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A trade-off between plant and soil carbon 
storage under elevated CO2

C. Terrer1,2 ✉, R. P. Phillips3, B. A. Hungate4,5, J. Rosende6, J. Pett-Ridge1, M. E. Craig3,7, 
K. J. van Groenigen8, T. F. Keenan9,10, B. N. Sulman7, B. D. Stocker11,12, P. B. Reich13,14, 
A. F. A. Pellegrini2,15, E. Pendall14, H. Zhang16, R. D. Evans17, Y. Carrillo14, J. B. Fisher18,19, 
K. Van Sundert20, Sara Vicca20 & R. B. Jackson2,21

Terrestrial ecosystems remove about 30 per cent of the carbon dioxide (CO2) emitted 
by human activities each year1, yet the persistence of this carbon sink depends partly 
on how plant biomass and soil organic carbon (SOC) stocks respond to future 
increases in atmospheric CO2 (refs. 2,3). Although plant biomass often increases in 
elevated CO2 (eCO2) experiments4–6, SOC has been observed to increase, remain 
unchanged or even decline7. The mechanisms that drive this variation across 
experiments remain poorly understood, creating uncertainty in climate 
projections8,9. Here we synthesized data from 108 eCO2 experiments and found that 
the effect of eCO2 on SOC stocks is best explained by a negative relationship with plant 
biomass: when plant biomass is strongly stimulated by eCO2, SOC storage declines; 
conversely, when biomass is weakly stimulated, SOC storage increases. This trade-off 
appears to be related to plant nutrient acquisition, in which plants increase their 
biomass by mining the soil for nutrients, which decreases SOC storage. We found that, 
overall, SOC stocks increase with eCO2 in grasslands (8 ± 2 per cent) but not in forests 
(0 ± 2 per cent), even though plant biomass in grasslands increase less (9 ± 3 per cent) 
than in forests (23 ± 2 per cent). Ecosystem models do not reproduce this trade-off, 
which implies that projections of SOC may need to be revised.

The future of the land sink, especially of SOC, is particularly uncertain9. 
Soils can become either sources or sinks of carbon with rising levels 
of atmospheric CO2, depending on the prevalence of gains via photo-
synthesis or losses via respiration9,10. This uncertainty in terrestrial 
ecosystem model projections reflects uncertainty in both the mecha-
nisms and the parameter values controlling SOC cycling under eCO2

11.
Plant growth generally increases in response to eCO2

4,12, with soil 
nutrients identified as the dominant factor explaining variability across 
experiments12–15. The effect of eCO2 on SOC stocks (βsoil) is more equivo-
cal. Although the expectation is that SOC will accrue as eCO2 increases 
plant growth16, a few experiments show increases in βsoil, many show 
no change, and some even show losses7. The observed variation in βsoil 
across experiments is puzzling, and there is wide disagreement regard-
ing the dominant mechanisms explaining this variation7,17,18.

A positive relationship between the effects of eCO2 on plant biomass 
and SOC pools is expected if increased plant production under eCO2 

increases carbon inputs (litter) into the soil. Indeed, a positive relation-
ship between inputs and SOC storage is formalized in first-order kinet-
ics16 and is applied in most terrestrial ecosystem models19,20. Because 
the effect of eCO2 on plant aboveground biomass (βplant) is strongly 
correlated with the effect of eCO2 on litter production (Extended 
Data Fig. 1a, r = 0.81) and on root production21, a positive relationship 
between βplant and βsoil can thus be expected from first-order kinetics. 
This hypothesis, however, ignores SOC losses associated with acceler-
ated soil organic matter decomposition sometimes observed under 
eCO2

7,18. Plants acquire limiting resources from soils through carbon 
investment belowground in root growth, exudates and symbiotic 
bacteria and fungi. Accelerated decomposition of soil organic matter 
fuelled by plant carbon inputs can enable plant nutrient uptake (the 
“priming effect”22). The return on this belowground carbon investment 
is an increase in aboveground biomass production15. However, the 
priming effect can decrease SOC5. A negative relationship between 
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βplant and βsoil may thus emerge through the economics of plant resource 
acquisition.

Here, we evaluate the mechanisms of βsoil, including its relationship 
with βplant, by synthesizing 268 observations of βsoil from 108 eCO2 
experiments spanning the globe with coupled βplant−βsoil data (Sup-
plementary Table 1) using meta-analysis techniques. We explore how 
well these mechanisms are represented in ecosystem models, and 
scale up the geographical distribution of βsoil derived from experi-
ments to identify regions where models might be missing important 
processes.

Predictors of SOC accrual under eCO2

Overall, eCO2 increased SOC stocks by 4.6% across experiments (Fig. 1; 
1.7% to 7.5%, 95% confidence interval, CI). Given the strong variation 
in βsoil across factors (Fig. 1), we used a random-forest approach in the 
context of meta-analysis (meta-forest) to quantify the importance of 
19 potential predictors (Extended Data Table 1), including climate, soil, 
plant and ecosystem variables and their interactions, accounting for 
covariation across predictors and potential nonlinearities.

We found that βplant is the most important predictor of βsoil (Extended 
Data Fig. 2a, b; n = 108), revealing a strong coupling between CO2-driven 
changes in plant biomass and SOC. In addition, βsoil increased with back-
ground SOC stocks (Fig. 1), also identified as an important predictor.

Contrary to expectations from some first-order models19,20, the 
relationship between βsoil and βplant was negative. For the subset 
(n = 73) of field experiments with intact soils (non-potted plants and 
non-reconstructed soils), we found a significant interaction between 
βplant and nitrogen (N) fertilization (Extended Data Fig. 2c; P < 0.01). 
In non-fertilized experiments, the slope between βsoil and βplant was 
significantly negative (Fig. 2a; P < 0.0001, R2 = 0.67, n = 38), whereas in 
fertilized experiments the slope was less pronounced and not signifi-
cant (P = 0.34, n = 35) (Extended Data Fig. 3a). In non-fertilized experi-
ments, increases in plant biomass were associated with decreasing 
SOC stocks (Fig. 2a), consistent with the priming effect. In N-fertilized 
experiments, eCO2 generally increased both plant biomass and SOC 
(Extended Data Fig. 3b), in line with first-order kinetics.

We propose a framework to explain the negative relationship 
between βsoil and βplant, based on plant nutrient acquisition strategies. 
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Fig. 1 | Meta-analysis of the effect of eCO2 on percentage SOC across 
different factors. n = 108. Overall means and 95% confidence intervals are 
given; we interpret CO2 effects when the zero line is not crossed by the 
confidence intervals. Arrows represent 95% confidence intervals that extend 
beyond the limits of the plot. Soil carbon stocks represent values in ambient 
CO2 plots as a continuous variable, here expressed as intervals of equal sample 
size for illustration purposes. Values in parentheses are sample sizes. CO2 
effects represent, on average, an increase in CO2 from 372 parts per million 
(ppm) to 616 ppm. FACE, Free Air CO2 Enrichment; OTC, Open Top Chamber; 
AM-ER, mix of AM and ericoid mycorrhizal; N-fixer, fixation of atmospheric 
nitrogen.
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Fig. 2 | Elevated CO2 experiments show an inverse relationship between the 
effects of eCO2 on plant biomass and SOC stocks due to plant 
nutrient-acquisition. This inverse relationship (a) can be explained by the 
different efficiencies in plant nutrient uptake (c) between AM and ECM 
nutrient-acquisition strategies driving opposite effects on plant biomass and 
SOC pools (b), including MAOM stocks (d). The regression line in a is based on a 

quadratic mixed-effects meta-regression model and 95% confidence interval 
(R2 = 0.67, P < 0.0001, n = 38). Dots in a represent the individual experiments in 
the meta-analysis, with dot sizes proportional to model weights. Dots in b−d 
represent overall effect sizes from a meta-analysis and 95% confidence 
intervals. Data shown here are for non-fertilized experiments (see Extended 
Data Fig. 3 for nutrient-fertilized experiments).
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Symbiotic associations between plants and fungi—arbuscular mycor-
rhizae (AM) and ectomycorrhizae (ECM)—mediate βplant (Extended 
Data Fig.  2d), resulting in much higher βplant in ECM-associated 
plants than in AM-associated plants when nutrient availability is low 
(Fig. 2b). ECM-associated plants efficiently increase N uptake under 
eCO2 (Fig. 2c; n = 12), enhancing βplant. However, acquiring N from soil 
organic matter via priming accelerates SOC losses7, reducing βsoil in 
ECM (Fig. 2b). In contrast, eCO2 did not significantly affect N uptake 
in AM systems (Fig. 2c; n = 12, P = 0.3460). This outcome limits βplant in 
AM systems but stimulates βsoil (Fig. 2b), probably owing to increased 
carbon inputs through fine-root production and rhizodeposition21,23,24 
combined with decreased carbon losses25. The composition of the soil 
organic matter may mediate this effect as well: AM plants produce more 
easily decomposable litter26, which enhances mineral-associated soil 
organic matter (MAOM) formation27 and results in a greater fraction 
of SOC in MAOM under AM relative to ECM systems28,29. Indeed, eCO2 
increases MAOM more strongly in AM systems than in ECM systems 
(Fig. 2d; n = 19). Because MAOM is less accessible to microbial decom-
posers30, greater MAOM in AM systems could limit priming-induced 
losses and promote long-term SOC storage.

We considered three alternative mechanisms that could potentially 
explain this trade-off. First, grasses allocate more carbon to roots 

than trees, which is associated with greater SOC stocks31,32. Because 
grassland species associate with AM fungi and the majority of tree 
species in the dataset associate with ECM, the observed increase in 
βsoil in AM systems could be driven by ecosystem type rather than 
mycorrhizal type. However, we found that eCO2 effects on root bio-
mass and fine-root production were generally lower in grasses than 
trees, and were also lower in AM-associated than in ECM-associated 
trees (Extended Data Fig. 4). Second, in non-fertilized experiments 
with available data (n = 16), eCO2 increased litter C:N by 8%, which 
could reduce the decomposability of litter and the stabilization of 
carbon in the soil27. If litter quality is reduced more in ECM systems 
than in AM systems, this could help explain why eCO2 increased SOC 
in AM systems, but not in ECM systems. However, the effect of eCO2 
on litter quality was similar between mycorrhizal types (Extended 
Data Fig. 4). Finally, contrasting βsoil in AM systems versus ECM 
systems could be driven by larger background SOC in grasslands 
than in forests, given that higher SOC is associated with higher 
βsoil (Fig. 1). We found, however, that background SOC was similar 
between mycorrhizal types and ecosystem types (Extended Data 
Fig. 4). Thus, differences in root allocation, litter quality and back-
ground SOC in grasses versus trees cannot explain the trade-off 
between βsoil and βplant. Instead, losses in SOC associated with plant 
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Fig. 3 | Effect of eCO2 (about 240 ppm) on SOC 
stocks scaled up from 108 CO2 experiments.  
a, b, Relative effect of elevated CO2 on SOC scaled 
up on the basis of a meta-forest approach with data 
from CO2 experiments, with the spatial distribution 
shown on a map (a) and aggregated by ecosystem 
type (b). c shows the standard error in a, and d 
shows the standard error in b. Green dots in c 
represent the location of the CO2 experiments 
included in the analysis. e, f, Difference between 
expected CO2 effects on SOC stocks based on 
CMIP5 models and scaled up on the basis of 
experiments (shown in a) with the spatial 
distribution shown on a map (e) and aggregated by 
ecosystem type (f). Expected values result from 
the relationship between βsoil and βplant coded in 
models. Positive values (reddish colours) indicate 
an overestimation by models; negative values 
(bluish colours) indicate an underestimation by 
models. Shaded areas between –15 to 15 and from 
60° to 90° in latitude represent ecosystems not 
well sampled by experiments that we excluded 
from the analysis. Boxplots show the median, the 
first to third quartile, the 1.5× interquartile ranges, 
and outliers. On average, the difference between 
elevated CO2 and control plots in the experiments 
is 240 ppm.
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nutrient uptake (priming effect) in ECM systems, and gains associ-
ated with rhizodeposition in AM systems, are probably essential. 
Experiments including both AM-associated and ECM-associated 
tree species should be targeted to better understand the impacts 
of nutrient-acquisition strategies under eCO2.

Scaling up
To explore the potential geographical distribution of βsoil, we simulated 
a global free-air CO2 enrichment (FACE) experiment (Fig. 3a)12. Unlike 
Fig. 1, in which predictors are analysed individually, our meta-forest 
model can scale up βsoil from experiments while accounting for all 
important predictors simultaneously on a grid (Extended Data Figs. 5, 
6; tenfold cross-validated R2 = 0.51). Grasslands, croplands and shrub-
lands showed a stronger potential to accumulate SOC in response to 
experimental eCO2 than did forests (Fig. 3a, b). Soils in semi-arid her-
baceous ecosystems were particularly responsive to eCO2, consistent 
with the results from the Mojave desert FACE experiment that showed 
eCO2-driven increases in SOC, but not biomass33. We identified large 
areas not currently sampled with eCO2 experiments, particularly in the 
tropics and high latitudes (Fig. 3c, d, Extended Data Fig. 6), where new 
experiments would help to reduce uncertainties.

Data−model comparison
In addition to the negative relationship between βsoil and βplant, we 
also found a significantly negative relationship between βsoil and the 
effect of eCO2 on aboveground biomass production (Extended Data 
Fig. 1b; R2 = 0.55, P < 0.001), which is strongly correlated with litter 
production (Extended Data Fig. 1a; R2 = 0.63, r = 0.81, P < 0.01). This 
result questions the positive relationship between litter inputs and 
SOC stocks encoded in most ecosystem models. Thus, we investigated 
the relationship between βsoil and βplant in models from three different 
model ensembles (description in Extended Data Table 2). First, models 
from the FACE-MDS project34 mimic the experimental treatment in 
six eCO2 experiments and allow for a direct comparison with respec-
tive observations. Although observations from the six experiments 
included in FACE-MDS showed a negative relationship between βsoil 
and βplant (blue line in Fig. 4a; R2 = 0.99, P < 0.001), the twelve models 
simulated a positive relationship when pooled by experiment (red 

line in Fig. 4a; R2 = 0.91, P < 0.01). The relationship across all models 
individually was positive as well (dashed line in Extended Data Fig. 7a; 
R2 = 0.37, P < 0.0001), and none of the individual models was able to 
reproduce the observations. Second, to investigate whether the same 
relationships emerge across the globe and in simulations where CO2 
increases gradually, we evaluated global century-scale relationships 
between βsoil and βplant from the TRENDY and CMIP5 model ensembles 
(Fig. 4b, c). Overall, TRENDY and CMIP5 models did not simulate a nega-
tive relationship either (Fig. 4b, c). Instead, most models simulated a 
positive relationship and the vast majority of model simulations fell into 
the upper-right quadrant of CO2 effect on SOC storage plotted against 
CO2 effect on biomass carbon (Extended Data Fig. 7b, c), reflecting that 
inputs drive SOC accumulation in the first-order soil decomposition 
structure common to the models.

In TRENDY and CMIP5 model simulations, βsoil was estimated over a 
much longer time period than in experiments (Extended Data Table 2). 
Given the relatively slow turnover times of SOC pools, and the slow 
pace of changes in species composition and evolutionary pressures 
on both plants and soil microbes, long-term effects are likely to differ 
from those found in experiments. However, first-order models simulate 
a positive relationship βplant:βsoil when they are forced to simulate the 
temporal scale of experiments (Fig. 4a), suggesting that important 
processes are missing in models. By including explicit links between 
plant growth, belowground carbon allocation and SOC decomposition 
rates, models may more effectively reproduce the observed negative 
relationship between βsoil and βplant and improve long-term projections.

To estimate the error in terrestrial ecosystem model projections of 
βsoil caused by ignoring the trade-off between βsoil and βplant, we calcu-
lated the ‘expected’ βsoil as a function of our scaled-up βplant and the ratio 
βsoil/βplant simulated by CMIP5 models. CMIP5 models overestimated 
βsoil for forests (reddish shades in Fig. 3e, f). In contrast, CMIP5 models 
underestimated βsoil in large areas dominated by grasses (bluish shades 
in Fig. 3e, f), probably because they do not account for the effects of 
rhizodeposition on βsoil (ref. 21). Results with TRENDY models were simi-
lar (Extended Data Fig. 8).

Discussion
In summary, our synthesis of experiments shows that SOC stocks can 
increase by approximately 5% in response to a 65% step increase in CO2 
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concentrations, with a strong coupling between CO2-driven changes in 
plant aboveground biomass and SOC. However, the coupling between 
plant biomass and soils is an inverse relationship (Fig. 2a, Extended Data 
Fig. 1b), opposite to that simulated by many ecosystem models (Fig. 4). 
The effect of eCO2 on SOC storage is dependent on a fine balance between 
changes in inputs and changes in turnover18, where the latter is dependent 
on root−microbe−mineral interactions in the rhizosphere. Our results 
suggest that rhizosphere responses, and especially priming, explain 
much of the variation in βsoil across experiments (Fig. 2). Most models 
focus on carbon inputs and underestimate rhizosphere effects11,20,35, 
probably explaining the disagreement in βsoil between observations and 
models (Figs. 3, 4). We propose a framework to explain βsoil based on nutri-
ent acquisition strategies15,36,37. On one end of the spectrum, substantial 
acquisition of soil N is possible via priming5 in ECM-associated plants, 
causing a stronger plant biomass sink at the expense of SOC accrual. 
On the other end, low nutrient availability strongly constrains the plant 
biomass sink38 in AM-associated plants. However, the ecosystem-level 
sink is not necessarily eliminated; instead, eCO2 can trigger SOC accrual 
through plant carbon allocation belowground21,23,24. When plant growth 
is severely limited by N or other nutrients, eCO2 may cause only a tran-
sient priming effect in ECM systems with high soil decomposition and 
insufficient plant nutrient uptake producing no ecosystem-level sink39.

Our results emphasize the potential of grassland soils to store carbon 
as atmospheric CO2 levels continue to rise. The results also suggest that 
state-of-the-art models may overestimate the SOC sequestration poten-
tial of forests in large parts of the world. Previous studies suggest that the 
potential of vegetation to take up CO2 will slow later this century owing to 
nutrient constraints12–14,38,39. Our synthesis indicates that these nutrient 
constraints extend to carbon storage in ecosystems as a whole—through 
a partial tradeoff between increased plant growth and SOC storage, 
whereby ecosystems where plant growth is more nutrient-limited accu-
mulate more carbon belowground. The apparent mismatch between 
observations and how most models represent the biomass-to-soil link 
suggests that many terrestrial ecosystem models do not adequately 
represent the critical processes driving SOC accumulation. Models are 
evolving to include more sophisticated representations of soil nutrient 
cycling, and some now include microbial activity explicitly36,40. This 
change towards coupled carbon-nutrient cycling mediated by plant−soil 
interactions is important for more realistic and accurate modelling of 
the carbon cycle today and for projecting the land sink in the future.
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Methods

Overview
Here, we collect data on the effects of eCO2 on SOC stocks (βsoil) in both 
relative and absolute terms and synthesize them through meta-analysis. 
We also collect data on climatic, experimental and vegetation charac-
teristics that could potentially explain variability in βsoil (‘predictors’). 
In Fig. 1, we show a descriptive meta-analysis of overall βsoil across differ-
ent predictor factors. We next combine the strengths of meta-analysis 
(for example, accounting for within-study variability, weights) with 
random-forest (for example, computational efficiency, nonlinearities, 
interactions)—that is, meta-forest—to quantify the relative importance 
of 19 predictors in explaining variation in βsoil in the dataset. In Fig. 2, we 
describe the regression between βsoil and its most important predictor 
(βplant), and explore the possible mechanisms underlying this relation-
ship. In Fig. 3, we apply the data-trained meta-forest model to scale up 
βsoil. Finally, we investigate whether the emerging relationship between 
βsoil and βplant found in experiments is represented in models (Fig. 4).

Data collection
We compiled the publicly available Report of Mutualistic Associations, 
Nutrients, and Carbon under eCO2 (ROMANCE) version 1.0 dataset41 
with data on SOC and plant biomass from eCO2 experiments. Expanding 
van Groenigen et al.’s 2014 meta-analysis7 of 53 experiments report-
ing SOC data, we used Google Scholar to gather a total of 166 studies 
related to eCO2 experiments, published from 1 January 2013 to 1 May 
2019. Search terms were either “elevated CO2”, “increased CO2” or “CO2 
enrichment” and either “soil carbon” or “plant biomass”. To account 
for experiments that could have been omitted by van Groenigen et al. 
before 2013, we consulted the Global List of FACE Experiments from the 
Oak Ridge National Laboratory (http://facedata.ornl.gov/global_face.
html) and the database described by Dieleman et al.42. We recorded the 
structure of each eCO2 experiment from the papers, taking into con-
sideration the start date and total duration of the experiment (years), 
and the location of the experiment (coordinates). When the data were 
presented in figures, mean values and standard error were extracted 
using WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/).

For this meta-analysis, only one datum per experiment was consid-
ered to avoid pseudoreplication. The effects of eCO2 on soil C pools 
are modulated by increases in soil C inputs from plant litter as well as 
feedbacks between plants and soils altering soil biogeochemical cycles 
that can take several years to occur. Thus, we used the most recent 
measurements in each experiment as the most representative data of 
the effect of eCO2 on SOC.

For plant biomass, measurements across different time points were 
combined so that only one effect size was analysed per study. The com-
bined effect size and variance that account for the correlation among 
the different time-point measurements was calculated following the 
method described in Borenstein et al.43, using a conservative approach 
by assuming non-independency of multiple outcomes (r = 1) and per-
formed using the MAd package in R44. We collected data on both above-
ground biomass stocks and production. When aboveground biomass 
production data were unavailable, we collected plant data in the fol-
lowing order of preference: net primary productivity, aboveground 
biomass increment, foliage production and yield. When biomass or 
soil data were not reported, studies were excluded. We also included 
the data on litter production reported by Song and Wan45 to study the 
interactions with aboveground biomass and production data.

Soil carbon measurements in the dataset were reported at different 
depths, varying from 5 cm to 30 cm maximum depth, with an average 
depth of about 20 cm. When scaling up eCO2 effects on SOC through 
meta-forest, we included a fixed value of 0−30 cm in depth as a covari-
ate to control for the influence of soil depth, interpolating predictions 
for the same soil depth of models. SOC data reported in concentration 
were transformed to stocks (in grams per square metre) using soil bulk 

density. When bulk density was not reported, we used data reported 
for similar experiments within the same site or assumed a bulk density 
of 1 g cm–3. Assumptions are indicated in the dataset.

Studies from ROMANCE version 1.0 were not included in the 
meta-analysis if they met any of the following exclusion criteria: (1) 
studies with no SOC data; (2) papers with no plant biomass data; (3) 
studies where the duration of the eCO2 experiment lasted less than 
0.5 yr. A total of 138 independent experiments were collected, of which 
108 were included in the final analysis based on these exclusion criteria.

Meta-analysis
Two types of effect size were calculated: (1) the log response ratio (mean 
response in elevated-to-ambient CO2 plots), to measure effect sizes 
in relative terms (in percentage) for each experiment; and (2) the raw 
mean difference, to compute effect sizes in absolute terms (in units of 
grams per square metre). For each experiment, we collected data on 
SOC stocks, standard deviation and sample size under elevated and 
ambient (control) CO2 plots. Effect sizes were calculated using the escalc 
function from the R package metafor46. We calculated overall effects in 
a weighted, mixed-effects model using the rma.mv function in metafor. 
The potential non-independency of studies within the same site (for 
example, different species, different treatments) was accounted for 
by including ‘site’ as a random effect. Effect size measurements from 
individual studies in the meta-analysis were weighted by the inverse 
of the variance47. Standard deviations were not reported in 13% of the 
studies, and were thus imputed using Rubin and Schenker’s48 resam-
pling approach from studies with similar means. These calculations 
were performed using the R package metagear49.

Varying importance and scaling-up approach
We coded 19 potential moderators (Extended Data Table 1). Including 
all 19 moderators in a meta-regression risks overfitting the model, 
so we applied the R package metaforest50 to identify potentially rel-
evant moderators in predicting βsoil across the complete dataset of 
108 studies. The approach is based on the machine-learning ‘random 
forest’ algorithm, which is robust to overfitting, and is integrated in 
a meta-analytic context by incorporating the variance and weight of 
each experiment as in classic meta-analysis (see above).

As an initial step, we conducted variable pre-selection by including 
the 19 predictors in metaforest with 10,000 iterations and replicated 
100 times with a recursive algorithm in the preselect function from meta-
for46. Moderators that consistently displayed negative variable impor-
tance (that is, that showed a reduction in predictive performance) were 
dropped using the preselect_vars function. Moderators that improved 
predictive performance were then carried forward to optimize the 
model. Parameters of the meta-forest model were optimized using 
the train function from the caret package51, and we calculated tenfold 
cross-validated R2 with 75% of the data used as training data and 25% for 
validation. Unlike maximum likelihood model-selection approaches, 
this method can handle many potential predictors and their interactions 
and considers nonlinear relationships. Partial dependence plots were 
produced that visualize the association of each moderator with the effect 
size, while accounting for the average effect of all other moderators.

As a sensitivity test, and to identify important interactions between pre-
dictors, we ran an alternative model-selection procedure using maximum 
likelihood estimation. For this purpose, we used the rma.mv() function 
from the metafor R package46 and the glmulti() function from the glmulti 
R package52 to automate fitting of all possible models containing the 
five most important predictors and their interactions (at level 2). Model 
selection was based on Akaike Information Criterion corrected for small 
samples (AICc), with the relative importance value for a particular predic-
tor equal to the sum of the Akaike weights (the probability that a model is 
the most plausible model) for the models in which the predictor appears.

Finally, the data-trained meta-forest model was applied to global 
gridded data of pre-selected predictors (see Extended Data Table 1 for 
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gridded data sources) to estimate the effect of elevated CO2 on SOC. 
The resulting global maps are geographically constrained to ecosys-
tems best represented by experiments. We remove the estimates for 
latitudes comprised between –15° and 15°, corresponding to tropical 
ecosystems not sampled by experiments (green dots in Fig. 3c), and 
from 60° to 90°.

Nitrogen fertilization and soil disturbance
We used the information reported in the papers to assess whether the 
soils were exposed to external inputs of N fertilization (yes) or not 
(no). Experiments were also classified as either having ‘disturbed’ or 
‘intact’ soils as noted in the papers. If not, experiments that used pots 
or reconstructed soils were categorized as ‘disturbed’. We used the 
same approach and classification as in ref. 53.

To scale up the effect of nitrogen fertilization and disturbance 
on βsoil, we reclassified the ESA CCI land cover map: http://www.
esa-landcover-cci.org/. Reclassification files are available from: 
https://figshare.com/articles/dataset/Reclassification_of_ESA_land_
cover/11710155. For example, we classify ‘Cropland, rainfed’ to ‘Her-
baceous cover’ (class 11) and ‘Cropland, irrigated or post-flooding’ 
(class 20) as ‘fertilized’.

Nutrient-acquisition strategy classification
We considered the importance of the type of symbiotic association 
as a driver of eCO2 effects on soil C. Mycorrhizal status includes AM, 
ECM and a mix of AM and ER mycorrhizal plant−fungal associations. 
Here we also considered some plant species known to associate with 
N-fixing microorganisms. We refer to this classification as ‘symbiotic’, 
because it includes both mycorrhizal status and N-fixation. Together, 
these four symbiosis types represent different mechanisms plants use 
to acquire nutrients15.

We assessed the impact of the dominant symbiotic association type 
by classifying all studies as ECM, AM, AM-ER and N-fixers, using the 
checklists by Wang et al.54 and Maherali et al.55, with additional classi-
fications derived from the literature. Species that associate with both 
ECM and AM (for example, Populus spp.) were classified as ECM because 
these species can potentially benefit from increased N-availability 
owing to the presence of ECM fungi56. Most of the N-fixers in the dataset 
were associated with both N-fixing symbionts as well as AM fungi, but 
we classified them as N-fixers because these species can potentially 
benefit from N acquired through N-fixation.

MAOM data
We retrieved data on MAOM and particulate organic matter for the 
subset of studies employing size or density fractionation of soil organic 
matter (n = 19). Because of methodological differences, particulate 
organic matter is loosely defined as organic matter recovered in the 
total coarse (typically >53 μm) or light (typically <1.6 g cm–3) soil fraction. 
Where MAOM was not reported, it was estimated based on mass balance 
by subtracting the particulate organic matter fraction from total C.

FACE-MDS
We use data from the FACE MDS Project Phase 234,57–61, in which 12 models 
were applied to six eCO2 experiments. Each model covered the time 
periods representative of the FACE experiments, following a standard-
ized protocol including meteorological forcing, CO2 concentration, 
site history and vegetation characteristics for each site.

Experiments included in the FACE-MDS Project Phase 2 were Duke 
FACE62, Kennedy Space Center63, Nevada Desert FACE64, Oak Ridge 
FACE38, Prairie PHACE65,66 and Rhinelander67. Models included were 
CLM4.068, CLM4.5, DAYCENT, CABLE, JULES69, LPJ-GUESS, OCN, TECO, 
ORCHIDEE70, GDAY, ISAM, and SDGVM. See ref. 60 for an overview of 
model structures and processes. As in the observational data, we com-
pared relative changes in aboveground biomass and SOC stocks of each 
experiment for eCO2 relative to control treatments.

TRENDY models
We use model outputs from the TRENDY version 7 S1 simulations, where 
each model is driven by standardized forcings of observed increasing 
CO2 for the years 1700−2018, and constant preindustrial climate and 
land use. We selected six models that provided outputs for above-
ground vegetation carbon (taken as the sum of wood and leaf carbon), 
SOC and net primary productivity (CABLE-POP71, CLM5.072, ISAM73, 
LPJ-GUESS74, ORCHIDEE70 and ORCHIDEE-CNP75). Wood carbon often 
includes coarse roots in models. Here, we evaluate relative changes and 
numbers are not sensitive to the exact definition. Description of models 
can be found in ref. 76. Briefly, ORCHIDEE-CNP includes an interactive N 
and phosphorus cycle, whereas ORCHIDEE is a C-only model. The rest 
have coupled C−N cycles. Relative changes were calculated based on 
means over ten initial years (i, varying depending on the model) and 
j = 2008−2017 as (Cj – Ci)/Ci. To reduce effects of discrepant response 
timescales of soil C and biomass, we estimated the steady-state soil  
C storage (C*) as:

C* =
C

1 −
,

j
ΔC

NPP
j

j

where ΔCj is the change in soil C over the years 2008−2017. The relative 
change in soil C is then taken as (C* – Ci)/Ci. Data shown in Fig. 4 is based 
on pooled data from all six models. We randomly sampled outputs 
from n gridcells for each model in order not to bias the visualization 
towards models with a large number of gridcells (that is, higher reso-
lution). Here n is chosen as the number of gridcells in the model with 
the coarsest resolution.

Expected βsoil from CMIP5 models
We used projected SOC (Csoil) and biomass pool (Cveg) responses to rising 
CO2 as simulated by CMIP5 models as a comparison for the scaled-up 
values we derive from experiments. Specifically, we used data from the 
experiment ‘esmFixClim1’, in which CO2 is increased by 1% per year from 
285 ppm. In the esmFixClim1 experiment, the increase in [CO2] affects 
only vegetation and not the radiation code of the models, enabling a 
quantification of the effect of eCO2 in isolation (for example, exclud-
ing warming), and thus a close comparison with eCO2 experiments. 
At a [CO2] increasing rate of +1% yr–1, [CO2] reaches 372 ppm (average 
concentration in ambient CO2 plots in the dataset) in the 28th year and 
616 ppm (average concentration in elevated CO2 plots in the dataset) in 
the 78th year. ΔCveg and ΔCsoil were calculated as the difference between 
the respective carbon stocks in the 28th and the 78th year.

Although plants in both experiments and our CMIP5 dataset see a 
similar increase in [CO2], experiments simulate a step increase in CO2 
over half a decade, whereas the increase in CO2 in CMIP5 models is 
much slower and occurs over the course of 50 years (Extended Data 
Table 2). As soil organic matter turns over slowly, the resulting βsoil from 
experiments is lower than ΔCsoil from models, and the comparison is 
not meaningful. We thus focus on the specific relationship βplant:βsoil in 
experiments versus models. Here, we calculated the spatially explicit 
ratio of ΔCveg(CMIP) to ΔCsoil(CMIP). This was done for five Earth system mod-
els in the CMIP5 ensemble with esmFixClim1 simulations (CanESM2; 
GFDL-ESM2M; HadGEM2-ES; IPSL-CM5A-LR; and MPI-ESM-LR). Then, 
we calculate the ‘expected’ βsoil (in units of megagrams of C per hectare) 
from CMIP5, applying the same βplant used for experiments with the 
model-average ΔCveg(CMIP) to ΔCsoil(CMIP) ratio, as follows: βplant × ΔCsoil(CMIP)/
ΔCveg(CMIP), where βplant represents the effect of elevated CO2 on plant 
biomass derived from eCO2 experiments. We then computed the dif-
ference between the expected (modelled) and observed (scaled up) 
effects of elevated CO2 on βsoil. As both expected and scaled-up βsoil 
use the same βplant, this transformation allows us to tackle the conse-
quences of the different βsoil/βplant ratios between experiments and 
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models directly. We acknowledge, however, that the ratio is likely to 
change over time, so the comparison needs to be interpreted with 
caution. We found, however, that first-order models also simulate a 
positive relationship between βsoil and βplant when forced to simulate 
over the same duration as experiments (Fig. 4a), suggesting that the 
sign of the βsoil:βplant relationship in CMIP5 models would probably not 
reverse if CMIP5 models were forced to simulate a step increase in CO2 
over 5 yr, as in experiments.

Data availability
All the empirical data that support the main findings of this study have 
been deposited in Figshare (https://figshare.com/projects/Effects_
of_elevated_CO2_on_soil_and_ecosystem_carbon_storage/74721) and 
GitHub (https://github.com/cesarterrer/SoilC_CO2). FACE-MDS data 
can be accessed at https://www.osti.gov/dataexplorer/biblio/data-
set/1480327. CMIP5 data can be accessed at https://esgf-index1.ceda.
ac.uk/search/cmip5-ceda/. TRENDY data can be requested at http://
dgvm.ceh.ac.uk/index.html.

Code availability
The R code used in the analysis presented in this paper is available 
in GitHub and can be accessed at https://github.com/cesarterrer/
SoilC_CO2.
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Extended Data Fig. 1 | Effects of eCO2 on aboveground biomass production 
versus effects of eCO2 on litter production and SOC storage. a, Effect of 
eCO2 on litter production as the effect of eCO2 on aboveground biomass 
production increases. b, Effect of CO2 on SOC storage as the effect of CO2 on 
aboveground biomass production increases. Results for non-fertilized field 

eCO2 experiments (n = 10, and n = 35, respectively). Grey shading around 
regression lines represents the 95% confidence intervals. Dots represent 
individual experiments, with dot size in b proportional to the weights in the 
meta-regression.



Article

Extended Data Fig. 2 | Variable importance of 19 predictors of the effects of 
CO2 on SOC and biomass stocks. a, b, Varying importance of the effect of CO2 
on SOC stocks in relative (a) and absolute terms (b) across the full dataset 
(n = 108). c, Varying importance of the effect of CO2 on SOC stocks (%) across 
the subset of eCO2 experiments in ‘intact’ soils (n = 73). d, Varying importance 
of the effect of CO2 on plant aboveground biomass (n = 138). The varying 
importance in a, b and d is quantified based on a meta-forest model. The 

varying importance in c is quantified based on the sum of AICc weights, which 
allows for the quantification of the importance of interactions between 
predictors. As an initial step, moderators that consistently displayed negative 
variable importance (that is, that showed a reduction in predictive 
performance) were automatically dropped. LAImax, LAImean, MAP and MAT 
are defined in Extended Data Table 1.



Extended Data Fig. 3 | Effects of eCO2 on SOC stocks and plant biomass in 
nitrogen-fertilized eCO2 studies. n = 35. a, b, Effects are expressed as a 
regression (a) and overall effects in meta-analysis (b). Dot sizes in a represent 
the individual studies and are drawn proportional to the weights in the model. 

The regression with the subset of non-fertilized studies is also shown in a for 
comparison. Dots in b represent the effect sizes and 95% confidence intervals 
from the meta-analysis.



Article

Extended Data Fig. 4 | Analysis of variables potentially explaining the 
observed effects of eCO2 on SOC. Effects of eCO2 on root biomass (n = 45), 
fine-root production (n = 11), litter C:N (n = 16) and background SOC stocks 

(n = 38), between ecosystem types (grassland versus forest) and 
nutrient-acquisition strategies (AM versus ECM). Boxplots show the median, 
the first to third quartile, the 1.5× interquartile ranges, and outliers.



Extended Data Fig. 5 | Partial dependence plots of the six most important 
predictors of the effect of eCO2 on SOC stocks across 108 experiments. The 
figure shows the predicted CO2 effect in relative (a) and absolute terms (b) 
across each predictor and the most important interaction between predictors 
(right panels) in a random-forest meta-analysis. Error bands represent 95% 
confidence intervals. Partial regression plots give a graphical depiction of the 
marginal effect of a variable on the response and the shape and direction of the 
relationship. Little variation in the predicted effect of eCO2 across the values of 

a predictor generally reflects the low predictive power of the predictor. 
However, important predictors may show little variation in the predicted effect 
of eCO2 when involved in interactions, so the right panels show the most 
important interaction in the model. More details about the different predictors 
may be found in Extended Data Table 1. From a total of 19 predictors, only the 
six most important predictors and the most important interaction are shown 
here.
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Extended Data Fig. 6 | Representativeness of the scaling-up predictors of 
the effect of eCO2 on SOC stocks. Histograms showing the distribution of 
both the predictors in the training dataset of CO2 experiments and the data 

used to scale up the global distribution of the effect. Predictions exclude 
regions between –15 to 15 and from 60° to 90° latitude owing to the lack of 
experiments.



Extended Data Fig. 7 | Relationship between the effects of CO2 on 
aboveground biomass and SOC across individual models from three model 
ensembles. a, FACE Model Data Synthesis Phase 2. Individual model results are 
represented by coloured symbols and lines. Each symbol represents one site; 
lines represent model-specific linear regressions. To ease interpretation of the 

results and the comparison with Fig. 4, axis limits are set. Dashed lines and 
error bands (grey shading) represent the linear regression line and standard 
error across all experiment-by-model results. b, TRENDY v7 models. c, CMIP5 
models.
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Extended Data Fig. 8 | Difference between expected CO2 effects on SOC 
stocks based on TRENDY models and scaled up on the basis of experiments. 
Expected values result from the relationship between βsoil and βplant coded in 

models. Positive values (red colour) indicate an overestimation by models; 
negative values (blue colour) indicate an underestimation by models.



Extended Data Table 1 | List of predictors used to examine and to scale up the effects of eCO2 on SOC

Data for each experiment (‘reported in papers’) was extracted from the references in Supplementary Table 1. Data are from refs. 12,77–81.
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Extended Data Table 2 | Synthetic description of the basic characteristics of three model ensembles in terms of their 
treatment of CO2 effects
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