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A B S T R A C T

Satellite based retrievals of evapotranspiration (ET) are widely used for assessments of global and regional scale
surface fluxes. However, the partitioning of the estimated ET between soil evaporation, transpiration, and ca-
nopy interception regularly shows strong divergence between models, and to date, remains largely unvalidated.
To examine this problem, this paper considers three algorithms: the Penman-Monteith model from the Moderate
Resolution Imaging Spectroradiometer (PM-MODIS), the Priestley-Taylor Jet Propulsion Laboratory model (PT-
JPL), and the Global Land Evaporation Amsterdam Model (GLEAM). Surface flux estimates from these three
models, obtained via the WACMOS-ET initiative, are compared against a comprehensive collection of field
studies, spanning a wide range of climates and land cover types. Overall, we find errors between estimates of
field and remote sensing-based soil evaporation (RMSD=90–114%, r2= 0.14–0.25, N=35), interception
(RMSD=62–181%, r2= 0.39–0.85, N=13), and transpiration (RMSD=54–114%, r2 = 0.33–0.55, N=35)
are relatively large compared to the combined estimates of total ET (RMSD=35–49%, r2 = 0.61–0.75,
N=35). Errors in modeled ET components are compared between land cover types, field methods, and pre-
cipitation regimes. Modeled estimates of soil evaporation were found to have significant deviations from ob-
served values across all three models, while the characterization of vegetation effects also influences errors in all
three components. Improvements in these estimates, and other satellite based partitioning estimates are likely to
lead to better understanding of the movement of water through the soil-plant-water continuum.

1. Introduction

The evaporation of water from the Earth’s surface to the atmosphere
represents a critical link between the global water, carbon, and energy
cycles (Oki and Kanae, 2006). An estimated two thirds of terrestrial
rainfall returns to the atmosphere as evapotranspiration (ET) from the
continents (Hobbins et al., 2004; Teuling et al., 2009) and the asso-
ciated latent heat flux corresponds to a cooling of the Northern Hemi-
sphere of about 15°–25 °C (Shukla and Mintz, 1982). ET is a critical
process governing water resource availability, agricultural productivity,
and irrigation efficiency, as well as impacting the severity of droughts,
floods, and wildfires (Littell et al., 2016; Molden et al., 2010; Trenberth,
2011; Wallace, 2000). Furthermore, the energy flux associated with ET
fundamentally influences the development of the planetary boundary
layer and the atmospheric processes contained within it (Ek and
Holtslag, 2004; Pielke et al., 1998; Seneviratne et al., 2010). Future

climate warming is expected to significantly alter the global water
cycle, affecting regional and global rates of ET, precipitation, and
streamflow (Huntington, 2006; Zhang et al., 2016). Given the im-
portant role of ET in a variety of land surface processes, accurately
estimating large-scale fluxes of ET is critical to our understanding of the
earth system.

Spatially distributed, remote sensing-based ET models have become
a dominant means to estimate catchment and global-scale ET fluxes
(Anderson et al., 2007; Fisher et al., 2017; Schmugge et al., 2002). The
large spatial extent and fine temporal resolution of these remote sensing
products makes them perhaps the only observational means to assess
global-scale impacts of changes in ET fluxes. These factors have made
remote sensing-based models a powerful tool in both climate and large-
scale hydrologic applications. Many of these remote sensing-based
models estimate total ET via combination of its separate components:
transpiration through plant stomata, soil evaporation from the top layer
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of soil, and canopy rainfall interception. However, the wide array of
algorithms and choice of forcing datasets have hampered the analysis of
model results, as errors in model estimates may come from both forcing
errors and/or errors in algorithms and parametrizations (Ershadi et al.,
2015). Recent efforts have compared ET fluxes from several satellite-
based ET models using a common forcing dataset, simplifying the
comparison substantially (McCabe et al., 2016; Michel et al., 2016;
Miralles et al., 2016).

These remote sensing-based ET estimates have shown good relative
agreement in global estimates, but larger discrepancies regionally
(Michel et al., 2016). Interestingly, the limited number of studies
comparing individual ET components have shown that the global and
regional contribution of transpiration, soil evaporation, and intercep-
tion vary significantly between models, even where total ET estimates
agree (Miralles et al., 2016). The divergence of ET partitioning esti-
mates suggests that some models may contain large ET partitioning
errors. Accurate partitioning estimates are highly desired for research
related to agriculture, climate and land-use change, hydrology, and
water resource availability. ET partitioning is also a crucial factor for
global climate models as the partitioning of ET has proven to be a
significant source of uncertainty for future climate projections
(Lawrence et al., 2007). Incorrect parameterizations within ET models
are likely to compromise the accuracy of estimates across ecoregions
and through time. Furthermore, any divergence of ET partitioning is
certainly an indicator that models may contain systematic errors in
their formulations.

The mechanisms that govern the individual ET components of
transpiration, soil evaporation, and canopy interception operate on
varying spatial scales from relatively small (i.e. stomata, single plants)
to larger regional scales (i.e. climate system) (Good et al., 2017;
Pieruschka et al., 2010; Wang and Dickinson, 2012; Wang et al., 2014).
Field methods for measuring transpiration typically measure at the
scale of an individual leaf or plant (Rana and Katerji, 2000; Schlesinger
and Jasechko, 2014). Such field techniques include: sap-flow mea-
surements, diurnal water table changes, water-balance approaches, and
isotope based approaches (Gibson and Edwards, 2002; Lautz, 2008;
McJannet et al., 2007; Nizinski et al., 2011). Measurements from such
studies are extrapolated to larger spatial scales through assumptions
about the variability of sap-flux densities (Dye et al., 1991; Fernández
et al., 2006), changes in isotopic composition of water within the plant
(Brunel et al., 1997), and general homogeneity of vegetation and sto-
matal response to environmental conditions. The spatial scale of these
measurements remains a limitation for ET partitioning validation, as
research into regional hydrologic and climatic processes often requires
estimates of partitioned fluxes at much larger spatial scales.

Furthermore, field studies of ET partitioning often focus on a single
component such as transpiration or interception, and rarely attempt to
estimate all contributing ET components. Canopy interception, for in-
stance, is a well-developed field of study (Carlyle-Moses and Gash,
2011; Crockford and Richardson, 2000; Levia and Frost, 2006; Muzylo
et al., 2009), and is often estimated as the difference between rainfall
above and below the canopy. However, few canopy interception studies
attempt to quantify the role of interception as part of the ET flux. Si-
milarly, transpiration studies are often focused on the physiologic
processes of vegetation and disregard the role of transpiration in larger
hydrologic and atmospheric cycles. Some field methods do not directly
measure soil evaporation, and instead quantify it as the residual of ET
and transpiration. Due to the fractured nature of the ET partitioning
research, few field studies are available quantifying transpiration, soil
evaporation, and interception simultaneously.

To address the uncertainty surrounding ET partitioning in remote
sensing-based ET models, we evaluate three models and their parti-
tioning strategies against a compilation of field studies. We hope to
contextualize partitioning comparisons made by Miralles et al. (2016)
using empirical field methods. While previous studies have attempted
to compare specific model estimates of either canopy interception or

transpiration against field data, few have jointly assessed errors in re-
mote sensing-based estimates against transpiration, soil evaporation,
and interception. In comparing model performance against compiled
field estimates we hope to (1) reconcile the deviations between each
model partition against a field standard, (2) determine if the modeled
errors are consistent or vary across different land surface or climate
conditions, (3) identify assumptions or parameters within the model
that contribute to error, (4) and contextualize some of the partitioning
comparisons made by Miralles et al. (2016).

2. Methodology

We compared ET components from three remote sensing-based
models against a compilation of field estimates of soil evaporation,
transpiration, and interception. We assessed the Priestley-Taylor Jet
Propulsion Lab model (PT-JPL)(Fisher et al., 2008), the Penman-Mon-
teith MODerate Resolution Imaging Spectroradiometer (PM-MODIS)
(Mu et al., 2011), and the Global Land Evaporation Amsterdam Model
(GLEAM) (Martens et al., 2017; Miralles et al., 2011, 2010) model. Each
model is widely used to estimate ET and provide relatively comparable
estimates of the total ET flux (Miralles et al., 2016). Global annual mean
values of ET for each model have been estimated at 54.9, 72.9, and
72.5×103km3 for PM-MOD, GLEAM, and PT-JPL respectively
(Miralles et al., 2016).

2.1. Evaporation models

Each model evaluated for this study adopts a similar structure to
estimate total ET fluxes as well as the individual components of ET. The
model structure may be categorized into three separate functions: (1)
quantifying potential ET, (2) partitioning the potential ET into its given
components to be aggregated as total ET, and (3) translating the po-
tential ET into an actual ET based on the constraints of the component
processes. Different models employ different strategies in accom-
plishing these basic functions but individual model parameters often
fall into a single categorical function.

2.1.1. Priestley-Taylor Jet Propulsion Lab (PT-JPL)
The PT-JPL model utilizes the Priestley-Taylor equation (Priestley

and Taylor, 1972) to estimate potential ET flux and is described in
depth in Fisher et al. (2008). The model uses ecophysiological and at-
mospheric constraints to reduce the potential ET flux to an actual ET
flux. The total ET is partitioned between soil evaporation, Es [m/s],
canopy transpiration , Ev [m/s], and canopy interception, Ei [m/s] as
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where a is the Priestley-Taylor coefficient (considered equal to 1.26), Δ
is the slope of the vapor pressure curve [Pa/K], γ is the psychrometric
constant [Pa/K], Rn is the net radiation [W/m2], G is the energy flux
into the ground [W/m2], λv is the latent heat of vaporization[J/kg], fwet
is a relative surface wetness parameter (see below), fSM is the soil
moisture constraint, fg is the green canopy fraction, fT is the plant
temperature constraint, and fM is the plant moisture constraint.

PT-JPL effectively accomplishes its partitioning using a canopy ex-
tinction equation to estimate the radiation penetrating through the
canopy. This canopy extinction equation utilizes the leaf area index
(LAI) in conjunction with the Beer-Lambert law of light attenuation
(Norman Ay et al., 1995) to partition net radiation between the canopy
and soil. Canopy processes (interception and transpiration) are
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determined using the radiation intercepted according to the Beer-
Lambert equation, and soil evaporation is determined using the residual
radiation penetrating the canopy.

PT-JPL scales each ET component by various scalars (f parameters)
between 0 and 1 to account for environmental constraints on potential
evaporation such as water and heat stress. Transpiration is constrained
using four vegetation-based physiological parameters. Temperature and
plant moisture effects on transpiration are calculated by normalizing
phenological parameters by the maximum observed value per pixel. A
canopy greenness fraction further constrains the transpiration flux
based on the ratio between the fraction of absorbed photosynthetically
active radiation ( fAPAR) and the fraction of intercepted photo-
synthetically active radiation ( fIPAR). The fourth constraint on tran-
spiration is the surface wetness based on atmospheric relative humidity
( fwet). Soil evaporation constraints are determined by the surface wet-
ness parameter ( fwet) and the available soil moisture ( fsm), the latter
estimated by both relative humidity and vapor pressure deficit.
Interception is estimated using the same fwet parameter.

2.1.2. Penman-Monteith MODerate Resolution Imaging Spectroradiometer
(PM-MODIS)

The PM-MOD model uses a framework based on the Penman-
Monteith equation and utilizes specific conductance terms representing
the vapor movement from the land surface to the overlying atmosphere.
The model is described in depth by Mu et al. (2011) and estimates the
components as:
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Interception, transpiration, and soil evaporation are separated using
fractional cover, fc, calculated using fAPAR. The partitioned fluxes are
constrained based on relative humidity (h), the fraction of wet surface
( fwet), and look-up table values of vegetation-dependent aerodynamic
and surface resistances (r r,a s).

2.1.3. Global Land Evaporation Amsterdam Model (GLEAM)
Similarly to PT-JPL, GLEAM relies on a Priestley-Taylor framework

to calculate potential ET. GLEAM uses a separate algorithm to calculate
interception (Ei) based on a Gash analytical model (Gash, 1979; Valente
et al., 1997) driven by precipitation observations. Ei estimates have
been previously validated against field data independently (Miralles
et al., 2010). The GLEAM model computes interception only for the tall
canopy fraction within each pixel (see below).

Then soil evaporation (Es), tall canopy transpiration (E )tc and short
canopy transpiration (Esc) are calculated as
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The transpiration (Ev) is then calculated as the sum of Esc and Etc. In
Eqs. (3a)–(3c), the partitioning of the evaporative flux into different
components is based on the fractional vegetation cover ( f ). The frac-
tional cover utilized is the MODIS Continuous Vegetation Fields pro-
duct, MOD44B, which describes each pixel as a combination of bare

soil, tall canopy, and short canopy vegetation (i.e. “s”, “c”, and “sc”,
respectively). The model uses vegetation-dependent parameterizations
of G as well as different values of a for each vegetation cover type.
Characteristic albedo ratios per vegetation cover type come from look
up tables and determine how Rn is distributed per cover fraction.

GLEAM model constrains the Priestley and Taylor potential eva-
poration estimates based on an evaporative stress factor. This stress
factors, S, is parameterized separately for the bare soil, tall canopy, and
short vegetation components based on soil moisture and vegetation
phenology for the vegetated fractions (see Ss, Stc and Ssc in Eqs.
(3a)–(3c), respectively). The soil moisture is estimated based on a
multilayer soil module driven by precipitation observations, and further
optimized using a data assimilation system that incorporates observa-
tions of surface soil moisture (Martens et al., 2017, 2016). The tran-
spiration stress associated with phenological changes is based on mi-
crowave vegetation optical depth, a proxy for vegetation water content
(Miralles et al., 2011).

2.2. Field validation data

Field studies measuring the separate components of ET (i.e. soil
evaporation, transpiration, and interception) are scarce. We utilized a
set of studies previously consolidated by Schlesinger and Jasechko
(2014) as well as additional studies containing annual values for tran-
spiration and total ET. We then calculated soil evaporation as the re-
sidual of transpiration and total ET, assuming negligible interception.
We compared the residual field estimate against modeled soil eva-
poration and the modeled residual (ET-T) and found that this assump-
tion did not significantly influence the aggregate results of the study.
These studies span several decades and use a variety of measurement
techniques, primarily sap-flow measurements, isotope-based measure-
ments, or meteorological models scaled using eddy-covariance and
water balance models. Other studies have scaled measurements using
biophysical models or through a water balance method to obtain ca-
nopy level values of transpiration and ET. Each field method suffers
from their own set of assumption and is associated with some mea-
surement error. Field study site locations are displayed in Fig. 1 and
listed in Table 1. Despite the range of spatial support and uncertainty
related to each technique in the dataset, we believe that, in the ag-
gregate, the field estimates offer a good means to evaluate the perfor-
mance of the model estimates.

Some field studies within the dataset span only the growing season
of a given year and may overestimate the ratio of transpiration to ET on
an annual scale. Other studies span several years and report a single
annual estimate for transpiration and ET fluxes. Field estimates are
reported as annual values and are compared against the modeled an-
nual means. Instances existed where separate field studies reported
values for the same pixel, in which case the field estimates were aver-
aged.

The field studies described above largely ignore evaporation of
rainfall intercepted by the canopy. To validate the interception com-
ponents of the models we used the dataset previously used in the va-
lidation of the GLEAM interception loss estimates (Miralles et al.,
2010). This dataset includes studies estimating the interception of
forested canopies and excludes field sites in grasslands or shrublands
where herbaceous interception may occur. The field dataset describes
the interception at a given site as a mean annual depth per area of
canopy. In order to estimate the interception in a given pixel, we scaled
each field value using the fraction of forested land cover described by
the MCD12C1 land cover fraction product [dataset] (NASA LP DAAC,
Friedl and Sulla-Menashe, 2015). This does not account for the inter-
ception by herbaceous vegetation in non-forested areas, even though
the rates of interception by short vegetation are expected to be com-
paratively much lower due to differences in aerodynamic conductance
(David et al., 2005).
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2.3. Model forcing data

For those input variables that are common to all three models, we
used the WAter Cycle Observation Multi-mission Strategy - ET forcing
database (WACMOS-ET, http://wacmoset.estellus.eu/), which includes
remote sensing derived surface meteorology and radiation fluxes
(Michel et al., 2016; Miralles et al., 2016). In addition to the parameters
already included in the WACMOS-ET forcing dataset, the PM-MOD
model requires LAI, IGBP land cover, and fAPAR as inputs while the PT-
JPL model requires NDVI. The original WACMOS-ET dataset contains
LAI and fAPAR derived from the Joint Research Centre two-stream
inversion package, but the values are not consistent with the MODIS
derived LAI and fAPAR that both PM-MOD and PT-JPL require. We
used MODIS vegetation products [dataset] (NASA LP DAAC, Didan,
2015) to supplement the WACMOS-ET data to force the PT-JPL and PM-
MOD.

The input datasets vary in spatial and temporal resolution, but are
re-sampled to a common 0.25° latitude×0.25° longitude grid, and a 3-
hourly temporal scale for PT-JPL and PM-MOD models, and a daily
temporal scale for GLEAM. GLEAM no longer provides sub-daily esti-
mates of ET, but PT-JPL requires maximum daily temperature and
minimum daily humidity and is thus executed using the original 3-
hourly forcing. In addition to the time variant fields, both GLEAM and
PM-MOD require static fields. PM-MOD requires IGBP land cover values
while GLEAM requires soil parameters derived from IGBP-DIS (Global
Soil Data Task, 2014), and the MOD44B global vegetation continuous
fields product.

3. Results & analysis

We compared the modeled estimates for each ET component against
the field study estimates at each location. Table 2 lists the r2 correlation
coefficient, the standard error, the percent mean bias deviation (%
MBD), and the percent root mean squared deviation (% RMSD) across
different models. Fig. 2 shows linear regressions of the modeled esti-
mates against the field estimates for each model and individual ET
component.

Total ET results are comparable between models and show similar
agreement with previous validations of total ET (Miralles et al., 2016).
The modeled estimates generally overestimate the field estimates for
small ET fluxes, and underestimate the field estimates at high values.
Both PM-MOD and GLEAM show a tendency to underestimate the total
flux, exhibiting a percent mean bias deviation (%MBD) of −21.6% and
−20.9% respectively. PT-JPL ET estimates shows a %MBD of just
−2.3%. The standard error exhibited by each model is very similar as
are the overall trends. Comparatively, the modeled partitions show
large discrepancies among themselves and agianst field data.

GLEAM offers the best results for estimating the transpiration flux,

showing the lowest %RMSD, %MBD, and highest r2 value. PT-JPL
shows similar results to GLEAM for most statistics, except a lower
correlation. The %MBD for the PM-MOD transpiration flux is −66.0%,
which is substantially larger as compared to PT-JPL and GLEAM, where
values of −10.7% and −5.4% are obtained respectively. The PT-JPL
transpiration correlation (r2 = 0.33) is much lower than previous va-
lidations of the transpiration component by Fisher et al. (2008) using
sap flow estimates at three flux tower sites of alpine and sub-alpine
climates. Compared to these three flux tower sites, our partitioning data
spans a greater range of climate at a coarser temporal resolution. Recall
that the slight underestimation of PT-JPL and GLEAM transpiration
could be the result of certain field measurements reflecting only the
growing season for a given year, rather than model deficiencies.

Both GLEAM (r2= 0.82) and PM-MOD (r2= 0.85) offer high cor-
relations with field interception estimates. However, GLEAM shows
lower RMSD (62.1%) and MBD (25.3%) as compared to PM-MOD
(181.0% RMSD, 149.9% MBD). PT-JPL estimates of canopy interception
compare poorly based on all statistical measures, resulting in an r2

correlation of only 0.39 and a RMSD of 157.4%. Overall, estimates of
interception showed a large level of divergence with the field estimates
for both PM-MOD and PT-JPL. Model estimates showed especially large
errors where field estimates exhibited small fluxes or where the fraction
of forest within the pixel was determined to be small. However, the
small number of field interception studies (N=13) makes it difficult to
definitively assess the model performance.

While the PT-JPL model provided the highest r2 value and lowest
RMSD for soil evaporation (89.8%RMSD, r2= 0.25), the results are
relatively poor compared to the transpiration estimates. Modeled esti-
mates of soil evaporation were inaccurate across all models and dis-
played little agreement with the field estimates. GLEAM, while ex-
hibiting a low standard error (0.05), consistently underestimated the
flux of soil evaporation compared to the field results (−45.6%MBD),
which is mostly responsible for the bias in total ET exhibited by
GLEAM. Conversely, PT-JPL estimates showed little bias (11.0%MBD)
and a relatively high standard error (0.17). PM-MOD performed poorly
across all statistical measures, exhibiting a positive bias (49.4%MBD).

Grouping the results by land cover type, water availability, and
observational method allows us to identify how model performance
changes across these groups. Fig. 3 shows the relative error for each
model estimate against field estimates categorized by land cover type.
We consolidated IGBP land cover values into four new groupings: for-
ests (IGBP #1-5), shrublands (IGBP #6-7), grasslands (IGBP #8-10),
and cropland and urban (IGBP # 0, 11-16). An analysis of each IGBP
classification individually was impractical given the small number of
values in each land cover group.

GLEAM, when analyzed across land cover, generally shows more
variance in shrublands and grasslands and comparatively little variance
in forests. This is most evident in the GLEAM model estimates of soil

Fig. 1. Map of field study locations (white circles) and associated IGBP land cover types. Land cover is derived from the MODIS-based MCD12Q1 product.
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evaporation, where the modeled estimates are extremely consistent in
forests, less so in grasslands and croplands, and least in shrublands. As
the GLEAM soil evaporation estimates become less consistent across
these land cover types, the bias of these estimates shifts positively. A
strong negative bias is evident in forests, and a positive one develops in
shrublands. Similarly, the GLEAM model shows higher variance in its
estimate errors of transpiration in shurblands and grasslands, and
smaller variance in forests.

The differences between land cover types when considering inter-
ception become difficult to interpret because of the small amount of
data in non-forested areas. The field interception dataset reports values
exclusively from forests, so a non-forested land cover type for that lo-
cation may suggest that the study site is not representative of the larger
pixel. Apart from interception, PT-JPL and PM-MOD show little change
in the bias of their estimates depending on land cover. Generally, all
three models show a wider variation in estimate error in shrublands and
grasslands than in forests.

Fig. 4 shows the relative estimate error of each model across dif-
ferent precipitation regimes. Each model shows large errors in inter-
ception at low precipitation, with PM-MOD exhibiting large sensitivity
to annual precipitation. The relative error of the GLEAM soil evapora-
tion trends negatively with increasing precipitation as does the PT-JPL
estimate of total ET.

Fig. 5 shows the relative error of each model plotted by the field
method used to partition ET. Estimates in soil evaporation are constant
across field method, as are estimates in total ET to a lesser extent. Recall
that soil evaporation is calculated as the residual of ET and transpira-
tion, so that error in the observational method will be reflected in both
transpiration and soil evaporation components. The PM-MOD tran-
spiration estimates are also consistent, showing a clear negative bias
regardless of field method. However, GLEAM and PT-JPL estimates vary
slightly, while showing consistent estimates to one another.

4. Discussion

One of the inherent limitations in remote sensing-based evaluation
studies is the challenge of acquiring independent observations that are
representative of the scale of measurement. As such, we acknowledge
that the spatial and temporal scale of the field-based estimates used in
this study are not the ideal dataset for assessing the performance of
these models, but few alternatives exists to estimate the individual
components of ET. While eddy covariance observations are much better
equipped for comparison with larger spatial fluxes and the finer tem-
poral resolution of remote sensing-based ET products, they do not offer
information regarding the individual components of ET. The field stu-
dies used in our analysis use a wide range of scaling techniques to ac-
quire a canopy level ET measurement, and include eddy flux towers.
Inevitably, some approaches are likely to be smaller in spatial scale
than the satellite estimates, but, in the aggregate, still offer insight into
how ET should be partitioned.

Our results show a moderate variation in total ET between each of
the models, in agreement with previous studies (Michel et al., 2016;
Miralles et al., 2016). However, the objective of this study is primarily
the evaluation of the evaporation partitioning in these models. As large
discrepancies exist between the separate fluxes estimated by different
models, they are likely to overshadow the measurement error between
field methods.

Clear patterns between modeled estimates are evident in the soil
evaporation components of each model as well as the PM-MOD com-
ponent of transpiration. This is illustrated in Fig. 5, where differences in
modeled estimates are consistent regardless of the field method em-
ployed. PT-JPL and GLEAM estimates of transpiration show similar
results, while varying slightly across different field methods. This
highlights the difficulties in disentangling the results of PT-JPL and
GLEAM transpiration, given the errors that may exist in the field data.
As such, we will only discuss where clear differences between models
exist or where the models show large biases with respect to the field
data.

Through rooting uptake, plants are able to utilize water for tran-
spiration held in the soil long after rain events. Soil evaporation and
interception are much more dependent on transient rain events, which
increase water storage in the canopy or upper layer of soil that becomes
available for fast evaporation (Williams et al., 2004; Yepez et al., 2005).
The available water source for either flux also depends on the con-
nectivity of that water to surface water or deeper soil stores (Good
et al., 2015). The differences in water sources for separate evaporation
components changes the fundamental nature of those processes and the
modeling techniques and data required to capture these physical pro-
cesses. While fine temporal sampling may be required to capture rain
events contributing to soil evaporation and interception, it may not be
required to capture transpiration rates.

The modeled soil evaporation shows little correlation with field
estimates across all models. In addition, both PT-JPL and PM-MOD
show large standard error in their estimates of soil evaporation. While
the inability of model routines to fully capture the physical process of
soil evaporation might be responsible for part of the total error, dif-
ferences in the spatial and temporal scales of soil evaporation as com-
pared to transpiration may contribute to larger standard error in the
results of soil evaporation. Soil moisture dynamics have shown to vary
significantly in time and space depending on the antecedent conditions
(Grayson et al., 1997). Moreover, changes in the lateral or vertical
movement of water in soil associated with these changes could affect
the connectivity to surface water flows and the availability of water for
soil evaporation. Soil evaporation, being highly dependent on spatially
variable soil moisture, could thus be disproportionately influenced by
the differences in spatial scale between the field and modeled estimates.
Additionally, different model representations of ground heat flux di-
rectly contribute to uncertainties in soil evaporation (Purdy et al.,
2016).

Table 2
Validation statistics for different satellite-based ET datasets. The r2 correlation
coefficient describes the percent variability of the field data that the models
were able to capture. The standard error describes the spread or standard de-
viation of the data. The mean bias error (MBD) describes the bias of the mod-
eled estimate to either over- or under-estimate the field data. The root mean
square deviation (RMSD) describes the accuracy of the model representing both
the size and variation of the gross error. MBD and RMSD are reported as a
percentage of the average field estimate for each partition. Blue represents good
performance, while orange represents poor performance (For interpretation of
the references to color in this table legend, the reader is referred to the web
version of this article).
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Estimates of soil evaporation from GLEAM clearly underestimate the
field measurements. The relative error in soil evaporation estimates is
highly correlated with the MOD44B products, showing a tendency to
underestimate field measurements corresponding with areas of higher
fraction of vegetation and lower bare soil. This arises due to the fact
that GLEAM only considers soil evaporation from bare soil and does not
estimate the soil evaporation occurring under the canopy or under
herbaceous vegetation. The higher correlation of the estimate error
with herbaceous vegetation than tall canopy suggests that the under-
estimation of soil evaporation by GLEAM is more significant in areas of
herbaceous vegetation. Figs. 3 and 4 further corroborate this results.
The underestimation in soil evaporation is most apparent in forested
land cover and shows a negative relationship with increasing rainfall.
As shown in Fig. 2, this causes most of the underestimation in the
GLEAM estimates of total ET.

PM-MOD and PT-JPL share their approach to scale the soil eva-
poration using observations of relative humidity and vapor pressure
deficit. As a result, they largely show similar estimates of soil eva-
poration, and similar validation statistics. Therefore, different para-
meters must cause the divergences found in the soil evaporation pro-
ducts of PT-JPL and PM-MOD. Differences in the Penman-Monteith and
Priestley-Taylor models often depend on the parametrization of α in the
Priestley-Taylor equation and resistance factors in the Penman-

Monteith equation. The largest deviations between Penman-Monteith
and Priestley-Taylor ET estimation occur when aerodynamic resistances
and net radiation are small and VPD is high (Komatsu, 2005). Given the
similarities between the model routines and output, it seems that the
poor performance of the soil evaporation component likely stems from
their shared assumptions.

PT-JPL and PM-MOD, by excluding precipitation and using relative
humidity as a metric of a system’s overall moisture, may see significant
errors when soil and air moisture are in a state of disequilibrium. VPD
and RH are correlated with soil moisture over weekly to seasonal time
scales, but become decoupled over shorter time periods (Novick et al.,
2016). Soil evaporation, more so than transpiration, may occur over
shorter time periods following precipitation events. The use of hu-
midity-based functions to account for water availability could explain
the large standard error of the PM-MOD and PT-JPL soil evaporation
component. However, spatial differences in the field and remote sen-
sing-based products could also be culpable for the error. Higher fre-
quency observations of ET partitioning are needed to better understand
short-term dynamic changes in partitioning and how to reflect these
dynamics within models.

Furthermore, soil moisture has been found to have a non-linear
relationship with soil evaporation that can be characterized in two
stages. The first stage is characterized by capillary transport, which

Fig. 2. Comparison between modeled ET estimates and field observed estimates for (a) soil evaporation, (b) transpiration, (c) interception, and (d) total ET flux for
each model. A regression is plotted with the 95% confidence interval for each model shaded. The grey line represents a perfect fit between field and modeled results.
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Fig. 3. Relative error between modeled and field estimates based on IGBP land
cover type classification from MODIS using the WACMOS-ET dataset. The ori-
ginal IGBP land cover types were consolidated into four groups: Forests (IGBP
1–5), Shrublands (6–7), Grasslands (8–10), and Cropland and Urban (0, 10–16).

Fig. 4. Relative error between modeled and field estimates separated into dif-
ferent precipitation regimes using the WACMOS-ET dataset.
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sustains moisture at the soil surface. During the second stage, drying
disrupts the hydraulic pathways within the soil and the vaporization
plane moves below the soil surface, resulting in a significant reduction
in soil evaporation (Haghighi and Or, 2013; Or et al., 2013). The point
at which drying soils shift between stages of evaporation is largely
dependent on physical soil characteristics and pore size and can cause
dynamic shifts at hourly time scales in evaporation resistances
(Aminzadeh and Or, 2017; Decker et al., 2017; Merlin et al., 2016).
Neither PT-JPL nor PM-MOD consider soil properties in their estimate
of soil evaporation, while GLEAM uses field capacity and wilting point
to determine stress factors. The non-consideration of soil properties
could be contributing to the large standard error in those soil eva-
poration estimates.

The transpiration estimates of both PT-JPL and GLEAM show better

agreement with field estimates than their respective soil evaporation
estimates. Partitioning research has shown transpiration to be the
dominate flux of total ET (Jasechko et al., 2013). Therefore, the tran-
spiration estimate of the model is critical in the models’ ability to es-
timate total ET. Transpiration estimation and vegetation modeling re-
present research areas where remote sensing provides tremendous
utility. The large degree of variability in plant species and size make
ground measurements of canopy scale interaction difficult. The use of
vegetation indices derived from remotely sensed products are much
more advantageous for measuring heterogeneous vegetation and bio-
physical processes such as transpiration (Glenn et al., 2008).

PM-MOD strongly underestimates the transpiration flux estimated
by field techniques. The only vegetation parameter used by PM-MOD is
the fraction of absorbed photosynthetically active radiation, fAPAR,
along with surface and aerodynamic resistances from the literature
based on IGBP land cover type. These resistances can be very difficult to
parameterize, and look-up table values do not reflect the temporal
variability in these resistances. However, since the underestimation is
consistent across all land cover types, it seems more likely that the use
of fAPAR is driving the transpiration bias. Since PM-MOD uses fAPAR
to partition radiation, the accuracy of the model may vary seasonally as
phenology changes.

GLEAM performed very well at capturing the field interception es-
timates, as shown in previous studies (Miralles et al., 2010). Intercep-
tion has been studied extensively, but little information exists on in-
terception rates outside of densely forested ecosystems. While GLEAM
models interception only for the tall canopy fraction of the pixel, the
other models estimate interception outside of forests based on leaf area
index and fAPAR. Interception losses outside of forests are likely small
relative to total ET fluxes (David et al., 2005), but the value of including
this interception remains unknown, given that few field measurements
exist outside of forests.

Comparisons of interception estimates across Amazonia conducted
by Miralles et al. (2016) found that PT-JPL and PM-MOD estimates
(based on the WACMOS-ET vegetation properties as input) nearly
doubled the interception rates of GLEAM and field-measured values
found in the literature. Furthermore, interception has been shown to
correlate strongly with both rainfall intensity and volume as they relate
to canopy storage capacity (Pypker et al., 2005). PM-MOD and PT-JPL
lack a canopy storage parameter, instead electing to use humidity as a
proxy for surface wetness, and do not use precipitation as a forcing
parameter. By not defining a storage capacity for the vegetation in PM-
MOD and PT-JPL, the models could overestimate the flux for rain events
exceeding the canopy storage. While PM-MOD and PT-JPL rely heavily
on radiation as main driver of interception, field studies have shown
that the flux of interception loss is partly decoupled from the available
energy (Holwerda et al., 2011). In that sense, GLEAM likely provides
better remote sensing-based estimates of interception, as it builds upon
the knowledge gained in ground-based research on interception, which
identifies vegetation characteristics and rainfall properties as the main
determinants of the flux (Gash, 1979).

5. Conclusions

While this study attempted to validate the individual components of
ET, little reliable data for these individual fluxes exists. Given the
paucity of field datasets, it is difficult to draw definite conclusions on
the sources of error within the modeled estimates of partitioned ET
fluxes. While estimates diverge significantly between models, and
modeled error is likely driving the bulk of the discrepancy with field
partition estimates, the field methods themselves are also prone to er-
rors. Furthermore, it is difficult to assess if the modeled estimates de-
viate due to the differences in model structure, or because of different
forcing datasets and errors inherent in the forcing data. Given the
multiple sources of potential error, it was challenging to determine to
what magnitude we could attribute partitioning error to model

Fig. 5. Relative error between field and modeled estimates separated by field
method type. The field methods are discretized into five groups: Isotopes, Sap
Flow, Modeled using collected and meteorological data, modeled using no
meteorological data, and a miscellaneous group.
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methodology.
Remote sensing-based models will continue to play a dominant role

in future ET research and its global implications (Fisher et al., 2017;
Zhang et al., 2017). Improved spatial resolution and spectral avail-
ability of remote sensing products will undoubtedly provide a glut of
modeled ET data for future researchers (Marshall et al., 2016; McCabe
et al., 2017; Sun et al., 2017). However, the relative dearth of reliable
field estimates for transpiration, soil evaporation, and interception in-
hibits quantifying the accuracy and applications of remote sensing-
based ET estimates. Clearly, observations of the individual ET compo-
nents are necessary to constrain ET models and improve ET accuracy
for future research into climate and hydrologic dynamics. The con-
solidation of a global dataset of sap flux measurements (Poyatos et al.,
2016) will undoubtedly present tremendous utility in validating remote
sensing-based models and contribute to the advancement of ET science.

The results of this study present the first steps towards the valida-
tion of ET partitioning within remote sensing-based models. Our ana-
lysis shows that remote sensing-based ET models, despite showing si-
milar and quite accurate total ET retrievals, produce estimates of
individual components that deviate significantly from field measure-
ments. Even for locations where the total ET is accurately modeled, the
modeled components show significant deviations from observations.
The uncertainty of the ET partitioning may cause model estimates to
deteriorate when applied more broadly across space and time.

In particular, we find that:

- PM-MOD showed a strong negative bias in its transpiration estimate
that caused a negative bias in the total ET estimate. The bias is likely
related to the scaling parameters of the canopy, as PM-MOD relates
the absorbed PAR linearly to the transpiration rate.

- Model estimates of soil evaporation showed little correlation with
field estimates across all models. GLEAM exhibited a strong negative
bias likely due to the non-consideration of below-canopy soil eva-
poration. Both PM-MOD and PT-JPL also exhibited large standard
error in their estimates of soil evaporation.

- The quality of the interception estimates outside of forests was not
assessed. GLEAM showed good agreement with the field data over
forests, while PT-JPL and PM-MOD showed larger divergences. The
non-consideration of rainfall and canopy storage capacity in PT-JPL
and PM-MOD, and the direct dependency of interception loss on
radiation, are the most likely causes for the disagreement with the
field data.

- Finally, our results confirm that caution should be taken when ap-
plying any of these models in isolation, as long as the goal of the
study relies heavily on the models partitioning of ET fluxes.

Data availability
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