
1. Introduction
Terrestrial ecosystems in North America act as a strong carbon sink to mitigate human-induced carbon 
emissions (Hayes et al., 2018). Despite extensive observations, major uncertainties abound in understanding 

Abstract Large uncertainties in North American terrestrial carbon fluxes hinder regional climate 
projections. Terrestrial biosphere models (TBMs), the essential tools for understanding continental-
scale carbon cycle, diverge on whether temperate forests or croplands dominate carbon uptake in North 
America. Evidence from novel photosynthetic proxies, such as those based on chlorophyll fluorescence, 
has cast doubt on the “weak cropland, strong forest” carbon uptake patterns simulated by most TBMs. 
However, no systematic evaluation of TBMs has yet been attempted to pin down space-time patterns 
that are most consistent with regional CO2 observational constraints. Here, we leverage atmospheric 
CO2 observations and satellite-observed photosynthetic proxies to understand emergent space-time 
patterns in North American carbon fluxes from a large suite of TBMs and data-driven models. To do 
so, we evaluate how well the atmospheric signals resulting from carbon flux estimates reproduce the 
space-time variability in atmospheric CO2, as is observed by a network of continuous-monitoring towers 
over North America. Models with gross or net carbon fluxes that are consistent with the observed CO2 
variability share a salient feature of growing-season carbon uptake in Midwest US croplands. Conversely, 
the remaining models place most growing-season uptake in boreal or temperate forests. Differences in 
model explanatory power depend mainly on the simulated annual cycles of cropland uptake—especially, 
the timing of peak uptake—rather than the distribution of annual mean fluxes across biomes. Our results 
suggest that improved model representation of cropland phenology is crucial to robust, policy-relevant 
estimation of North American carbon exchange.

Plain Language Summary In North America, land ecosystems have been known to act as 
a net sink of carbon, but how carbon fluxes are distributed in space and time remains uncertain. A key 
unresolved question about space-time patterns of North American carbon exchange is whether croplands 
or temperate forests show the strongest uptake rate during the growing season. In this study, we evaluate 
a large suite of land biosphere models and models that are driven by remotely sensed vegetation indices 
or ground-based flux observations to pin down the space-time patterns in North American carbon 
exchange. Models are assessed based on how well their carbon flux estimates capture the variability in 
the atmospheric CO2 record observed from a network of towers. We find that models with carbon flux 
estimates that reproduce the observed CO2 variability well show a hotspot of strong growing-season 
carbon uptake in the Midwest US croplands. In contrast, models that reproduce the observed atmospheric 
CO2 variability less effectively place the strongest growing-season uptake in forests. Our findings reveal 
that peak cropland carbon uptake is underestimated in most models and that a better representation of 
cropland processes will be needed to obtain robust estimates of North American carbon fluxes.

SUN ET AL.

© 2021. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial License, 
which permits use, distribution and 
reproduction in any medium, provided 
the original work is properly cited and 
is not used for commercial purposes.

Midwest US Croplands Determine Model Divergence in 
North American Carbon Fluxes
Wu Sun1 , Yuanyuan Fang1,2 , Xiangzhong Luo3,4,5 , Yoichi P. Shiga1,6 , 
Yao Zhang3,4 , Arlyn E. Andrews7 , Kirk W. Thoning7 , Joshua B. Fisher8 , 
Trevor F. Keenan3,4 , and Anna M. Michalak1 

1Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA, 2Bay Area Air Quality 
Management District, San Francisco, CA, USA, 3Climate and Ecosystem Sciences Division, Lawrence Berkeley National 
Laboratory, Berkeley, CA, USA, 4Department of Environmental Science, Policy, and Management, University of 
California, Berkeley, CA, USA, 5Department of Geography, National University of Singapore, Singapore, 6Universities 
Space Research Association, Mountain View, CA, USA, 7Global Monitoring Laboratory, Earth System Research 
Laboratories, National Oceanic and Atmospheric Administration, Boulder, CO, USA, 8Jet Propulsion Laboratory, 
California Institute of Technology, Pasadena, CA, USA

Key Points:
•  Space-time variability in North 

American carbon balance is better 
resolved in models informed 
by remote sensing inputs than 
otherwise

•  Bottom-up models with strong 
growing-season carbon uptake in 
croplands are more consistent with 
atmospheric CO2 observations

•  Most terrestrial biosphere models 
misrepresent the timing of peak net 
carbon uptake in croplands
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the space-time variability of North American terrestrial carbon fluxes (Fang et al., 2014; Hilton et al., 2017; 
Huntzinger et al., 2012; King et al., 2015; Normile, 2017). Bottom-up modeling approaches to quantifying 
carbon fluxes disagree on how gross and net carbon fluxes are distributed seasonally and across North 
American biomes. Notably, most state-of-the-art models favor strong uptake in temperate forests and weak-
er uptake in croplands (Anav et al., 2015; Huntzinger et al., 2012; Normile, 2017; Zhou et al., 2020), while 
a small subset of models simulate otherwise. There is also widespread divergence in the timing and ampli-
tude of seasonal cycles in major biomes across models (Normile, 2017; Richardson et al., 2012; Schwalm 
et al., 2010).

Multiple lines of observational evidence have cast doubt on the “strong forest, weak cropland” carbon up-
take patterns in North America, however. Although croplands are typically not a major long-term carbon 
sink due to harvesting that exports carbon offsite and the respiration of residues (Ciais et al., 2010; Wolf 
et al., 2015), they are known to be highly productive ecosystems in terms of growing-season CO2 uptake 
(Schulze et al., 2010). In addition, the outsized influence of cropland intensification on the increasing CO2 
seasonal amplitude in the Northern hemisphere (Gray et al., 2014; N. Zeng et al., 2014) appears to be incom-
patible with the weak cropland uptake in most model simulations. Boreal ecosystems are also implicated in 
the increased seasonal amplitude, however, based on model estimates of carbon fluxes (Forkel et al., 2016; 
Graven et al., 2013; Piao et al., 2018). Furthermore, evidence from novel photosynthetic proxies, such as 
chlorophyll fluorescence and carbonyl sulfide (COS), suggests that the most prominent growing-season 
photosynthesis occurs not in temperate forests, but in croplands (Guanter et al., 2014; Hilton et al., 2017). 
Atmospheric CO2 inversions also show strong growing-season net uptake in mid-continental croplands 
(Cui et al., 2021; Peters et al., 2007; Schuh et al., 2013; Shiga et al., 2018).

Amid an abundance of observational constraints that underscore the widespread divergence in carbon flux 
estimates across models, a robust understanding of the space-time variability in North American carbon 
fluxes remains elusive. For example, how the magnitude and spatial patterns of cropland carbon uptake 
compare to those of temperate forests remains uncertain. It is also unclear to what extent the discrepancies 
in the distribution of gross primary productivity (GPP), as informed by photosynthetic proxies, are repre-
sentative of the space-time variability of net ecosystem exchange (NEE). A systematic model evaluation 
using regional-scale observational constraints could inform the divergence in the space-time patterns of 
North American carbon fluxes across models.

A variety of models exist for estimating carbon fluxes at regional scales. Terrestrial biosphere models 
(TBMs) simulate carbon fluxes based on mechanistically resolved carbon exchange and vegetation phenol-
ogy (Bonan, 2019; Fisher et al., 2014), and are essential tools for forecasting the state of the terrestrial carbon 
cycle (Bonan & Doney, 2018). In contrast to TBMs, data-driven models simulate fluxes based on vegetation 
phenology represented by remotely sensed indices—for example, leaf area index (LAI) and enhanced veg-
etation index (EVI). For data-driven models, the relationship between vegetation indices and carbon fluxes 
can be empirically parameterized, as in remote sensing models, or learned implicitly through algorithms, as 
in machine learning-based models (Beer et al., 2010). Machine learning-based models are typically trained 
to upscale plot-scale fluxes from eddy covariance observations to regional scales (e.g., Jung et al., 2020).

Divergence among model estimates of carbon fluxes has persisted through model generations (Friedling-
stein et al., 2006, 2014), despite increasingly sophisticated mechanistic representations of ecosystem and 
hydrologic processes (Prentice et  al.,  2015), as well as the wider use of observational constraints in pa-
rameterization (e.g., Bonan et al., 2012; MacBean et al., 2015) and benchmarking (Collier et al., 2018; Luo 
et  al.,  2012). Model evaluation to diagnose the causes of the divergence in simulated carbon flux com-
ponents has mostly focused on comparing modeled values with reference values, and more recently, on 
functional relationships between the fluxes and drivers (Collier et al., 2018; Schwalm et al., 2019). These 
benchmarks help to isolate processes that contribute to the spread in model outcomes (e.g., response of GPP 
to LAI). However, due to process complexity (Bonan, 2019) and equifinality (Tang & Zhuang, 2008) in mod-
el parameterization, locally optimized process representations may not translate into more realistic overall 
outcomes in terms of the regional space-time variability in carbon fluxes (Prentice et al., 2015).

Model evaluation that targets regional-scale patterns of carbon fluxes is, therefore, needed to diagnose mod-
el divergence. Instead of comparing model estimates of carbon fluxes against plot-scale observations as in 
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a typical model benchmarking setting (Normile, 2017; Schwalm et al., 2010; Zhou et al., 2020) or with in-
versions aggregated over a continent or large subcontinental domains (Hayes et al., 2018; King et al., 2015), 
here, we aim to understand the dominant regional-scale features of variability that explain model diver-
gence in the North American carbon balance within and across major biomes by leveraging the scale-rele-
vant constraints from atmospheric and satellite observations.

Atmospheric CO2 observations have increasingly been used to constrain regional-scale carbon balance and 
evaluate carbon flux estimates from models. Unlike eddy covariance flux measurements that focus at the 
plot scale (∼1 km2; Schuepp et al., 1990), observations of atmospheric CO2 concentrations integrate flux 
influences on regional scales (from ∼103 to 105 km2) and can therefore, inform carbon flux variability at 
these larger scales (Gloor et al., 2001; Michalak et al., 2004). With transport models linking fluxes to concen-
trations, atmospheric CO2 observations can also be used to evaluate the regional-scale variability in carbon 
fluxes simulated by TBMs (Fang & Michalak, 2015; Fang et al., 2014), or to provide inverse estimates of NEE 
independent of process-based assumptions (Gourdji et al., 2012; Michalak et al., 2004; Shiga et al., 2018) 
after careful consideration of relevant sources of uncertainty.

Satellite-observed photosynthetic proxies have routinely been used to constrain GPP. Absorbed photosyn-
thetically active radiation (APAR) at the chlorophyll is the first-order driver of GPP (Monteith, 1972). A 
small fraction of the APAR is typically re-emitted as fluorescence, which can inform photosynthetic ac-
tivity and canopy structure (Magney et al., 2019; Y. Zeng et al., 2019). Solar-induced chlorophyll fluores-
cence (SIF) observed from remote sensing platforms provides much-needed GPP constraints at regional 
and global scales (Frankenberg et al., 2011; Parazoo et al., 2014; Sun et al., 2017). Recently, SIF has been 
shown to capture the space-time variability of the NEE in North America better than most TBMs do (Shiga 
et al., 2018).

Here, we leverage atmospheric CO2 observations and satellite-observed photosynthetic proxies to evaluate 
regional-scale carbon flux estimates from a large suite of TBMs and data-driven models. We assess how well 
the transported atmospheric signals of carbon flux estimates capture the space-time variability in atmos-
pheric CO2 concentrations, as observed by a network of continuous-monitoring towers over North America 
(Figure 1). Specifically, for each estimate of carbon flux or SIF, we evaluate how much variance in the ob-
served biospheric CO2 drawdown or enhancement is explained by the transported signal. Since the carbon 
flux and SIF estimates examined here are monthly averaged, we also look at the amount of observed atmos-
pheric CO2 variability that can be explained by the monthly averaged APAR and by the NEE estimated using 
a geostatistical inverse model (GIM NEE). These two pieces of information provide a context for interpret-
ing the amount of observed atmospheric CO2 variability that can be explained using the ensemble of TBMs 
and data-driven models examined here, because these models would be expected to perform at least as well 
as the APAR. On the other hand, the amount of observed atmospheric CO2 variability that can be explained 
using inversion-derived fluxes indicates how much of this variability can, in principle, be explained despite 
the monthly resolution of the data sets and the presence of atmospheric transport model errors. To examine 
the proximate causes of differences in model performance, we examine how biome-level spatial distribution 
and seasonality affect the explanatory power of model estimates.

2. Methods
2.1. Atmospheric CO2 Observations

Atmospheric CO2 observations were obtained from the ObsPack CO2 GLOBALVIEWplus v3.2 data product 
(Cooperative Global Atmospheric Data Integration Project,  2017; Masarie et  al.,  2014). We used in situ 
three-hourly averaged afternoon CO2 measurements from 44 continuous-monitoring towers across North 
America during 2007–2010 (see Text S6 in the Supporting Information [SI] for an additional analysis using 
2007–2012 measurements), with averaging centered at 15:00 local time for most sites, and 16:00 or 17:00 for 
the remaining few sites. Afternoon observations were chosen, as is common practice in regional inversions 
(e.g., Gourdji et al., 2012), because transport model errors arising from model representations of planetary 
boundary layer dynamics are expected to be lower in the afternoons relative to other times of the day (Lin 
et al., 2017). Urban sites were excluded. We filtered out (a) extreme outliers, (b) data that exceeded the 
background values by more than 30 ppmv (Fang & Michalak, 2015), (c) data overly sensitive to ocean fluxes 
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(Gourdji et al., 2012), and (d) those susceptible to transport errors (Gourdji et al., 2012; Shiga et al., 2014). 
Of the approximately 57,700 available mid-afternoon observations during 2007–2010, approximately 18,400 
(32%) were filtered out (Table S1). The remaining ∼39,300 observations were then processed into biospheric 
drawdown or enhancement signals by subtracting background values and fossil fuel enhancements. Back-
ground CO2 mixing ratios were calculated by sampling the endpoints of the back trajectories from an em-
pirical background, similar to that of S. Jeong et al. (2013) and the “EBG” method in Hu et al. (2019). Next, 
fossil fuel CO2 contributions were estimated from the Fossil Fuel Data Assimilation System (FFDAS v2; 
Asefi-Najafabady et al., 2014). The FFDAS v2 data product, originally at the hourly, 0.1° × 0.1° resolution, 
was upscaled to a three-hourly, 1°  ×  1° resolution, and transported using the transport footprints (Sec-
tion 2.2) to derive fossil fuel CO2 enhancements for subtraction. Overall, CO2 data processing was consistent 
with that in Fang et al. (2014) and Shiga et al. (2018). See Table S2 in the SI for tower coordinates, heights, 
and data providers.

2.2. Transport Footprints

The sensitivities of CO2 drawdowns or enhancements to surface carbon fluxes in the upwind regions (ppmv 
[µmol m−2 s−1]−1), also known as “footprints,” were quantified from simulations of the Weather Research 
and Forecasting (WRF) model (Skamarock & Klemp, 2008) coupled with the Stochastic Time-Inverted La-
grangian Transport (STILT) model (Lin et al., 2003; Nehrkorn et al., 2010), with three-hourly temporal reso-
lution and 1° × 1° spatial resolution over the North American domain. These footprints were created as part 
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Figure 1. (a) A map of North American biomes with sites of the CO2 observational network, after Shiga et al. (2018). 
Enclosed within the dashed dark red contours are grid cells of which the total footprint sensitivity summed during 
2007–2010 is among the top 80% over continental North America. (b) Percent coverage of observations (dark blue) 
sensitive to biomes during 2007–2010, compared with the area percentages of these biomes (light blue). Croplands 
(CRP), evergreen needleleaf forests (ENF), and deciduous broadleaf and mixed forests (DBMF) were the most 
extensively observed biomes. In contrast, savannahs (SAV) and tropical evergreen broadleaf forests (EBF) received little 
coverage in the observing system. Other biomes were underrepresented in terms of observational coverage.
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of the NOAA CarbonTracker-Lagrange regional inverse modeling framework (https://www.esrl.noaa.gov/
gmd/ccgg/carbontracker-lagrange/). We represented the footprints in a matrix form to link CO2 variation 
with surface fluxes. The footprints used here covered the period of 2007–2010. The WRF-STILT model has 
been used extensively to estimate greenhouse gas fluxes (Gourdji et al., 2010, 2012; Hu et al., 2019; S. Jeong 
et al., 2013; Miller et al., 2013; Shiga et al., 2018) and to evaluate TBM estimates of ecosystem CO2 fluxes 
(Fang & Michalak, 2015; Fang et al., 2014) at regional and continental scales.

2.3. Model Estimates of Terrestrial Carbon Fluxes and Satellite-Observed Photosynthetic 
Proxies

We evaluated a diverse set of model estimates of the NEE and GPP and satellite-observed photosynthetic 
proxies over North America. Although the net biospheric CO2 drawdown or enhancement reflects the NEE 
not GPP, we postulated that modeled GPP and NEE along with remotely sensed photosynthetic proxies 
explain a portion of the space-time variability of the “true unknown NEE.” This premise holds if (a) model 
estimates of GPP and photosynthetic proxies capture the variability in the true GPP, and (b) the true GPP 
explains a substantial fraction of variability in the NEE. The plausibility of these requirements is supported 
by the fact that SIF as a GPP proxy performs well as the leading explanatory variable of the NEE (Shiga 
et al., 2018).

Models to be evaluated included eight remote sensing models, three machine-learning models from the 
FluxCom ensemble, and 29 prognostic TBMs sourced from two widely cited model intercomparison pro-
jects—the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP, version 2; 
Huntzinger et al., 2013, 2017, 2018, 2020; Wei et al., 2014a, 2014b) and the Trends in Net Land-Atmosphere 
Exchange (TRENDY, version 6; Le Quéré et al., 2018; Sitch et al., 2008, 2015). Four SIF data products were 
also included as proxies to represent space-time patterns in carbon fluxes for comparison against model 
estimates of carbon fluxes (GOME-2A SIF [Joiner et al., 2013, 2014, 2016], spatially and temporally kriged 
GOME-2A SIF [Tadić et al., 2017], RSIF [Gentine & Alemohammad, 2018], and CSIF [Zhang et al., 2018]). 
Overall, this yielded N = 82 data sets to be evaluated.

We also used the APAR (Text S2), calculated from the MODIS fAPAR (Myneni, 2020; Myneni et al., 2002) 
and the PAR derived from the North American Regional Reanalysis (Mesinger et al., 2006), and the month-
ly GIM NEE (Text S3; Shiga et al., 2018) as the lower and upper bounds on the amount of the observed 
atmospheric CO2 variability that we would expect bottom-up models and GPP data sets to capture. All 
data products of carbon fluxes and photosynthetic proxies were standardized to monthly time scales and 
1° × 1° spatial resolution for a fair comparison, although their native resolutions in time and space could 
be higher. We also used the three-hourly GIM NEE as a counterfactual reference to show what the upper 
bound of explanatory power would be, had the evaluated variables been available at three-hourly instead of 
monthly resolution. A detailed description of the data products being evaluated can be found in Text S1–S4 
and Table S3.

2.4. Model Benchmarking

Benchmarking of simulated carbon fluxes and SIF data products was posed as a regression problem (Shiga 
et al., 2018). Using the footprints derived from the WRF-STILT model, the space-time patterns of carbon 
fluxes or photosynthetic proxies can be translated into effects on atmospheric CO2:

 z HXβ  (1)

where  1nz   is a column vector of n atmospheric CO2 observations,  n mH   is the footprint matrix that 
represents a linearization of the transport model (WRF-STILT), with m being the total number of discre-
tized grid cells in space and in time,  m pX   is the design matrix that consists of a constant term and an 
explanatory variable that are both discretized in space and time (here, p = 2),  1pβ   is a column vector 
of linear coefficients that links the transported signals of the explanatory variable (HX) to observed CO2 
concentrations (z), and  1m   is the total error that incorporates errors in observation, atmospheric trans-
port, data representation, and bias due to the portion of fluxes not explained by the explanatory variable. We 
assumed that the total error ε would follow a Gaussian error model.
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The performance of one or more explanatory variables (X) relative to the benchmark of observed atmos-
pheric CO2 concentrations (z) is measured here by the coefficient of determination (R2) of the linear re-
gression z∼HX. The R2 metric is deemed a model's explanatory power. The confidence intervals around R2 
values were calculated from bootstrapping 1,000 times (i.e., resampling observations with replacement to 
recompute R2 values). For a detailed description of the model benchmarking, see Text S5.

Given the oversampling of observations sensitive to croplands with respect to other biomes (Figure 1), we 
also conducted resampling tests with subsets of observations balanced among the six biomes with enough 
observations (excluding evergreen broadleaf forests and savannahs; Text S7) and found that the rank of mod-
els by explanatory power (R2) did not differ from that derived while using all the observations (Figure S4).

In addition, we performed regressions to test the influences of biome-level flux distribution and seasonality 
on model explanatory power by encoding biome, month, or the biome–month combination as categorical 
predictors based on biomes as defined in Figure 1a. With the coefficients β̂ estimated from the regression 
z∼HX, we then calculated the predicted NEE estimates:  ˆŝ Xβ. Similar regression-adjusted NEE estimates 
were also calculated for biome and/or month-encoded regressions. A detailed description for the regres-
sions encoded with biomes and/or months can be found in Text S10.

To further attribute differences in model performance to the (mis)representation of the seasonal cycle in 
specific major biomes, we also performed single-biome encoded regressions. These regressions tested how 
adjusting the seasonal cycles individually in each of the three major biomes—croplands, evergreen needle-
leaf forests, and deciduous broadleaf and mixed forests (Figure 1)—would increase model explanatory pow-
er (R2). The single-biome encoded regressions are described in Text S11.

2.5. Analysis of Common Patterns

Principal component analysis (PCA) was used to extract the first principal component (PC1) flux patterns 
of model groups that were categorized based on R2 skills. For example, thw NEE models that scored an 
R2 value higher than the R2 of the APAR were grouped as “high-R2 NEE models.” For each model group, 
we aligned fluxes of different models from different years as column vectors, while preserving spatial and 
monthly indices. This means that for the same model, simulated fluxes in 2007 were treated as a different 
predictor than the simulated fluxes in 2008. All months, from January to December, were included. This 
approach was used to extract the dominant mode of seasonally varying spatial patterns shared across dif-
ferent models and also across different years. Due to the short period of investigation (2007–2010), we have 
focused on the seasonality of geographic patterns in fluxes rather than on the trends in carbon uptake across 
years. The calculation was performed using the Scikit-learn package (Pedregosa et al., 2011). A detailed 
description is presented in Text S8, and Figures S7–S10 present monthly PC1 patterns.

3. Results and Discussion
3.1. Fidelity to Observed Atmospheric CO2 Benchmarks

The fractions of space-time variability in CO2 data explained by monthly carbon flux and SIF variables, 
expressed as R2 values, range from low to moderate (0.03–0.45, Figure 2). Surprisingly, many models ex-
plain less of the observed CO2 variability than does the APAR (R2 = 0.33). The overall low R2 values of 
the evaluated models and data sets are in part attributable to their monthly resolution, because the best 
model estimates of the NEE still achieve explanatory powers that are about 80% of the explanatory power 
of monthly averaged GIM NEE (R2 = 0.53). This is further supported by the gap in the explanatory power 
between three-hourly and monthly GIM NEE estimates (R2 = 0.84 vs. 0.53). It is beyond the scope of this 
study, however, to quantify how sub-monthly variability in carbon fluxes and SIF would affect other mod-
els' explanatory power, because most of the evaluated models and data sets are not available at diurnal or 
sub-diurnal resolution.

GPP estimates from remote sensing models, GPP and NEE estimates from FluxCom models, and SIF data 
products all explain broadly similar fractions of space-time variability in atmospheric CO2 observations, 
which are close to or slightly above the fraction of variability explained by the APAR (Figure 2). The APAR 
as a GPP driver explains 33% of variability in atmospheric CO2 drawdown, indicating that it correlates with 
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regional patterns of the NEE. Underlying this result is the fact that the GPP explains a substantial amount 
of variability in the NEE (Baldocchi, 2008; Janssens et al., 2001). Since SIF is a proxy of the GPP (Frank-
enberg et al., 2011; Guanter et al., 2014) and contains information about the APAR (Yang et al., 2015; Y. 
Zeng et al., 2019), it is not surprising to find similar explanatory powers among all four SIF data products 
(R2 = 0.34–0.35; Figure 2), which are slightly above that of the APAR (R2 = 0.33).

Despite different parameterizations of photosynthesis (Table S3)—namely, light use efficiency (e.g., MODIS) 
versus enzyme kinetics (e.g., BESS) approaches—GPP estimates from remote sensing models show broadly 
similar explanatory powers (R2 = 0.31–0.39; Figure 2). Since remote sensing models use vegetation indices 
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Figure 2. Fraction of variance (R2) in atmospheric CO2 explained by modeled carbon fluxes (GPP and NEE), SIF 
data products, and the APAR during 2007–2010, with error bars showing 95% confidence intervals obtained from 
bootstrapping. Model groups are color-coded and indicated in the legend. For each model with both GPP and NEE 
estimates, data points that denote R2 values of GPP and NEE of that model are linked by a thin dashed line. The vertical 
lines denote R2 values of three references (from left to right): APAR and monthly and three-hourly geostatistical inverse 
estimates of NEE (GIM NEE). APAR, absorbed photosynthetically active radiation; GIM, geostatistical inverse model; 
GPP, gross primary productivity; NEE, net ecosystem exchange; SIF, solar-induced chlorophyll fluorescence.
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to represent phenology and calculate the APAR, the similar explanatory powers of their GPP estimates 
reflect similar space-time patterns in key model inputs (e.g., fAPAR and EVI). This further indicates that, 
among remote sensing models, model explanatory power is more sensitive to inputs than to parameteriza-
tions. For example, multiple GPP estimates from the PRmodel (Keenan et al., 2016), generated by perturb-
ing the aridity limitation function or from null models (Table S4), all explain virtually the same amount of 
variability in atmospheric CO2 observations as does the APAR (Figure 2).

We find no substantial difference in the explanatory power between data-driven models that are trained or 
calibrated with flux tower observations—FluxCom, P-model, and LUEopt—and those that are not directly 
informed by flux tower observations (the rest of remote sensing models; Figure 2). The explanatory power 
of the LUEopt model (R2 = 0.35) is similar to those of the MODc55 (R2 = 0.34) and MODc6 (R2 = 0.35). 
The FluxCom GPP and NEE estimates show explanatory powers (R2 = 0.36–0.37 for GPP estimates, and 
R2 = 0.37–0.38 for NEE estimates) comparable to GPP estimates from remote sensing models. Such sim-
ilarity is, perhaps, not surprising given the relative scarcity of flux towers in some biomes, for example, 
croplands. Some models, such as the P-model, in fact, use no cropland sites in their calibration (Stocker 
et al., 2020). In addition, the small footprint of flux towers (∼1 km2) limits the degree to which flux tower 
observations inform regional patterns.

It is, however, unexpected that FluxCom NEE estimates do not explain a significantly higher portion of 
the observed CO2 variability than the FluxCom GPP estimates. This may be caused by the fact that though 
FluxCom NEE estimates were trained with tower NEE observations, the upscaling used the same set of 
remote sensing inputs as those for the GPP (Tramontana et al., 2016) and thereby, preserved the space-time 
features in the input variables. Overall, the similar explanatory powers of the GPP and/or NEE estimates 
from remote sensing and machine learning models likely resulted from similar space-time patterns in the 
remotely sensed inputs.

In contrast to remote sensing and machine learning models, GPP and NEE estimates from prognostic mod-
els (MsTMIP and TRENDY ensembles) diverge strongly in how much variability in CO2 drawdown they 
explain (R2 = 0.09–0.36 for GPP estimates, and R2 = 0.03–0.45 for NEE estimates; Figure 2). Most GPP and 
NEE estimates from TBMs explain less variability in CO2 drawdown than the APAR alone, indicating that 
the prognostic phenology modules adopted by these models do not reproduce the vegetation dynamics seen 
by satellite remote sensing platforms.

These results highlight the strong divergence in the space-time patterns of the GPP and NEE estimates 
from prognostic models, despite the fact that climate drivers are kept consistent within each model en-
semble (Huntzinger et al., 2013; Sitch et al., 2015). Functional benchmarks have revealed that model pre-
diction skill for the GPP and NEE depends on process parameterizations, such as nitrogen limitation and 
light thresholds for photosynthesis, and initial conditions of carbon fluxes and pools (Schwalm et al., 2019). 
Compared with diagnostic models and machine learning models that prescribe phenology using remotely 
sensed inputs, prognostic models simulate phenology based on their representations of underlying pro-
cesses. Errors in simulated phenology, coupled with shortcomings in the functions that map phenology to 
carbon fluxes (e.g., LAI–GPP relationship), can cause greater divergence in the explanatory power of the 
space-time patterns of model estimates of the GPP and NEE.

Given that prognostic TBMs are routinely compared with flux observations at the plot scale (Normile, 2017; 
Schaefer et al., 2012; Stöckli et al., 2008) and with inverse flux estimates at continental or sub-continental 
scales (Hayes et al., 2018; King et al., 2015), but less often with observations that inform intermediate re-
gional-scale fluxes (but see Guanter et al., 2014; Hilton et al., 2017), the lack of constraints on regional-scale 
flux patterns may also contribute to model divergence. Our evaluation of a large suite of TBMs, data-driv-
en models, and photosynthetic proxies suggests widespread misrepresentation of space-time variability in 
carbon fluxes among TBMs, given that most data-driven models that are informed by regional-scale con-
straints explain atmospheric CO2 variability relatively well (Figure 2). To understand the proximate causes 
of misrepresented space-time variability in regional carbon flux estimates, we look into emergent features 
in carbon flux patterns that determine model divergence.

SUN ET AL.

10.1029/2020AV000310

8 of 17



AGU Advances

3.2. Models With Strong Growing-Season Carbon Uptake in Croplands Are More Consistent 
With Atmospheric CO2 Observations

We find that the GPP and SIF estimates that outperform the APAR in explaining CO2 variability (number 
of models N = 20) show a common pattern of strong growing-season photosynthetic activity in croplands 
(Figure 3a). Note that all SIF variables belong to this group with high explanatory power (Figure 2). In con-
trast, the GPP estimates with lower explanatory power than the APAR (N = 24) place the growing-season 
photosynthetic activities mainly in the eastern deciduous forests and the northern evergreen needleleaf for-
ests (Figure 3b). The fact that the first principal component (PC1) of the group of models with high explan-
atory power explains a high fraction (82%) of variance in the GPP across both models and years (Figure 3a) 
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Figure 3. The June–July–August (JJA) mean patterns of the extracted first principal component (PC1) among (a) GPP 
and SIF models of high R2 (0.330, 0.391), (b) GPP models of low R2 (0.088, 0.317), (c) NEE models of high R2 (0.356, 
0.446), and (d) NEE models of low R2 (0.035, 0.316), where the numbers in parentheses represent the range of R2 within 
a group. All PC1 patterns are in normalized unit for visual comparison. Percentage numbers represent the fraction of 
variance in each group explained by the PC1, whereas N indicates the number of models in each group. Models of high 
R2 and of low R2 are separated using the R2 value of APAR as a threshold. Note that the PRmodel ensemble members 
are not included in either GPP group (a and b), because they are similar to each other and to APAR. For both GPP and 
SIF (a) and NEE (c), models with high R2 show common features of strong summer uptake in the mid-continental 
cropland region. For the PC1 patterns across a full year, see Figures S7–S10. APAR, absorbed photosynthetically active 
radiation; GPP, gross primary productivity; NEE, net ecosystem exchange; SIF, solar-induced chlorophyll fluorescence.
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indicates that this is a robust pattern that emerges independently of model structure. The six PRmodel 
members were not included in either group because their explanatory power was very similar to that of the 
APAR (Figure 2) and had highly correlated flux patterns among each other (Figures S11 and S12).

Similarly, the NEE estimates with higher explanatory power than the APAR (N = 12) show the strongest 
growing-season net uptake in croplands (Figure 3c), and this strong feature of net uptake is also absent in 
the NEE estimates with weaker explanatory power than the APAR (N = 20; Figure 3d). The PC1 extracted 
from the former group also explains a high fraction of inter-model and interannual variability (∼66%) in 
the NEE.

These results reveal an emergent relationship that links the overall model performance in North America 
to how models simulate the growing-season carbon uptake in mid-continental croplands. Although the 
geographic extent of specific biomes may vary somewhat among models, the pronounced uptake features 
observed in Figures 3a and 3c correspond well with the extent of croplands, as defined in the current anal-
ysis (Figure 1). This finding is corroborated by other independent regional-scale constraints on the GPP 
only, namely, COS and SIF, both of which suggest strong growing-season photosynthesis in mid-continen-
tal croplands that is only captured by a minority of models (Guanter et al., 2014; Hilton et al., 2017; Shiga 
et al., 2018). Furthermore, the inclusion of a large suite of models and photosynthetic proxies in the model 
evaluation supports the robustness of this feature, as they are representative of a diverse (though by no 
means exhaustive) model space. In other words, the large ensemble of models examined here, together with 
the regional-scale constraints from atmospheric and satellite observations point to a robust finding of strong 
growing-season net carbon uptake in the Midwest US croplands relative to forested regions.

This continental-scale feature of strong cropland uptake also resonates with existing studies that find 
far-reaching global impacts of cropland productivity on the seasonal amplitudes of CO2 in the Northern 
hemisphere (Gray et al., 2014; N. Zeng et al., 2014). On the other hand, a subset of the TBMs examined 
here were also used in attributing the increased CO2 seasonal amplitudes to boreal ecosystems (Forkel 
et al., 2016; Graven et al., 2013; Piao et al., 2018), but many of them do not explain the observed CO2 varia-
bility over North America well (Figure 2) and lack the strong cropland uptake that is more consistent with 
atmospheric observations (Figure 3). Therefore, the attribution of the observed increase of the seasonal 
amplitude of CO2 may warrant further examination using a subset of models that capture the salient feature 
of cropland carbon uptake, at least for the North American domain.

3.3. Most Models Misrepresent Seasonality of Cropland Carbon Uptake

Among the models with GPP or NEE estimates with lower explanatory power, the lack of strong cropland 
carbon uptake could in principle be attributed to misrepresentation of either (a) the overall magnitude of 
the cropland GPP or NEE relative to other major biomes or (b) the seasonal cycle of fluxes within the crop-
land biome. If the misrepresentation of flux magnitudes among biomes is the major cause, we would expect 
that allowing linear coefficients (β) in the regressions for model evaluation to vary by biome would lead to 
large increases in model explanatory power. Similarly, if the misrepresentation of seasonal cycles of fluxes 
dominates, allowing linear coefficients (β) in the regressions for model evaluation to vary by month would 
lead to a relatively large increase in model explanatory power (see Text S10 for implementation details).

Based on biome and month encoded regressions conducted as described above and in Section 2.4, we find 
that the differences in model performance are mainly attributable to the models' ability to represent the 
seasonal cycle of fluxes across biomes, and only to a lesser extent to differences in the ability to represent 
spatial differences in fluxes across biomes (Figure 4). When the linear coefficients (β) are allowed to vary 
by biome, R2 values show only marginal improvements across all GPP, SIF (Figures 4a and 4b), and NEE 
estimates (Figures 4e and 4f). In contrast, allowing β to vary by month leads to a substantial improvement 
in R2 values, to the point that the gap between the models with the highest and lowest explanatory powers 
is greatly reduced within each model group (Figures 4c and 4g). Furthermore, letting β vary both by biome 
and by month virtually eliminates the difference in performance across models (Figures 4d and 4h).

Hence, we find that the spatial variability within biomes is not a major contributor to the differences in 
models' ability to explain observed atmospheric CO2 variability. This is further corroborated by the result 
that even a null model that has spatially constant fluxes within biomes (but for which fluxes can vary 
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between biomes and between months) can explain almost as much space-time variability in atmospheric 
CO2 drawdown as the other models (Figures 4d and 4h).

The regression-adjusted cropland NEE estimates further confirm that the observed atmospheric CO2 
variability is sensitive to the annual seasonal cycles of cropland carbon fluxes, and in particular, the tim-
ing of peak growing-season uptake (Figures 4g and 5), rather than the magnitude of peak uptake or the 
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Figure 4. Increase in model explanatory power (R2) of (a–d) GPP models and SIF data products and of (e–h) NEE 
models after encoding biome and/or month as categorical predictors, shown as boxplots. From left to right are: R2 
values from (a and e) regressions using model estimates alone (z∼HX), (b and f) regressions encoded with the biome 
variable (z∼HXbiome), (c and g) regressions encoded with the month variable (z∼HXmonth), and (d and h) regressions 
encoded with the Cartesian product of biome and month variables (z∼HXbiome×month). Note that R2 values of the 
corresponding null models are shown as gray crosses for reference. GPP, gross primary productivity; SIF, solar-induced 
chlorophyll fluorescence.
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distribution of flux magnitudes across biomes (Figures 4f and 5). For the NEE variables with low explanato-
ry power (Figure 5b), month-encoded regressions attempt to adjust NEE seasonal cycles to be more similar 
to those of the NEE estimates with high explanatory power (Figure 5a), leading to a shift in the timing of 
peak uptake from June to July among the former (Figure 5b). In contrast, biome-encoded regressions are 
unable to fix the misaligned seasonal cycles of cropland NEE in this group of models. This feature is even 
more striking in the regression-adjusted NEE seasonal cycles of some representative individual models 
(Figures S13 and S14). For the NEE variables with high explanatory power, biome- and month-encoded 
regressions do not noticeably change the cropland NEE seasonal cycle with respect to the regressions with 
original explanatory variables (Figure 5a), which suggests that cropland NEE estimates from these models 
are robust in terms of both the overall magnitude relative to that of temperate forests and seasonal cycles. 
The widespread and substantial bias in the timing of peak uptake in croplands that we find here is consist-
ent with the findings from plot-scale model evaluations at sub-monthly resolutions, for example, the 1- to 
2-month lead of simulated phenology of corn and soybean in CLM4 over observed phenology at Midwest-
ern cropland sites (Chen et al., 2015, 2018).

The dominant contribution of croplands to overall model performance is also corroborated by additional 
lines of evidence. First, single-biome encoded regressions (i.e., regressions that adjust the seasonal cycles in 
one biome only; Text S11 and Figure S16) applied to croplands (Figures S16d and S16h) increase explanato-
ry power among prognostic models more than when applied to evergreen needleleaf forests (Figures S16c 
and S16g) or deciduous broadleaf and mixed forests (Figures S16b and S16f), and substantially reduce the 
variability in explanatory power across models (Figures S16d and S16h relative to Figures S16b and S16f and 
Figures S16c and S16g). Second, the increases in model explanatory power are similar when adjusting the 
seasonal cycles in croplands alone (Figures S16d and S16h vs. Figures S16a and S16e) as when uniformly 
adjusting the seasonal cycles in all biomes (Figures 4c and 4g vs. Figures 4a and 4e).

To eliminate the possibility that this dominant role is due to differences between model-specific delinea-
tions of cropland area and the uniform biome map used here (Figure 1a), we repeated the single-biome en-
coded regressions using model-specific biome distributions for a subset of TRENDY models for which such 
an analysis was possible. Results from four models (CABLE, OCN, ORCHIDEE-MICT, and VISIT) included 
information on plant functional types at a resolution of 1° × 1° or higher. We find that adjusting the seasonal 
cycles of carbon uptake in model-specific cropland areas (or in the absence of a specific cropland type, the 
biome that most closely matches the geographic extent of croplands) yields results consistent with those 
shown in Figures S16e and S16h (results not shown), confirming that model differences in the delineation 
of cropland areas are not a driver of the observed effect.
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Figure 5. Multi-model mean, regression-adjusted NEE seasonal cycles (2007–2010) in croplands. For each explanatory 
variable, we calculate the predicted NEE estimates (  ˆŝ Xβ) from regressions with the original explanatory variable 
matrix X (gray lines), the biome-encoded explanatory variable matrix Xbiome (orange lines), and the month-encoded 
explanatory variable matrix Xmonth (blue lines). The seasonal cycles are averaged by model groups with multi-model 
standard deviations (±1σ) shown as the shading: (a) NEE models of high R2, and (b) NEE models of low R2 (these 
groups correspond exactly to those in Figures 3c and 3d, respectively). The mean seasonal cycles of GIM NEE over 
croplands are shown in red dashed lines for comparison. GIM, geostatistical inverse model; NEE, net ecosystem 
exchange.
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Overall, these results confirm that the seasonal cycle of cropland carbon uptake—in particular, the timing 
of peak uptake, also known as the “phase” (Collier et al., 2018)—plays a dominant role in determining 
model performance. The mechanistic cause of the phase bias in the seasonal cycles of cropland carbon 
uptake appears to be rooted in vegetation phenology, as further analysis established a robust link between 
the explanatory power of model GPP estimates and how well model LAI estimates capture the variability 
in the remotely sensed MODIS LAI product over croplands, but not other major biomes, among MsTMIP 
v2 models (Figure S18).

Several causes may underlie the dominant role of cropland carbon uptake in the divergence of North Amer-
ican carbon flux estimates. First, prognostic TBMs rely on parameterizations of vegetation phenology that 
are specific to each plant functional type (PFT), whereas data-driven models can leverage the spatial and 
seasonal patterns in remotely sensed vegetation indices to capture regional-scale variability in carbon flux-
es, even without an explicit representation of crops and cropland management activities. The lack of PFTs 
to resolve the dominant crops in North America—corn, soybean, and wheat—may prevent TBMs (e.g., BI-
OME-BGC and DLEM) from simulating the dominant feature of a strong mid-continental cropland uptake. 
Although MsTMIP enforced a standard biome map among its participating models, some models may not 
have accurate parameterization of physiological parameters that control carbon fluxes for crop PFTs (e.g., 
Vc,max, the maximum carboxylation activity for photosynthesis). Second, except for a few models equipped 
with advanced cropland modules that resolve management practices (e.g., irrigation, planting, harvesting, 
etc.), many TBMs (or at least their standard, non-crop-specific simulations included in model ensembles) 
are not designed to simulate croplands. Third, cropland management can be heavily affected by extreme 
weather events (e.g., 2019 Midwest flooding that delayed the growing season; Yin et al., 2020) that are not 
anticipated by even the most sophisticated models. While other deficiencies, such as the response of photo-
synthesis to temperature, have been implicated in the phenology bias in boreal ecosystems (e.g., S.-J. Jeong 
et al., 2017), their effects are difficult to isolate for croplands, because the poor representation of manage-
ment practices appears to be a primary factor of model underperformance.

Overall, our results indicate an urgent need to bring about a more realistic representation of the seasonal 
cycles of cropland carbon uptake to prognostic models for better understanding of space-time patterns in 
North American carbon fluxes. Recent advances have shown promise in reducing phenology biases through 
improved mechanistic representation of leaf area index dynamics (Wu et al., 2016), the implementation of 
active management processes (Lombardozzi et al., 2020), crop-specific parameterization (Boas et al., 2021; 
Peng et al., 2018), and/or intensive calibration with flux tower data (Bilionis et al., 2015; Chen et al., 2018). 
With concerted model development, calibration, and evaluation, the next-generation of TBMs will un-
doubtedly be better positioned to deliver more robust estimation of North American carbon fluxes.

4. Conclusion
Using atmospheric CO2 observations as regional-scale benchmarks on North American carbon exchange, 
we link the performance of carbon flux estimates and SIF to underlying regional patterns. We find that 
models with flux estimates that reproduce the observed CO2 variability well all share pronounced grow-
ing-season uptake in the mid-continental croplands, and this feature is either absent or has an incorrect 
timing in the remaining models. Although croplands are typically not a long-term carbon sink, seasonal 
carbon uptake in croplands emerges as a salient regional-scale feature from a wide range of model estimates 
and photosynthetic proxies. Through regression analyses, we attribute this difference in model performance 
mainly to the models' ability to represent the seasonality of fluxes across and within biomes, and to a lesser 
degree to the biome-level spatial differences in fluxes.

These findings echo a long-standing challenge in model development, namely, the challenge of capturing 
the seasonality of carbon fluxes. To reduce the divergence in model estimates of the North American carbon 
exchange, future development needs to target phenology and carbon allocation, because these processes 
dictate the seasonality of cropland fluxes. More broadly, model benchmarking with atmospheric CO2 ob-
servations must be streamlined as a routine practice to detect and diagnose discrepancies at regional to 
continental scales. Looking ahead, reducing model divergence in regional carbon fluxes is a crucial step 
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toward obtaining accurate and policy-relevant climate projections, and this process requires coordinated 
and integrated efforts in model design and benchmarking.
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