of variables of xarray
DataArray instances. Step 3 determines which vari-
ables within the model output match to the observa-
tional benchmarks, and re-projects those model
variables to the ABoVE projection and grid. Specifi-
cally, For every variable listed in the ModelOutput
class, the system determines whether or not there is a
matching observation within the system. If one or
more matching benchmarks are found, then the
model variable is re-projected over the temporal range
of the benchmarks via the nearest neighbor algorithm
using the pyresample Python package to the ABoVE
projection and grid at a resolution that minimizes
redundancy and gaps. Step 3 also generates the vari-
able-observation pair entries in the statistics nested
dictionary. Step 4 loads a version of the observational
benchmark data from the system that matches the
resolution of the model output into the Python

Figure 1.Overview flowdiagramof theABoVEMoDIF. ABoVE field and remote sensing data are collected (1), processed
(2), delivered to theABoVE Science Cloud (3), integrated intoMoDIF (4), interfacedwithmultiplemodels formodel improvements
(5), and linked as Ecosystem Services to end-users (6).
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environment. The observational data is already in the
ABoVE projection and grid. Step 5 calculates the sta-
tistics for each model-observation pair and stores
them in a statistics dictionary (calculations are further
detailed in section 3.3 and S2). Step 6 populates the
scoring structure shell with the results from the statis-
tics nested dictionary, which is traversed from the bot-
tom of the tree, starting with all of the observation
instances (figure S1). Step 7 generates statistical
maps and the webpage which displays the scoring
information.

3.3. ABS Statistics
The statistical tests included in the ABS mirror those
that are found in ILAMB. These were chosen because
of the efficacy of these tests as demonstrated within
ILAMB. The calculations are as follows: (1) Bias—the
temporal mean of each benchmark pixel is subtracted

from the temporal mean of each model output pixel.
The results are normalized over the domain, the bias
score map is generated from equation (1), and the
domain-wide spatial mean is calculated to produce
the bias score. (2) Root Mean Square Error (RMSE)—
the bias between the model and benchmark is
calculated for each pixel in time and space as in the
Bias calculation. The results are then squared, and the
temporal mean of each squared bias pixel is taken. The
square root of the result yields a spatial map of RMSE,
which is then normalized, the RMSE score map is
generated from equation (2), and the spatial mean of
that map yields the RMSE score. (3) Spatial Distribu-
tion Score—calculated from the correlation between
the temporal mean of the model results and the
temporal mean of the benchmark. (4) Interannual
Variability—two maps (benchmark, model) of inter-
annual variability are produced from the temporal

Figure 2. System flowdiagramof theABoVEModel Benchmarking System. The systembeginswith some structural jsonfiles as well as
model output and observational data. At each step, Python objects are produced, with arrows linking the newly created objects to the
files/objects uponwhich they depend. Step 6 yields the full scoring structure, uponwhich plots and thewebpage (Step 7) are
generated.

Table 1.Table of systemflow. There are seven steps in the system. Each step relies upon input data fromoutside the system, system code, or
the previous step. The scoring structure (Step 6) is the output of interest, while Step 7 generates supplemental information (plots and the
webpage).

Step
num Step name Input to step Output from step

1 Load structure datasets.json and benchmarks.json Basic scoring structure shell
2 Loadmodel Model output files in activemodel directory Model output class shell
3 Determinematching

datasets
Observational dataNetCDF file (to get temporal
coverage), shell structure

Model output inABoVE grid,
statistics shell

4 Load data frommatching
datasets

Observational dataNetCDF files or sourceGeoTiffs Observational data inABoVE grid

5 Generate statistics ABoVE griddedmodel output and
observational data

Full statistics dictionary

6 Make full scoring structure Scoring structure shell, statistics dictionary Full scoring structure
7 Generate webpage and plots Full scoring structure,Web generation code Plots, webpage
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standard deviation of each spatial point within the
domain. The benchmark map is subtracted from
the model output map, the result is normalized over
the domain, the interannual variability score map is
generated from equation (3), and the domain-wide
spatial mean is calculated to produce the interannual
variability score. (5) Seasonal Cycle—themodel results
and benchmarks are binned by month (i.e. all January
results are grouped together). These groupings are
then averaged, and a maximum function is applied to
determine the month for which the value of the given
variable is the largest. The maximum month for the
benchmark is subtracted from the maximum month
for the model output, a seasonal cycle score map is
generated from equation (4), and the spatial mean of
that domain-wide map is calculated to produce the
Seasonal Cycle score (this statistic shows how well the
timing of the cycle of a variable from the model
matches with the benchmark). Each statistical score, as
well as the Overall Score, can range from 0 (model
output unaligned with observations) to 1 (model
output aligned with observations). The Overall Score
for each model-observation pair is calculated from a
weighted average of the five previously described
statistical test scores, with a weight of 2 for the RMSE
score and a weight of 1 for all remaining statistical
scores (this weighting structure is identical to the
weights used in ILAMB).

= - - ( )∣( ( )) ∣/escore , 1bias
bias obs obs

i j
i j i j

,
, , min

= - ( )( )/escore , 2cycle
rmse obs

i j
i j i j

,
, ,

= s s s- - ( )∣( ( ) ( ) ( )) ∣/escore , 3iav
mod obs obs

i j
t i j t i j t i j

,
, , ,

* *p= +( ( ∣ ∣) ) ( )/score 0.5 1 cos 2 shift 12 . 4i jcycle ,i j,

To calculate the Overall model score, we start with
the Overall Score for each model-observation pair for
a given variable. The system allows each Observation
instance to have an associated weight to reflect the
uncertainties associated with each observation (e.g. an
in situ observation of active layer thickness might be
weighted higher than an InSAR or Polarimetric SAR
observation of that same variable). At present, all
observations have aweight of 1, where future workwill
adjust those values as uncertainties are quantified. The
score for a given variable is then the weighted average
of all model-observation pairs for that variable. The
Overall Score of each indicator in turn is a weighted
average of the variables (with the weight for each vari-
able being the sum of the weights used in calculating
that variable’s Overall Score), and the Overall model
score in turn is the weighted average of each indicator
score.

4.User case

For illustration, we show output from a state-of-the-
art land surface model, the Lund–Potsdam–Jena (LPJ)
Dynamic Global Vegetation Model (Sitch et al 2003)

Wald Schnee und Landschaft version (LPJ-wsl), used
in two different modes. The LPJ-wsl modeling team
has been developing a permafrost representation in
their model, and they are using the ABS to assess the
improvement for the ABoVE indicators with the new
permafrost coupling. Output from both versions of
the model (one with permafrost coupling, one with-
out) was run through the ABS as described in
Methods.

The new permafrost module in LPJ-wsl includes a
soil thermal dynamics that simulates the freeze-thaw
cycle, and a dynamic snow scheme to include some of
the effects of snow aging on soil thermal insulation
properties (Wania et al 2009). A multilayer Crank–
Nicolson finite difference scheme was used to model
soil thermal dynamics. The model has been applied in
carbon cycle applications, and the simulated perma-
frost extent and timing of freeze/thaw cycle have been
evaluated against a variety of observations, primarily at
the global scale (Zhang et al 2016, Zhang et al 2017,
Zhang et al 2018). For the representation of perma-
frost coupling with the carbon cycle, themodifications
are mainly through (1) adding the influence of soil
moisture on soil thermal conductivity; (2) using
depth-weighted average temperature for the top soil
layer (0–0.5 m) to replace surface air temperature in
the calculation of GPP, NPP and ecosystem respira-
tion, and wetland methane flux; and (3) introducing
water-stress effects in the calculation of GPP due to the
change in availability of water content in soil during
the freeze phase.

Scores were computed for 4 carbon variables as
supplied by the LPJ-wsl output: Wetland Methane
Flux, GPP, NPP, and Net Ecosystem Exchange.
Table 2 shows the full scoring results for both model
versions. Both the Overall Score and scores of each of
the four variables improved slightly when permafrost
coupling was included in the model. Figure 3 shows a
screenshot from the web output for GPP as illustra-
tion. The bias maps within the figure show that the
output from the model with the permafrost module
has a reduced bias in GPP, particularly in the dis-
continuous permafrost zone in Canada. Figure 4
shows the other mapped statistics (interannual varia-
bility, RMSE, and seasonal cycle), similarly showing
slight performance improvement in themodel version
with the permafrostmodel.

5. Futurework

5.1. Update theABSwith newly available ABoVE
and complementary data
The ABS already hosts a large suite of datasets,
primarily from existing satellite datasets (Supplemen-
tary table 1). There is an enormous wealth of
complementary data and information existing or in
development by programs outside of ABoVE that are
relevant to modelers (Fisher et al 2018b). There are
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many more datasets being made available at present
and in the near future (see: daac.ornl.gov/cgi-bin/
dataset_lister.pl?p=34). Future work aims to integrate
these newdatasets into the ABS.

At present, the benchmark datasets included
within the ABS are manually pre-processed so that
they are in a suitable form for ingestion into the ABS
software. It would increase future efficiency if there
was amethod to automate the pre-processing of a can-
didate dataset. This automation software would auto-
matically recognize the spatio-temporal extent and
resolution of the data, as well as the projection, and use
that information to produce the ingestible form of the
data via subsetting and transformations (as is currently
done manually). If that automation is untenable, an
alternative would be to provide a consistent method
for those who are generating datasets to transform
them into ingestible assets in the ABS. This would
involve the dataset creator providing those same spa-
tio-temporal properties and projection information to

a piece of software that the creator can then run to
transform the data into an ingestible asset.

5.2. Statistics/analysis refinement
While ILAMB forms a loose basis for the ABS system,
the global nature of ILAMBnecessitates a large volume
of statistical metrics, whereas the ABS tailors these
statistics specifically to the ABoVE Ecosystem
Dynamics Objectives and Tier 2 Science questions/
indicators, as detailed in the ACEP. Nonetheless, in so
doing, the ABS identified key missing datasets, e.g.
active layer thickness and surface water extent (Fisher
et al 2018b), that limited holistic evaluation of the
ABoVE indicators. Continued refinement of the
statistical metrics will be done to satisfactorily evaluate
the ABoVEobjectives.

The basic statistics in this version of the ABS form
the foundation on which more sophisticated metrics
will performed. In addition to further refinement of
appropriate scoring weights, functional benchmarks

Table 2.UserCase Scoring Results—Scores for each variable in the test case: Gross Primary Production
(GPP),Methane Flux, Net Primary Production (NPP) andNet EcosystemExchange (NEE) for each statistical
scoring component: Bias, RootMean Square Error (RMSE), Spatial Distribution Score, Interannual
Variability (IAV), and the Seasonal CycleK aswell as theOverall Score for each variable, and theOverall
Score for eachmodel (thefinal 2 rows).

Scores Bias RMSE Spatial IAV Seasonal Overall

GPP—NoPermafrost 0.38 0.40 0.77 0.38 0.96 0.55
GPP—Permafrost 0.49 0.39 0.81 0.46 0.95 0.58
Methane flux—NoPermafrost 0.40 0.58 0.72 0.39 0.89 0.59
Methane flux—Permafrost 0.51 0.60 0.69 0.48 0.85 0.62
NPP—NoPermafrost 0.58 0.47 0.16 0.53 N/A 0.44
NPP—Permafrost 0.59 0.47 0.19 0.57 N/A 0.46
NEE—NoPermafrost 0.57 0.38 0.42 0.67 0.71 0.52
NEE—Permafrost 0.58 0.38 0.41 0.63 0.86 0.54
Overall—NoPermafrost N/A N/A N/A N/A N/A 0.53
Overall—Permafrost N/A N/A N/A N/A N/A 0.55

Figure 3.User Case Results: LPJ-wsl scores from the versionwithout permafrost coupling (left) andwith permafrost coupling (right).
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will be used in model evaluation. These benchmarks
are structured around similar response functions
within models; e.g. temperature versus respiration.
Additional functional benchmarks will be investi-
gated, tested, and included in the proposed work to
address key attributes of the ABoVE ecosystem
indicators.

5.3. User engagement
The full potential of the ABS is realized only when used
by the modeling and data communities. Although
modelers and observationalists have made use of the
ABS at time of writing, it requires an active effort to
engage and assist the modeling and data communities
in utilizing the system.Moreover, only registered users
to the ASC currently have direct access; at present, the
process for inclusion of additional observations is by
passing the data through an intermediary with access
to the ASC. Future work aims to streamline this
process to improve and expand ABS accessibility.
Engagement with the community is facilitated in part
by making the existence of the ABS more widely
known, and in part by surveying the needs of the
modeling and data communities and incorporating
those findings into the ABS (Fisher et al 2018b). We
also aim to continue connecting ABoVE Phase I data
to ABoVE Phase II modeling efforts, thereby facilitat-
ing the advancement in modeling capabilities, and
reduction in uncertainties, for ecosystem dynamics in
the ABR. For example, one of the science questions
modelers face in the ABR is: ‘What processes are
controlling changes in the distribution and properties
of permafrost, and what are the impacts of these
changes?’ The ABS will ingest new permafrost data
from the ABoVE campaign, thereby allowing model

evaluation against permafrost dynamics and an
improved understanding of the relationships between
permafrost change and other ABR ecosystem
dynamics through functional benchmarks. The ABS
will operate as a central hub for organization and
reporting of model improvements. Finally, through
user interaction and experience, we will continue to
update the design of the system interface to improve
usability. In sum, the ABS acts as part of the ‘central
nervous system’, connecting multiple elements across
data and models to one another, providing a centra-
lized reporting system for model improvements
(Fisher et al 2018a).

5.4. Expansion to larger domain
At present, the ABS provides model evaluation across
the ABR of North America. Future applications of this
system may be expanded to include global areas of
Arctic and Boreal ecosystems with the requisite
observational data (existing global or pan-Arctic
model output would not require modification in an
expandedABS).

Acknowledgments

This work was supported by NASA’s ABoVE.
Resources supporting this work were provided by the
NASAHigh-EndComputing (HEC) Program through
the NASA Center for Climate Simulation (NCCS) at
Goddard Space Flight Center. The work was carried
out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with
the National Aeronautics and Space Administration.
California Institute of Technology. Government

Figure 4.User Case Results: LPJ-wsl interannual variability (left), seasonal cycle (middle), andRMSE (right) scores from the version
without permafrost coupling (top) andwith permafrost coupling (bottom)

7

Environ. Res. Lett. 14 (2019) 055002



sponsorship acknowledged. BP and ZZ were sup-
ported through the Gordon and BettyMoore Founda-
tion grant GBMF5439. DH and WH were supported
in part by a grant from the Department of Energy,
Terrestrial Ecosystem Science program (DOE-
ERKP818). Copyright 2019. All rights reserved.

Author contributions

JBF formulated idea; ES designed software; ES imple-
mented software; all authors contributed to thewriting
of the paper.

Conflict of interest

The authors declare no conflict of interest.

ORCID iDs

Eric Stofferahn https://orcid.org/0000-0001-
6960-4193
Joshua B Fisher https://orcid.org/0000-0003-
4734-9085
Daniel JHayes https://orcid.org/0000-0002-
3011-7934
Benjamin Poulter https://orcid.org/0000-0002-
9493-8600

References

ChapmanWLandWalsh J E 2007 Simulations of Arctic
temperature and pressure by global coupledmodels J. Clim.
20 609–32

Christensen JH et al 2013Climate phenomena and their relevance
for future regional climate changeClimate Change 2013: The
Physical Science Basis. Contribution of working group I to the
fifth Assessment Report of the Intergovernmental Panel on
Climate Change. edT F Stocker et al (Cambridge andNew
York: CambridgeUniversity Press)pp 1217–308 ch 14

CollierN et al 2018The international landmodel benchmarking
(ILAMB) system: design, theory, and implementation
J. Advances Modeling Earth Systems 10 2731–54

Fisher J B,HuntzingerDN, SchwalmC, Schaefer K,HayesD,
Stofferahn E andABoVEModelingWorkingGroup 2018a
Bridge to the Future:Moving into ABoVEPhase II’sModeling
Focus, paper presented atNASAAboVE Science TeamMeeting
4 (Seattle,Washington)

Fisher J B,HuntzingerDN, SchwalmCR and Sitch S 2014a
Modeling the terrestrial biosphereAnnu. Rev. Environ.
Resour. 39 91–123

Fisher J B et al 2014bCarbon cycle uncertainty in the alaskanArctic
Biogeosciences 11 4271–88

Fisher J B et al 2018bMissing pieces tomodeling the Arctic-Boreal
puzzleEnviron. Res. Lett. 13 020202

Goetz S, Kimball J,MackMandKasischke E 2011 Scoping
completed for an experiment to assess vulnerability of Arctic
and Boreal ecosystems EOSTrans. Am.Geophys. Union 92
150–1

Griffith PC,Goetz S J, Kasischke E S,MackMCandWicklandDE
2012TheArctic-Boreal vulnerability experiment: aNASA
terrestrial ecologyfield campaignAGUFallMeeting (San
Francisco, California, 3–7December)

HayesD J, Kicklighter DW,McGuire AD,ChenM, ZhuangQ,
Yuan F,Melillo JM andWullschleger SD2014The impacts
of recent permafrost thawon land-atmosphere greenhouse
gas exchange Environ. Res. Lett. 9 045005

HayesD J,McGuire AD,KicklighterDW,GurneyKR,
Burnside T J andMelillo JM2011 Is the northern high-
latitude land-basedCO2 sinkweakening?Glob. Biogeochem.
Cycles 25GB3018

Hinzman LD et al 2005 Evidence and implications of recent climate
change in northern alaska and other Arctic regionsClim.
Change 72 251–98

Hoffman FM et al 2017 International LandModel Benchmarking
(ILAMB) 2016Workshop Report DOE/SC-0186US
Department of Energy, Office of Science, Germantown,
Maryland, USA (https://doi.org/10.2172/1330803)

Hugelius G, Tarnocai C, Broll G, Canadell J G, Kuhry P and
SwansonDK2013The northern circumpolar soil carbon
database: spatially distributed datasets of soil coverage and
soil carbon storage in the northern permafrost regionsEarth
Syst. Sci. Data 5 3–13

Jandl R et al 2014Current status, uncertainty and future needs in soil
organic carbonmonitoring Sci. Total Environ. 468–469
376–83

Kasischke E S,HayesD J, Griffith PC, Larson EK andWicklandDE
2013NASA’s Arctic-Boreal vulnerability experiment: a large-
scale study of environmental change inWesternNorth
America and its implications for ecological systems and
society 2013 FallMeeting (AGU, San Francisco, California,
9–13December)

KovenCD, Ringeval B, Friedlingstein P, Ciais P, Cadule P,
KhvorostyanovD,KrinnerG andTarnocai C 2011
Permafrost carbon-climate feedbacks accelerate global
warmingProc. Natl Acad. Sci. 108 14769–74

LobodaTV,Hoy EE andCarrollML 2017ABoVE: StudyDomain
and Standard Reference Grids (OakRidge, Tennessee: ORNL
DAAC) (https://doi.org/10.3334/ORNLDAAC/1367)

LuoYQ et al 2012A framework for benchmarking landmodels
Biogeosciences 9 3857–74

MackMC, Schuur EAG, Bret-HarteMS, ShaverGR and
Chapin F S 2004 Ecosystem carbon storage in Arctic tundra
reduced by long-termnutrient fertilizationNature 431 440–3

McGuire AD, Anderson LG,Christensen TR,Dallimore S, Guo L,
HayesD J,HeimannM, Lorenson TD,Macdonald RWand
RouletN 2009 Sensitivity of the carbon cycle in the Arctic to
climate change Ecol.Monogr. 79 523–55

McGuireAD,Chapin F S III,Walsh J E andWirthC2006 Integrated
regional changes inArctic climate feedbacks: implications for
the global climate systemAnnu.Rev. Environ. Resour.3161–91

McGuire AD et al 2012An assessment of the carbon balance of
Arctic tundra: comparisons among observations, process
models, and atmospheric inversionsBiogeosciences 9
3185–204

McGuire AD et al 2018The dependence of the evolution of carbon
dynamics in the northern permafrost region on the trajectory
of climate changeProc. of theNational Academy of Sciences
(April 2018) 115 3882–7

Melton J R et al 2013 Present state of global wetland extent and
wetlandmethanemodelling: conclusions from amodel inter-
comparison project (WETCHIMP)Biogeosciences 10 753–88

Natali SM, Schuur EAGandRubinR L 2012 Increased plant
productivity inAlaskan tundra as a result of experimental
warming of soil and permafrost J. Ecol. 100 488–98

Nave L, JohnsonK, Van IngenC, AgarwalD,HumphreyMand
BeekwilderN 2016 International Soil CarbonNetwork
(ISCN)Database v3-1 (https://doi.org/10.17040/ISCN/
1305039)

OechelWC,Hastings S J, Vourlitis G, JenkinsM, Riechers G and
GrulkeN1993Recent change of Arctic tundra ecosystems
from anet carbon dioxide sink to a sourceNature 361 520–3

OechelWC, Laskowski CA, BurbaG,Gioli B andKalhori AAM
2014Annual patterns and budget of CO2flux in anArctic
tussock tundra ecosystem J. Geophys. Res. Biogeosci. 119
2013JG002431

8

Environ. Res. Lett. 14 (2019) 055002

https://orcid.org/0000-0001-6960-4193
https://orcid.org/0000-0001-6960-4193
https://orcid.org/0000-0001-6960-4193
https://orcid.org/0000-0001-6960-4193
https://orcid.org/0000-0001-6960-4193
https://orcid.org/0000-0003-4734-9085
https://orcid.org/0000-0003-4734-9085
https://orcid.org/0000-0003-4734-9085
https://orcid.org/0000-0003-4734-9085
https://orcid.org/0000-0003-4734-9085
https://orcid.org/0000-0002-3011-7934
https://orcid.org/0000-0002-3011-7934
https://orcid.org/0000-0002-3011-7934
https://orcid.org/0000-0002-3011-7934
https://orcid.org/0000-0002-3011-7934
https://orcid.org/0000-0002-9493-8600
https://orcid.org/0000-0002-9493-8600
https://orcid.org/0000-0002-9493-8600
https://orcid.org/0000-0002-9493-8600
https://orcid.org/0000-0002-9493-8600
https://doi.org/10.1175/JCLI4026.1
https://doi.org/10.1175/JCLI4026.1
https://doi.org/10.1175/JCLI4026.1
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1029/2018MS001354
https://doi.org/10.1029/2018MS001354
https://doi.org/10.1029/2018MS001354
https://doi.org/10.1146/annurev-environ-012913-093456
https://doi.org/10.1146/annurev-environ-012913-093456
https://doi.org/10.1146/annurev-environ-012913-093456
https://doi.org/10.5194/bg-11-4271-2014
https://doi.org/10.5194/bg-11-4271-2014
https://doi.org/10.5194/bg-11-4271-2014
https://doi.org/10.1088/1748-9326/aa9d9a
https://doi.org/10.1029/2011EO180002
https://doi.org/10.1029/2011EO180002
https://doi.org/10.1029/2011EO180002
https://doi.org/10.1029/2011EO180002
https://doi.org/10.1088/1748-9326/9/4/045005
https://doi.org/10.1029/2010GB003813
https://doi.org/10.1007/s10584-005-5352-2
https://doi.org/10.1007/s10584-005-5352-2
https://doi.org/10.1007/s10584-005-5352-2
https://doi.org/10.2172/1330803
https://doi.org/10.5194/essd-5-3-2013
https://doi.org/10.5194/essd-5-3-2013
https://doi.org/10.5194/essd-5-3-2013
https://doi.org/10.1016/j.scitotenv.2013.08.026
https://doi.org/10.1016/j.scitotenv.2013.08.026
https://doi.org/10.1016/j.scitotenv.2013.08.026
https://doi.org/10.1016/j.scitotenv.2013.08.026
https://doi.org/10.1016/j.scitotenv.2013.08.026
https://doi.org/10.1016/j.scitotenv.2013.08.026
https://doi.org/10.1073/pnas.1103910108
https://doi.org/10.1073/pnas.1103910108
https://doi.org/10.1073/pnas.1103910108
https://doi.org/10.3334/ORNLDAAC/1367
https://doi.org/10.5194/bg-9-3857-2012
https://doi.org/10.5194/bg-9-3857-2012
https://doi.org/10.5194/bg-9-3857-2012
https://doi.org/10.1038/nature02887
https://doi.org/10.1038/nature02887
https://doi.org/10.1038/nature02887
https://doi.org/10.1890/08-2025.1
https://doi.org/10.1890/08-2025.1
https://doi.org/10.1890/08-2025.1
https://doi.org/10.1146/annurev.energy.31.020105.100253
https://doi.org/10.1146/annurev.energy.31.020105.100253
https://doi.org/10.1146/annurev.energy.31.020105.100253
https://doi.org/10.5194/bg-9-3185-2012
https://doi.org/10.5194/bg-9-3185-2012
https://doi.org/10.5194/bg-9-3185-2012
https://doi.org/10.5194/bg-9-3185-2012
https://doi.org/10.1073/pnas.1719903115
https://doi.org/10.1073/pnas.1719903115
https://doi.org/10.1073/pnas.1719903115
https://doi.org/10.5194/bg-10-753-2013
https://doi.org/10.5194/bg-10-753-2013
https://doi.org/10.5194/bg-10-753-2013
https://doi.org/10.1111/j.1365-2745.2011.01925.x
https://doi.org/10.1111/j.1365-2745.2011.01925.x
https://doi.org/10.1111/j.1365-2745.2011.01925.x
https://doi.org/10.17040/ISCN/1305039
https://doi.org/10.17040/ISCN/1305039
https://doi.org/10.1038/361520a0
https://doi.org/10.1038/361520a0
https://doi.org/10.1038/361520a0
https://doi.org/10.1002/2013JG002431
https://doi.org/10.1002/2013JG002431


Schädel C,McGuire AD and Schuur EAG2015Permafrost Carbon
Network: 5-Year Synthesis Report

Schädel C, Schuur EA, BrachoR, Elberling B, KnoblauchC, LeeH,
LuoY, ShaverGR andTuretsky MR2014Circumpolar
assessment of permafrost C quality and its vulnerability over
time using long-term incubation dataGlob. Change Biol. 20
641–52

Schuur EA, Vogel J G, CrummerKG, LeeH, Sickman JO and
OsterkampTE 2009The effect of permafrost thaw on old
carbon release and net carbon exchange from tundraNature
459 556–9

Schuur EAG et al 2015Climate change and the permafrost carbon
feedbackNature 520 171–9

SerrezeMC,Walsh J E, Chapin F S,OsterkampT,DyurgerovM,
RomanovskyV,OechelWC,Morison J, ZhangT and
Barry RG 2000Observational evidence of recent change in
the northern high-latitude environmentClim. Change 46
159–207

Sitch S,McGuire AD,Kimball J, GedneyN,Gamon J, EngstromR,
Wolf A, ZhuangQ,Clein J andMcDonaldKC2007Assessing
the carbon balance of circumpolar Arctic tundra using
remote sensing and processmodeling Ecol. Appl. 17
213–34

Sitch S et al 2003 Evaluation of ecosystem dynamics, plant
geography and terrestrial carbon cycling in the LPJ dynamic
global vegetationmodelGlob. Change Biol. 9 161–85

StofferahnE,Fisher J B,HayesD J,HuntzingerDNandSchwalmCR
2016Howwell does yourmodel capture the terrestrial
ecosystemdynamics of theArctic-BorealRegion? 2016Fall
Meeting (AGU, SanFrancisco,California, 12–16December)

Wania R, Ross I and Prentice C I 2009 Integrating peatlands and
permafrost into a dynamic global vegetationmodel: I.
Evaluation and sensitivity of physical land surface processes
Glob. Biogeochem. Cycles 23GB3014

Zhang Z, Zimmermann EN,Calle L,Hurtt GCA and Poulter B
2018 Enhanced response of global wetlandmethane
emissions to the 2015–2016 ElNiño-Southern oscillation
eventEnviron. Res. Lett. 13 074009

ZhangZ,ZimmermannNE,Kaplan JOandPoulter B2016Modeling
spatiotemporal dynamicsof globalwetlands: comprehensive
evaluationof anewsub-gridTOPMODELparameterization
anduncertaintiesBiogeosciences131387–408

Zhang Z, ZimmermannNE, Stenke A, Li X,Hodson E L, ZhuG,
HuangC and Poulter B 2017 Emerging role of wetland
methane emissions in driving 21st century climate change
Proc. Natl Acad. Sci. 114 9647–52

9

Environ. Res. Lett. 14 (2019) 055002

https://doi.org/10.1111/gcb.12417
https://doi.org/10.1111/gcb.12417
https://doi.org/10.1111/gcb.12417
https://doi.org/10.1111/gcb.12417
https://doi.org/10.1038/nature08031
https://doi.org/10.1038/nature08031
https://doi.org/10.1038/nature08031
https://doi.org/10.1038/nature14338
https://doi.org/10.1038/nature14338
https://doi.org/10.1038/nature14338
https://doi.org/10.1023/A:1005504031923
https://doi.org/10.1023/A:1005504031923
https://doi.org/10.1023/A:1005504031923
https://doi.org/10.1023/A:1005504031923
https://doi.org/10.1890/1051-0761(2007)017%5B0213:ATCBOC%5D2.0.CO;2
https://doi.org/10.1890/1051-0761(2007)017%5B0213:ATCBOC%5D2.0.CO;2
https://doi.org/10.1890/1051-0761(2007)017%5B0213:ATCBOC%5D2.0.CO;2
https://doi.org/10.1890/1051-0761(2007)017%5B0213:ATCBOC%5D2.0.CO;2
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.1029/2008GB003412
https://doi.org/10.1088/1748-9326/aac939
https://doi.org/10.5194/bg-13-1387-2016
https://doi.org/10.5194/bg-13-1387-2016
https://doi.org/10.5194/bg-13-1387-2016
https://doi.org/10.1073/pnas.1618765114
https://doi.org/10.1073/pnas.1618765114
https://doi.org/10.1073/pnas.1618765114

	1. Introduction
	2. Observational data
	3. Methods
	3.1. Processing of observational data
	3.2. ABoVE model benchmarking system
	3.3. ABS Statistics

	4. User case
	5. Future work
	5.1. Update the ABS with newly available ABoVE and complementary data
	5.2. Statistics/analysis refinement
	5.3. User engagement
	5.4. Expansion to larger domain

	Acknowledgments
	Author contributions
	Conflict of interest
	References

