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Three process based models are used to estimate terrestrial heat fluxes and evapotranspiration (ET) at the
global scale: a single source energy budget model, a Penman–Monteith based approach, and a Priestley–
Taylor based approach. All models adjust the surface resistances or provide ecophysiological constraints to
account for changing environmental factors. Evaporation (or sublimation) over snow-covered regions is
calculated consistently for all models using a modified Penman equation. Instantaneous fluxes of latent heat
computed at the time of satellite overpass are linearly scaled to the equivalent daily evapotranspiration using
the computed evaporative fraction and the day-time net radiation. A constant fraction (10% of daytime
evaporation) is used to account for the night time evaporation. Interception losses are computed using a
simple water budget model. We produce daily evapotranspiration and sensible heat flux for the global land
surface at 5 km spatial resolution for the period 2003–2006. With the exception of wind and surface pressure,
all model inputs and forcings are obtained from satellite remote sensing.
Satellite-based inputs and model outputs were first carefully evaluated at the site scale on a monthly-mean
basis, then as a four-year mean against a climatological estimate of ET over 26 major basins, and finally in
terms of a latitudinal profile on an annual basis. Intercomparison of themonthly model estimates of latent and
sensible heat fluxes with 12 eddy-covariance towers across the U.S. yielded mean correlation of 0.57 and 0.54,
respectively. Satellite-based meteorological datasets of 2 m temperature (0.83), humidity (0.70), incident
shortwave radiation (0.64), incident longwave radiation (0.67) were found to agree well at the tower scale,
while estimates of wind speed correlated poorly (0.17). Comparisons of the four year mean annual ET for 26
global river basins and global latitudinal profiles with a climatologically estimated ET resulted in a Kendall's
τN0.70. The seasonal cycle over the continents is well represented in the Hovmöeller plots and the
suppression of ET during major droughts in Europe, Australia and the Amazon are well picked up. This study
provides the first ever moderate resolution estimates of ET on a global scale using only remote sensing based
inputs and forcings, and furthermore the first ever multi-model comparison of process-based remote sensing
estimates using the same inputs.
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1. Introduction

Evaporation from land or evapotranspiration (ET) is a combined
process of evaporation of liquid water from various land surfaces
(including small water bodies, e.g. lakes and rivers), transpiration
from the leaves of plants and sublimation of ice and snow. The process
of ET serves as one of the main phases of the hydrological or water
cycle. One of the distinguishing factors of ET is its role as a linchpin
between the energy and water cycles. The latent heat of vaporization,
which is the energy required for evaporating water, serves as the
largest single heat source for the atmosphere, thus significant in
weather and climate dynamics. It is to be noted here that the transfer
of latent heat, i.e. latent heat flux (LEflux), is always accompanied by
vapor transfer, i.e. evapotranspiration. Thus the terms latent heat flux
and evapotranspiration (or evaporation) might be used interchange-
ably within this study.

Although the concept of “evaporation” has been known since
approximately 500 B.C. (see Brutsaert, 1982 for a chronological
sketch), most of the understanding of the governing factors has been
achieved in the past two centuries. Dalton (1802)was the first to point
out the relationship of vapor pressure deficit (esat−eact) of the near
surface air to the evaporation rate. Later, many empirical relationships
were developed based on other environmental factors (Blaney &
Criddle, 1950; Hargreaves, 1975; Thornthwaite, 1948; Wilm, 1944).
Based on available energy considerations and turbulent flux theory,
Penman (1948) developed his evaporation equation for surfaces that
are not water limited. Monteith (1964) developed a modified version
of the Penman equation inwhich biophysicswas introduced through a
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surface or canopy resistance – the now well-known Penman–
Monteith combination equation – that allowed for vegetation control
on transpiration rates. A somewhat simpler but effective approachwas
later developed by Priestley and Taylor (1972) for well watered
surface by introducing a unitless constant (α, with a standard value of
1.26) to the Penman equation that represented the temperature and
aerodynamic terms. Field experiments (Barton, 1979; Davies & Allen,
1973; Fisher et al., 2005; Flint & Childs, 1991) showed that the value of
αwas empirically related to soilmoisture, and that the value decreased
from its standard value for water stressed surfaces (Stannard, 1993).
Many subsequent studies were conducted to include the so-called
stress factors (for vapor pressure deficit, temperature, soil moisture
and solar radiation) in the formulation of surface conductance (Ball et
al., 1987; Dickinson et al., 1998; Dolman et al., 1991; Jarvis, 1976;
Sellers et al., 1986; Wright et al., 1995).

Historically, evaporation measurements to support agriculture
were based on pan evaporation, which is still widely used, or large
scale weighing lysimeters. The development of instrumentation for
measuring scalar fluxes and vertical wind in the 1970s led to the
development of the eddy-covariance technique (Baldocchi et al.,
1988; Diawara et al., 1991; Leuning et al., 1982). Today, hundreds of
eddy-flux towers have been set-up globally for continuous measure-
ments of surface water and carbon fluxes, and loosely organized
under the global FLUXNET initiative. Some regional networks include
the AmeriFlux, AsiaFlux, EuroFlux, OzFlux and others; all of which are
members of the FLUXNET international program (Baldocchi et al.,
2001). Comparing the eddy-covariance tower estimates with other ET
estimates (remote sensing or model) poses two challenges (Anderson
et al., 2003; Reichstein et al., 2009; Twine et al., 2000): the tower
measurements rarely close the energy budget resulting in non-closure
on the order of 20 to 30%, and the towers sample over a limited fetch,
usually on the order of 100–1000 m depending on the tower height,
which limit the scale of evaluation. Twine et al. (2000) discusses
adjustments that can be made regarding closure, but recognizes that
their recommended approaches (adjusting the heat fluxes based on
the Bowen Ratio or the residual closure) may not always be
appropriate. Also, for ease of measurement and theoretical con-
straints, towers are usually placed in homogeneous landscapes and
therefore may not be representative of remote sensing or model
resolution spatial scales.

With the addition of a thermal band on LANDSAT 3 (launched in
1978) and later with enhanced resolution and thermal bands on
LANDSAT 4 (1982), high resolution (30 m visible and 120 m thermal)
retrievals of land classifications and surface temperatures were made
possible. These observations led to the retrieval of high resolution
spatial fields of ET that were used in the FIFE (First International Land
Climatology Project Field Experiment) to improve land surface
parameterizations in climate models (see Sellers et al., 1995) and to
develop ET estimates for irrigation management, mostly based on
turbulent heat flux approaches (Allen et al., 2007; Bastiaanssen et al.,
1998; Norman et al., 2003; Su, 2002; Su et al., 2005). These approaches,
often referred to as energy balance (EB) algorithms, are based on the
temperature gradient between the surface and the overlying atmo-
sphere to estimate the turbulent heat transfer (i.e. the sensible heat
flux,Hflux),with the latent heatfluxbeing calculated as a residual of the
available energy (Rnet−Gflux) andHflux. Given high resolution (120 m)
LANDSAT surface temperature data, and more uniform surface air
temperatures, these algorithms have proven useful for irrigation
management because fields with large temperature gradients (Tsurf−
Tair) indicate low ET suggesting stressed conditions.

Although LANDSAT data is valuable for estimating ET at high
spatial resolutions, the limited swath leads to a compromise on the
temporal resolution (~17 days). Alternatively, lower resolution (1 to
2 km) Advanced Very High Resolution Radiometer (AVHRR) observa-
tions and Geostationary (Geostationary Operational Environmental
Satellites; GOES) thermal data, while available since the late 1970s,
have not been widely used for ET at large scales due to a variety of
issues such as: data accessibility (GOES), lack of ancillary radiation
and vegetation data, limited computer storage amongst others. Under
the NASA Earth Observing System program (EOS), the sensors on the
Aqua platform (specifically theMODerate resolution Infrared Spectro-
radiometer (MODIS), Atmospheric InfraRed Sounder (AIRS), and the
Cloud and the Earth's Radiant Energy System (CERES) offer the
necessary observations of solar and longwave radiation (CERES),
surface (skin and air) temperatures and atmospheric humidity (AIRS),
and vegetation and land surface properties such as snow cover,
emissivity and albedo (MODIS) for the estimation of ET at global
scales. While the resolution is too low (5 to 25 km) for many water
and irrigation management applications, it appears sufficient for
climate applications envisioned under the World Climate Research
Programme's (WCRP) Global Energy andWater Experiment (GEWEX)
Landflux initiative (LandFlux Assessment and Organization Work-
shop, Toulouse, France).

GEWEX has identified quantifying ET for the global land surface
critical for further understanding of Earth's climate system (Jimenez
et al., in press; Mueller et al., 2010). ET is an important factor in
understanding the complex feedback mechanisms between the land
surface and the surrounding atmosphere, and at global scales ET
equals precipitation (over long time periods, i.e. few years).
Approximately 62% of the precipitation over continents is evaporated
and transpired on an annual scale (Shiklomanov & Sokolov, 1985).
However, such terrestrial surface estimates do not adequately
describe the regional-to-continental scale variability resulting as a
response to land surface heterogeneity and regional climate influ-
ences. Thus there exists a need for a completely observational-driven,
spatially and temporally continuous ET product. This is only possible
through remote sensing satellite products and can be achieved using
measurements from various sensors onboard the EOS polar orbiting
satellites. Such a dataset will help researchers better understand the
continental water and energy budgets— fundamental goals of NASA's
Energy and Water System (NEWS) and the WCRP GEWEX program.
Also, continental estimates of ET will advance our understanding of
the mean state and spatial and temporal variability of this significant
component of the water cycle (Fisher et al., 2008). The above are
necessary in further understanding the large scale land–atmosphere
interactions related to ET.

The focus of the current study is to develop and inter-compare
three process based ET products over land, based on sensors on the
NASA Aqua satellite platforms and augmented by AVHRR data for
vegetation characterization.

The process models considered for the current study are: Surface
Energy Balance System (SEBS; Su, 2002), Penman-Monteith algorithm
(PM-Mu; Monteith, 1964; Mu et al., 2007; Penman, 1948), and
Priestley–Taylor based approach (PT-Fi; Fisher et al., 2008; Priestley &
Taylor, 1972). The swath based retrievals are produced at 5 km spatial
resolution for estimates of latent heat flux at instantaneous (W/m2)
and daily (mm) time scales. It is anticipated that these data products
could serve as a Fundamental Climate Data Record (FCDR) of the
Global Climate Observing System (GCOS, http://www.wmo.ch/pages/
prog/gcos/Publications/gcos-129.pdf). The uniqueness of this study is
that it provides the first ever moderate resolution estimates of ET on a
global scale using only remote sensing based inputs and forcings, and
furthermore the first ever multi-model comparison of process-based
remote sensing estimates using the same inputs.

The motivation for the current study is evoked by one of the major
objectives of theWCRP's GEWEX initiative, which is to understand the
effect of energy and moisture exchange and transport processes to
climate feedback. The results from the current study is a step towards
addressing the challenges to meet the climate goals of an ET dataset
that will provide information on the mean and variability of the
components of the water and energy cycle from regional to global
scales at decadal time periods.

http://www.wmo.ch/pages/prog/gcos/Publications/gcos-129.pdf
http://www.wmo.ch/pages/prog/gcos/Publications/gcos-129.pdf
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2. Methods and data sources

2.1. Models

2.1.1. Surface Energy Balance System (SEBS)
The surface energy balance partitions the available energy (Rnet−

Gflux) between the turbulent heat fluxes (LE and H):

LE = Rnet−G−H ð1Þ

where, Rnet is the surface net radiation,G represents the soil heat flux and
storage represented as a flux when considering water surfaces, H is the
turbulent sensible heat flux, and LE is the turbulent latent heat flux.
Between 1990 and 2005, new energy balance based approaches were
developed specific to remote sensing needs, which include the Surface
EnergyBalance Index (SEBI;Menenti&Choudhury, 1993), SurfaceEnergy
Balance over Land (SEBAL; Bastiaanssen et al., 1998), Atmosphere–Land
Exchange Inverse (ALEXI; Anderson et al., 1997), Simplified Surface
Energy Balance Index (S-SEBI; Roerink et al., 2000), Surface Energy
Balance System (SEBS; Su, 2002), and Mapping EvapoTranspiration with
InternalizedCalibration (METRIC;Allen et al., 2007). All the abovemodels
have been applied to estimate local to regional scale estimates of ET using
some combination of remote sensing data and field observations.
Anderson et al. (2007) used the 2-source ALEXI evaporation model
along with data from GOES and AVHRR satellite sensors to model ET at
daily temporal and 10 km spatial resolution over the continental United
States for the period April–October, 2002–2004.

One of the models used in the current study is the SEBS approach
which has been extensively evaluated by Su et al. (2005), McCabe and
Wood (2006) and Su et al. (2007) amongst others. The SEBS model
constrains the surface heat flux estimates by considering dry limit
(LEflux=0; soil moisture limitation) and wet limit (potential
evaporation; only limited to available energy) conditions, thus
limiting the sensible heat flux estimates with an upper and lower
boundaries. Unlike many surface energy balance models, SEBS avoids
the tedious process of selecting hot and cold pixels by the use of the
above mentioned dry- and wet limit conditions.
Fig. 1. Flowchart showing process involved in the surface energy ba
The roughness parameters for heat and momentum were
estimated using the kB−1 (inverse Stanton number) models as
proposed by Massman (1999) and Blumel (1999). Considering that
these models perform reliably but provide different kB−1 estimates
over different vegetation types (Su et al., 2001), we take the mean
roughness length as estimated from the two models. A flowchart of
the SEBS model with the various satellite inputs is provided in Fig. 1.
More details on the SEBS algorithm can be found in Su (2002).

2.1.2. Penman–Monteith algorithm (PM-Mu)
Penman (1948) developed amodel for estimating evaporativefluxby

combining both the energy-balance and mass-transfer approaches,
resulting in the well known combination equation. An important goal
of Penman was being able to use standard meteorological station data
that did not include surface (radiative) temperature. Also, no surface
resistance termwas included resulting inanequation that is validonly for
open water surfaces or vegetation without water limitations. Monteith
(1964) proposed that this limitation be relaxed by considering that the
internal leave (stomata) vapor is saturated at the leaf temperature, the
leaf surface is at the vapor pressure of the surrounding air (at the
standard2 mheight) and there is a resistance that controls the transfer of
vapor from the leaf to the surrounding air — the leaf resistance that is
integrated up to the canopy resistance. This extension to Penman, which
only required an aerodynamic resistance and now required both an
aerodynamic and canopy (or surface) resistances (ra and rs respectively)
along with the available energy (Rnet−Gflux), results in the well known
Penman−Monteith equation. Analogous approaches have been devel-
oped for soil evaporation. The Penman−Monteith equation is as follows:

λET = Δ Rnet−Gfluxð Þ +
ρaCpVPD

.
ra

Δ + γ 1 + rs=ra
� � ð2Þ

where, ρa is the density of air, Cp is the specific heat of air at constant
pressure, VPD is the vapor pressure deficit; Δ is the slope of the
saturate vapor pressure curve; γ is the psychrometric constant; and, ra
and rs are the aerodynamic and surface resistance respectively.
lance model and the required data products and their sources.
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Several studies have considered the parameterization of the
surface or stomatal conductance (inverse to the resistance). For a
long time the diffusion porometer was used to measure the stomatal
conductance. These measurements although accurate limited the use
of the variable to local scales. Later, Jarvis (1976) suggested the use of
a mechanistic model in which the stomatal conductance was related
to the CO2 concentration, temperature, vapor pressure deficit and
photon flux density. Similarly, Ball et al. (1987) proposed a model
which parameterizes stomatal control as a function of the net carbon
assimilation, CO2 partial pressure, and atmospheric humidity. For
further details on the stomatal conductance, the authors suggest Dang
et al. (1997), Kawamitsu et al. (1993), Leuning (1995), Marsden et al.
(1996), Oren et al. (2001), (1999), Sandford and Jarvis (1986),
Schulze et al. (1994), and Xu and Baldocchi (2003).

These studies were later applied to remote sensing based models.
Cleugh et al. (2007) formulated an equation for the surface
conductance based on the remote sensing retrievals of normalized
difference vegetation index (NDVI), leaf area index (LAI) or fraction
canopy cover (fc). They assumed that if there is enough soil moisture
available for vegetation growth then the information is manifested in
either of the above three variables on time scales that match plant
growth. This formulation was further extended by Mu et al. (2007) by
considering the effects of VPD and temperatures as suggested by Jarvis
(1976) and others, as is described in the equations below:

CS = cL⋅fT min
⋅fVPD ð3Þ

CC = CS⋅LAI ð4Þ

where, CS is the stomatal conductance; cL is the mean potential
stomatal conductance per unit leaf area; fTmin

and fVPD are the
constraints by minimum air temperature and VPD to reduce the
potential stomatal conductance; and CC is the canopy conductance.

Mu et al. (2007) applied their resistance parameterization within
the Penman−Monteith framework using MODIS-based vegetation
and weather model data (the latter from NASA's GMAO — Global
Modeling and Assimilation Office) to estimate global ET at a 5 km
Fig. 2. Flowchart showing process involved in the Penman–Monteith based
spatial resolution for the year 2001. For the current study, we use the
Penman–Monteith model with the above mentioned resistance
formulation, from now on referred to as PM-Mu, that has been
applied by Ferguson et al. (2010). The only difference is that we use
the same derivation for the aerodynamic resistances (ra) as is used in
the SEBS model. A flowchart of the model is illustrated in Fig. 2.

2.1.3. Priestley–Taylor algorithm
One the largest source of uncertainty in the Penman–Monteith

equation is the parameterization of the resistances. To circumvent this
problem, Priestley and Taylor (1972) developed a streamlined version,
leaving only the formulation for radiation- and temperature-based
equilibrium evaporation (Fisher et al., in press), and replacing all
atmospheric demand with an empirical multiplier, the α coefficient:

LE = α
Δ

Δ + γ
Rnet−Gfluxð Þ ð5Þ

where, αwas originally set to 1.26 for well watered surfaces, thus this
equation is valid for potential ET (PET) only, rather than actual ET
(AET). To reduce the Priestley–Taylor PET equation to AET for remote
sensing studies, Fisher et al. (2008) developed a model introducing
ecophysiological constraint functions (f-functions, unitless multi-
pliers, 0–1), from now on referred to as the PT-Fi model, based on
atmospheric moisture (VPD and RH) and vegetation indices (normal-
ized and soil adjusted vegetation indices, NDVI and SAVI, respective-
ly). The driving equations in their model are:

LE = LEs + LEc + LEi ð6Þ

LEc = 1−fwetð ÞfgfTfMα
Δ

Δ + γ
Rnc ð7Þ

LEs = fwet + fSM 1−fwetð Þð Þα Δ
Δ + γ

Rns−Gð Þ ð8Þ

LEi = fwetα
Δ

Δ + γ
Rnc ð9Þ
algorithm (PM-Mu) and the required data products and their sources.

image of Fig.�2
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where fwet is relative surface wetness (RH4), fg is green canopy
fraction (fAPAR/fIPAR), fT is a plant temperature constraint (exp
(−((Tmax−Topt)/Topt)2)), fM is a plant moisture constraint (fAPAR/
fAPARmax), and fSM is a soil moisture constraint (RHVPD), fAPAR is
absorbed photosynthetically active radiation (PAR), fIPAR is inter-
cepted PAR, and Tmax is optimum air temperature, Topt is Tmax at max
(RnTmaxSAVI/VPD).

Although the original PT-Fi model includes parameterization for
calculating interception losses, we replace it with a uniform
parameterization used across all threemodels (more in Section 2.1.5).
Interception losses are (see Sections 2.1.5 and 2.3) subject to the
scaling of instantaneous LE estimates to daily values. Fig. 3 shows the
flowchart of the PT-Fi model along with the sources of the remote
sensing data. More details can be found in Fisher et al., 2008. The
model has been validated over 36 FLUXNET sites with an average r2 of
0.90 and 7% bias (Fisher et al., 2008, 2009), and has been applied to
large-scale studies such as the 2005 Amazon drought (Phillips et al.,
2009).

2.1.4. Soil moisture dynamics
It is noted that all three models do not directly incorporate soil

moisture which is an important variable when considering ET as a
water budget component. Although previous studies have assumed
that soil moisture availability is captured in the information provided
by vegetation characteristics (like fractional vegetation cover, LAI and
NDVI) and vapor pressure deficit (Cleugh et al., 2007; Fisher et al.,
2008), in reality, the degree to which soil moisture controls near-
surface relative humidity (and hence, VPD) varies as a function of
dryness, with maximum and minimum correlation in dry (water-
limited) and wet (energy-limited) regimes, respectively (Ferguson &
Wood, in preparation).

2.1.5. Evaporation from snow and intercepted rainfall
The three models used in the current study are well suited for the

estimation of evapotranspiration over the land surface; however, they
do not consider evaporation from snow surfaces or intercepted
rainfall by vegetation. Snow pack constitutes as one of the most
Fig. 3. Flowchart showing process involved in the Priestley–Taylor based
important aspects of water resources and hydrology in the higher
latitudes (Nakai et al., 1996). Evaporation over snow covered soil and
vegetation although not as high as ET from snow free regions, should
be considered in monthly and annual estimates for climate studies.
Evaporation from snow-covered landscapes consists of two separate
components: a) evaporation from the surface (land and vegetation)
and, b) evaporation from blowing snow (Bintanja, 1998; Cherkauer et
al., 2003; Dery & Yau, 2001; Essery, 2001; Essery et al., 1999; Liston &
Sturm, 1998; Pomeroy & Essery, 1999). Recently, Bowling et al. (2004)
developed a parameterization for sublimation from blowing snow
that could be applicable to remote sensing, but at this time has not
been assessed fully in this context. For the current study, we ignore
the evaporation from blowing snow but recognize that it needs to be
included in the future work.

It has been well documented that the factors affecting evaporation
process over snow are: aerodynamic resistance, wind speed, vapor-
pressure deficit and radiation (Lundberg & Halldin, 2001). In the
current study we assume that over a snow covered surface
transpiration is negligible considering that the stomates close at
freezing temperatures. With the above factors and assumptions, we
calculate the evaporation over snow using the Penman equation as
suggested by Calder (1990).

Interception of precipitation by dense vegetation canopies can
contribute a large portion of ET. Some of the early studies (Burgy &
Pomeroy, 1958; Rutter, 1967, 1968; Sceicz et al., 1969; Waggoner et
al., 1969) have shown the importance of intercepted rainfall and the
further process of evaporation of the intercepted water, hereafter
referred to as canopy evaporation, through measurements over
various biome types. However more intensive studies on interception
losses have only been performed over forests. It has been reported
that on an annual basis, canopy evaporation can range between 10
and 40% of the total precipitation (Rutter & Morton, 1977; Zinke,
1967), and up to 25% of the total evaporation (Shuttleworth, 1988)
depending on the forest structure and cover. Rutter et al. (1971) and
Gash (1979) were among the first to develop conceptual models for
estimation interception losses based on canopy physiology and
meteorological measurements. Later, many physically driven models
algorithm (PT-Fi) and the required data products and their sources.

image of Fig.�3


Table 1
Annual ratios (maximum) of canopy evaporation losses to the total precipitation based
on land cover types.

Landcover Interception ratio

Current
study

Literature

Evergreen
needleleaf forest

0.19 0.23 (Miralles et al., 2010)
0.17a (Valente et al., 1997)

Evergreen
broadleaf forest

0.15 0.14 (Miralles et al., 2010)
0.10a (Valente et al., 1997)

Deciduous
needleleaf forest

0.12 0.23 (Miralles et al., 2010)
0.17a (Valente et al., 1997)

Deciduous
broadleaf forest

0.14 0.17 (Miralles et al., 2010)
0.19a (Carlyle-Moses & Price, 1999)

Mixed forest 0.19 0.13 (Jetten, 1996) 0.16 (Rutter et al., 1971)
Closed shrubland 0.1 0.27 (Navar & Bryan, 1990) 0.16–0.18

(Navar et al., 1999a) 0.19 (Navar et al., 1999b)Open shrubland 0.18
Woody savannas 0.19 –

Savannas 0.13 –

Grasslands 0.14 –

Croplands 0.17 0.08–0.18 (van Dijk & Bruijnzeel, 2001)

a Observed values as reported in literature.
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have been developed, some of which were based on improvements of
the Rutter and Gash models. For a comprehensive review of the
rainfall interception models, the authors refer to Muzylo et al. (2009).

Recently, Miralles et al., 2010 developed a rainfall interception
dataset based on the revised Gash's analytical model (Valente et al.,
1997) model and applied globally (over forests) based on observa-
tional/satellite data from the Global Precipitation Climatology Project
(GPCP) precipitation and Global Lightning Flash Rate Density dataset
from NASA. Results showed that interception losses for forest covers
ranged between 14 and 23% of precipitation. They indicate that the
interception loss product is sensitive to rainfall intensity and the
vegetation cover. Although, the above dataset can be considered as
the only existing global interception data, one of the shortcomings of
this dataset is that the authors assume that the canopy dries off
between storm events. This assumption could lead to over estimation
of the canopy evaporation especially when calculated on a monthly
basis. Furthermore the data is only available monthly and over forest
covers.

Considering the above limitations and practical issues, we adopt a
simplemass-balance strategy based on themodel suggested by Rutter
et al. (1971) and further improved by Valente et al. (1997). A step by
step methodology for the estimation of interception losses is
presented in Appendix A. The model is applied globally on a daily
basis for all vegetation covers. We use the MODIS vegetation cover
(MOD12C1) with the UMD classification for distinguishing the biome
types. Precipitation dataset is obtained from the Global Precipitation
Climatology Project (GPCP). More details on the datasets used in the
model are presented in Section 2.2. To check for reliability of the
Table 2
Data variables, sources and resolutions used for generating global ET maps.

Data type Variable Unit

Surface meteorological data Tair °C
Tsurf °C
Pressure kPa
U-Wind m/s
V-Wind m/s
Humidity g/kg

Radiative energy flux SWR (↓) W/m2

LWR (↓) W/m2

Vegetation parameters Emissivity –

Albedo –

LAI –

Veg. Fraction –

NDVI –

Landcover (UMD) –
interception product, we compare our values, based on fraction of the
precipitation, to the values reported in the literature. Values obtained
from the current study and literature reported values (Carlyle-Moses
& Price, 1999; Jetten, 1996; Miralles et al., 2010; Navar & Bryan, 1990,
1994; Navar et al., 1999a,b; Rutter et al., 1971; Valente et al., 1997; van
Dijk & Bruijnzeel, 2001) are reported in Table 1.

2.2. Datasets

The remote sensing datasets used in this study can be broadly
classified into six different categories: a) Land Surface Temperature/
Emissivity; b) Albedo; c) Radiation; d) Surface meteorology; e)
Surface/Vegetation characteristics; and f) Other datasets. Table 2
provides an overview of the different variables, resolutions and
sources. Although some variables, like air temperature, surface
temperature, humidity, and radiation have a strong daily cycle,
there are other variables, like leaf area index, emissivity, and albedo
that do not change on a sub-daily basis. We term the former variables
as Type-I forcings and the latter as Type-II forcings. For the current
study, if Type-I forcings are not available, then an ET estimate is not
calculated, but if the Type-II variable is missing, we substitute its
climatological value based on the land cover type. The Global Land
Data Assimilation System (GLDAS; Rodell et al., 2004) has mapped
climatological values for land surface parameters for each land cover
type using the University of Maryland (UMD) vegetation classification
scheme, and this data is used here.

2.2.1. Land surface temperature/emissivity
Land surface temperature [LST; Type-I] is one of the core inputs for

the SEBS model. However, it is also needed for the computation of net
radiation, which is a crucial input for all the models. Considering the
above importance of LST in estimating ET, one of the major
considerations of the study was to use a product that is spatially
and temporally consistent and having the least amount of missing
data or gaps. Although, one of the finest spatial resolution LST
products is available fromMODIS (1 to 5 km), the quantity and quality
of the data product is significantly affected by the presence of clouds
(Wan et al., 2004a). Thus, for the current studywemake use of the LST
product from the AIRS sensor onboard NASA Aqua. The AIRS retrieval
uniquely applies a cloud-clearing algorithm and provides case-by-
case quality flags and error estimates. Here we use the AIRS Collection
5 Level 2 standard retrieval product (AIRX2RET) available in 6-minute
granule arrays of dimension 30 (cross-track)×45 (along track)
footprints. The size of these elliptical footprints range from
2.3 km×1.8 km at nadir to 7.1 km×3.0 km at the edge of the scan
line (Li et al., 2008). Using only those footprint values that satisfy a
quality flag of 1 (highest quality) or 2 (good quality), we produced a
0.25 gridded product (Ferguson & Wood, 2010). Specifically, an
inverse-distance squared weighting is applied for all footprint
Source Platform Resolution

AIRS AQUA 25 km
AIRS AQUA 25 km
AIRS (NCEP) AQUA 25 km
CERES (GMAO) AQUA 20 km
CERES (GMAO) AQUA 20 km
AIRS AQUA 25 km
CERES AQUA 20 km
CERES AQUA 20 km
MODIS AQUA 5 km
MODIS AQUA 1 km
Boston Univ. AVHRR 8 km
Princeton Univ. AVHRR 8 km
GIMMS AVHRR 8 km
MODIS TERRA 1 km
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retievals within a 0.8 degree search radius of each cell. We note here
that interpolating the 0.25 degree LST to finer resolutions, 5 km for
the current study, will introduce uncertainty in the estimates because
the area-averaged temperature of a pixel does not equal the
temperature derived from the radiance averaged over the pixel
footprint (Mccabe et al., 2008a). Accordingly, all the 25 pixels (at 5 km
resolution) of ET consider the same value of surface temperature as
obtained at 0.25 degree resolution. The same strategy is applied for all
meteorological forcings.

Emissivity, similar to the surface temperature, is utilized by all
three process models for estimating the net radiation. However, not
many options are available for the emissivity data product. We used
the 1 km MODIS emissivity (MYD11C1) product available at 0.05 de-
gree (~5 km) climate model grid (CMG). Considering that MODIS
retrievals of narrow band emissivity are in the bands 29, 31 and 32
(Wan & Li, 1997; Wan et al., 2004b), we applied the formulation
suggested by Su et al. (2007) to calculate the broadband emissivity. To
account formissing data, we linearly interpolate the emissivity in time
and then further perform a spatial average of the neighboring cells. As
described above, emissivity can be considered as a Type-II variable
and thus the GLDAS climatological values were used when the MODIS
retrieval is unavailable due to cloud cover. Although the authors
acknowledge that the use of emissivity and surface temperature from
different sensors will result in uncertainties, there was no satisfactory
quality flag available from the AIRS sensor. The surface emissivity
algorithm, particularly over land, is a prime target for improvement
(according to the AIRS science team) in the AIRS V6 algorithm.

2.2.2. Albedo
Surface albedo information was obtained from the MODIS

MCD43B3 combined Aqua+Terra product (Jin et al., 2003; Liang et
al., 2002). The albedo product consists of black-sky and white-sky
albedo available at 1 km spatial and 16-day temporal resolution. To
derive the overall surface albedo, we followed Su et al. (2007) by
averaging the above two estimates. Alternatively, there is a CERES
albedo product. However, the differences between the MODIS and
CERES albedo products are as high as 10% (Rutan et al., 2009). An
analysis of the CERES product (not shown) found that it lacked the
expected seasonal cycle based on vegetation phenology and seen in
theMODIS product. This, and the fact thatMODIS albedo is available at
a finer spatial resolution that better represents the land cover
information, resulted in using the MODIS product.

2.2.3. Radiation
For calculating the net radiation balance at the surface, Rnet, the

following equation and data were used:

Rnet = 1−αMODISð Þ⋅SW↓CERES + LW↓CERES− εMODIS⋅σ⋅LST
4
AIRS

� �
ð10Þ

where, SW↓ is the incoming shortwave radiation, LW↓ represents the
downwelling longwave radiation, ε is the surface broadband emissiv-
ity and σ is the Stefan–Boltzmann constant (=5.87×10−8 W/m2/K4).
The subscripts indicate the data source of each variable. The CERES
sensor is mounted both on Aqua and Terra satellite platforms and
provides radiometric measurements from three broadband channels:
shortwave channel (0.3–5 μm), total channel (0.3–200 μm), and the
infrared window channel (8–12 μm). The Single Scanner Footprint
TOA/Surface Fluxes and Clouds (SSF) product, which is produced from
the cloud identification, convolution, inversion, and surface processing
for CERES, is used in the current study. The cross-track mode data was
preferred for our study and so data from the CERES FM3 or FM4
instruments were used accordingly. However, post March 2005 only
FM3 data were used because the SW channel on the FM4 instrument
failed. A complete listing of the different operationmodes can be found
on the CERESwebpage (http://asd-www.larc.nasa.gov/dsnyder/Aqua/
aqua_ops.html). The data products for SWand LWradiation usedwere
SSF-46 (Gupta et al., 2001) and SSF-47 (Gupta et al., 1992)
respectively. The latest versions of the CERES SSF products that have
been available only after the current study was well underway have
expanded their product suite to include other variables, e.g. upward
components of SW and LW radiation.

2.2.4. Surface meteorology
Surface meteorology (Type-I) information was obtained from the

AIRS sensor and included surface air temperature (TSurfAir), mass
mixing ratio (H2OMMRStd), and saturated mass mixing ratio
(H2OMMRSat). More information on the AIRS data processing is
described in the Section 2.2.2. Ferguson and Wood (2010) assessed
the accuracy (bias and RMS error) of the AIRS retrievals by comparing
the retrievals for surface air and skin temperatures, humidity, and
model-derived surface pressure and 10 mwinds from NASA GMAO to
thosemeasured at 1490 National Climatic Data Center (NCDC) surface
meteorological stations over the continental US (CONUS) and Africa
for 6 years (2002–2008). They found that in general, the AIRS based
specific humidity (q) and air temperature (Ta) are biased dry (CONUS:
−10.3%; AFRICA: 12.4%) and warm (CONUS: +0.2 °C; AFRICA:
+1.0 °C) respectively, but there is strong correlation (in some
regions) between the in-situ measurements and AIRS retrievals that
suggests that bias-driven errors are correctable and the data useful for
ET retrievals. The current study, however, does not incorporate the
suggested corrections.

2.2.5. Surface vegetation characteristics
Accurate identification of land cover type is critical for estimating

ET using process scale models. MODIS based land cover type
(MOD12Q1) with the UMD classification scheme was adopted for
this study. The dataset is available at 1 km spatial resolution on an
annual basis. Only data for the years 2003 and 2004 was available, so
the 2004 land cover information was used for 2005 and 2006,
assuming that there is no change. Since the product is available at
1 km spatial resolution, ET was calculated for each land cover type
within a 5 km×5 km region and a weighted average was calculated
for the final 5 km ET product. Note that the land cover information
also includes the inland water surface, over which ET is estimated
using the Penman equation.

Apart from the land cover information, all the three process
models considered in the study make use of some combination of
normalized difference vegetation index (NDVI), leaf area index (LAI),
and fractional vegetation cover (fc). NDVI information is available
from the Global Inventory Monitoring andModeling Studies (GIMMS)
at NASA based on NOAA AVHRR measurements. Using these values of
NDVI, the fractional vegetation fc is computed based on the
methodology proposed by Gutman and Ignatov (1998) and further
improved by Zeng et al. (2000). The relationship is:

fc =
NDVIi−NDVIsoil
NDVIc−NDVIsoil

ð11Þ

where NDVIi is the current value of NDVI for the grid cell. NDVIsoil is a
theoretical, intra-annual minimumvalue of NDVI over each land cover
classification. Since for most land cover types smaller NDVI values
correspond to winter values and thus have larger uncertainties due to
cloud contamination and atmospheric effects than in the summer
(Zeng et al., 2000), we assume a constant value for NDVIsoil which is
based on the fifth percentile for the bare soil land cover classification.
NDVIc is the NDVI value for each land cover classification that
corresponds to 100% vegetation cover. Based on the suggestion by
Zeng et al. (2000), we estimated NDVIc using the 75th percentile for
UMD land cover types 1–5 and 8–12, 90th percentile for land cover
types 6, 7 and 13. The only difference in the methodology adopted for
this study is that we assumed that the climatology for vegetation

http://asd-www.larc.nasa.gov/dsnyder/Aqua/aqua_ops.html
http://asd-www.larc.nasa.gov/dsnyder/Aqua/aqua_ops.html
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changes by latitude, i.e. themaximum andminimumNDVI values for a
deciduous broadleaf forest in the tropics differs from those observed
at higher latitudes. Thus, the above methodology is applied based
on latitude bands of 20° each, i.e. 60S–40S, 40S–20S, 20S–0, 0–20N,
20N–40N, 40N–60N and 60N–80N.

Leaf area index (LAI) is derived using the GIMMS NDVI data based
on radiative transfer theory of canopy spectral invariants (Ganguly et
al., 2008).

2.2.6. Other datasets
The surface pressure information is obtained from AIRS, however,

the original data is an interpolated product from the National Center
for Environmental Prediction (NCEP) Global Forecast System GFS 3-,
6-, and 9-hour forecasts of surface pressure. Similar to the pressure
product, the horizontal wind components (u- and v vectors) are
included with the CERES datasets, and are based on the analysis fields
from NASA's Global Modeling and Assimilation Office (GMAO) global
model. Surface wind speed is estimated by calculating the magnitude
of the u- and v-vector data. The MODIS snow cover product
(MYD10C1) is used at 0.05 degree Climate Modeling Grid (CMG)
resolution for estimating the evaporation over snow covered regions.
The product provides the percent snow cover for the pixel.

Apart from the above datasets used for estimating surface fluxes at
the instantaneous (satellite overpass time) scales, a few other datasets
were used for scaling the instantaneous fluxes to the daily time scale.
One of the core dataset used for this is the Surface Radiation Budget
(SRB; Stackhouse et al., 2000) data set. The four components of
radiation (release 3.0) are available at 1° latitude–longitude with 3-
hourly time steps.

To estimate a daily value of soil heat flux, we adopt the estimation
procedure suggested by Bennett et al. (2008), where the soil heat flux
is computed using:

G tð Þ = I
π

∫
t

−∞

dT 0; sð Þffiffiffiffiffiffiffiffiffi
t−s

p ð12Þ

where, I is the soil thermal inertia, T(0,t) is the skin temperature (time
series), s is a dummy integration variable, and t is the time. Skin
temperature data for calculating daily soil heat fluxwas obtained from
the International Satellite Cloud Climatology Project (ISCCP; Rossow&
Duenas, 2004; Schiffer & Rossow, 1983). For more details regarding
the processing, the authors refer to Bennett et al. (2008). Note that the
skin temperature used here (daily values) is different from that used
for estimating the instantaneous fluxes.

Precipitation dataset from the Global Precipitation Climatology
Project (GPCP; Huffman et al., 2001) is used for estimating the
interception losses. The dataset used for the current study is the
Version 1.1 daily data at 1.0 decimal degree spatial resolution.
Table 3
Eddy covariance towers used for data comparisons in the current study.

Tower Elev.
(m)

Climate

ARM SGP — Main (ARM) 314 Temperate continental
Audubon (AUD) 1469 Temperate arid
Blodgett Forest (BLO) 1315 Mediterranean
Bondville (BON) 219 Temperate continental
Fort Peck (FPE) 634 Temperate
Harvard (HAV) 340 Temperate
Mead — Rainfed (MEA) 363 Temperate
Morgan Monroe (MMF) 275 Temperate continental
Niwot Ridge (NIW) 3050 Temperate
Sylvania Wilderness (SYL) 540 Northern continental
Tonzi (TON) 177 Mediterranean
UMBS (UMBS) 234 Temperate northern
For the evaluation of the ET estimates, we used different datasets
from local to regional scale. One of the first comparisons was
performed using turbulent flux data from 12 eddy covariance stations
obtained from the FLUXNET global network. These towers provide
measurements of water and energy fluxes over 0.5–5 km2 scales, and
represent a wide range of biomes and climatic zones. Table 3 and Fig. 4
show the list of towers considered in this study and the corresponding
biome type and climatic zone. It is to be noted that the tower selected
for the current study were based upon the coverage for the 2003–
2006 period with minimal missing data. Also this had to include both
the level 2 (half hourly original) and level 4 (quality checked and
available daily/monthly) data, and finally available to the authors as
non-Fluxnet investigators.

For the evaluation at the regional scale, the authors consider
calculating an inferred estimate of ET based on climatological
estimates of P-Q. Section 4.3 provides more details on the above.
Long term estimates of precipitation are obtained from the Global
Precipitation Climatology Center (GPCC; Rudolf et al., 2003). The data
is available at monthly temporal resolution at a spatial scale of 1.0
decimal degree for the period 1901–present.

Currently, there exists no remotely sensed or observation-based
gridded runoff product at continuous time scales over the land
surface. To incorporate the runoff term for evaluation of the water
budget components, we use a climatological product that is available
from the Global River Discharge Center (GRDC; Fekete et al., 2002).
Two separate products were considered for the current study: an
observed monthly climatology (based on in-situ streamflow mea-
surements) over a set of selected basins and a composite global runoff
field which combines observations and output from the water balance
model (WBM) of Fekete et al., 2002.

2.3. Methodology

The above data are used with the three process models described
earlier, to estimate the instantaneous latent heat fluxes. Following is
the list of steps for the algorithms.

i) The net radiation, Rnet, is calculated using Eq. (10).
ii) Soil heat flux is calculated based on the following equations.

For water surfaces (Frempong, 1983),

G = 0:26⋅Rnet ð13Þ

For other land cover types,

G = Rnet⋅ Γcanopy + 1−fcð Þ Γsoil−Γcanopy
� �j k

ð14Þ

where, Γ is the ratio of soil heat flux to the net radiation. The values
of Γ for soil and canopy are 0.315 (Kustas & Daughtry, 1990) and
Biome type Lat Lon Closure

Croplands 36.61 −97.49 0.68
Grasslands 31.59 −110.51 0.70
Evergreen needleleaf forest 38.90 −120.63 0.55
Croplands 40.01 −88.29 0.56
Grasslands 48.31 −105.10 0.64
Deciduous broadleaf forest 42.54 −72.17 NA
Croplands 41.18 −96.44 0.85
Deciduous broadleaf forest 39.32 −86.41 0.24
Evergreen needleleaf forest 40.03 −105.55 0.80
Mixed forests 46.24 −89.35 0.65
Woody savannas 38.43 −120.97 0.42
Deciduous broadleaf forest 45.56 −84.71 NA



Fig. 4. Geographic location of the towers and the basins considered in the current study. Note that some of the smaller basins in northern Eurasia are plotted as part of the bigger basins.
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0.05 (Monteith, 1973) respectively. For the PM-Mu and PT-Fi
models, the fractional vegetation cover information is used to
partition the available energy (Rnet−G) between the soil and the
vegetation.

AEsoil = 1−fcð Þ Rnet−Gð Þ ð15Þ

AEveg = fc⋅ Rnet−Gð Þ ð16Þ

iii) SEBS model: The roughness heights for heat and momentum are
calculated.

iv) SEBS model: Resistances are calculated and the sensible heat flux
is calculated. Finally the latent heat flux values are estimated
based on Eq. (1).

v) PM-Mu and PT-Fi models: The limiting factors for vapor pressure
deficit, temperature and soil moisture are calculated.

vi) PM-Mu model: Canopy conductance is calculated using Eq. (4)
while aerodynamic resistance is calculated using the SEBS
parameterization. Latent heat flux for soil and vegetation are
calculated using Eq. (2) and summed to get the final values of ET.

vii) PT-Fi model: Latent heat flux for soil and vegetation are calculated
using Eqs. (7) and (8) along with constraints for plant moisture,
plant temperature and soil moisture.

viii) All models: Latent heat flux values are estimated for snow
covered regions based on the Penman equation. Based on the
percent snow cover over a pixel, the latent heat flux is estimated
as a fraction. However, if the surface temperature is at or below
freezing, then it is assumed that the there is no conductance
(=0) and thus no evaporation.

Daily values of evapotranspiration are needed for comparisons
with other ET estimates and for further use in water and energy
budget studies. Following the work of Crago and Brutsaert (1996) and
Sugita and Brutsaert (1991), the instantaneous fluxes of latent heat
are scaled to daily values by assuming that the evaporative fraction,
obtained at the satellite overpass time, is constant throughout the day.
Using the above assumption, the daily ET value is extrapolated using
the following equation:

ETdaily = λ⋅n⋅EFinst⋅ Rnet−Gð Þdaytime ð17Þ

where, EFinst is the instantaneous value of evaporative fraction,
defined as the ratio of latent heat flux to the available energy, λ is the
latent heat of evaporation, and the constant n (=1.10) is the factor to
include night time evaporation. The daytime hours are calculated
based on latitude and the day of the year. Based on the study by Sugita
and Brutsaert (1991), not considering night time ET can lead to
underestimation of total daily ET by approximately 7%. Although, they
propose the constant to be 1.15, a smaller value (n=1.10) is used in
this study based on calculating the night time evaporation from the
VIC land surface model and compare it to its day time evaporation.
Results showed that the mean annual night time evaporation
evaluated to approximately 9.57% of the day time evaporation —

close to the7% suggested by Sugita and Brutsaert (1991). The (total)
daytime value of net radiation (different from the instantaneous
estimates mentioned in Section 2.2.3) is obtained using the Surface
Radiation Budget (SRB) dataset. The SRB dataset contains incoming
and outgoing SW and LW radiation at 1.0 degree resolution and 3-
hourly temporal scale. Soil heat flux at the daily time step is obtained
using the ISCCP dataset, as described in Section 2.2.6.

The interception losses (as described in Section 2.1.5 and
Appendix A) are added to the ET estimates, and finally we calculate
a daily value of sensible heat flux (W/m2) using the following
equation:

Hdaily = Rnet�daily−Gdaily−λ⋅ETdaily ð18Þ

3. Algorithm and data evaluation

The accuracy of the ET dataset depends on two (of the many)
factors: (a) The algorithms used to estimate ET and (b) the accuracy of
the input datasets. Previous studies have evaluated the output from

image of Fig.�4
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the SEBS model. Jia et al. (2003) evaluated the SEBS model output
using remote sensing inputs from Along Track Scanning Radiometer
(ATSR) by comparing the sensible heat flux estimates over three
different landscapes to that from a large aperture scintillometer (LAS).
They found the root mean square differences in the sensible heat flux
estimates of ~25 W/m2 (daily time scale). Su et al. (2005, 2007)
evaluated the SEBS models over local- and regional scales using eddy
flux tower data, MODIS and LANDSAT based remote sensing inputs
and data from North American Land Data Assimilation System
(NLDAS, Mitchell et al., 2004). When forcing the SEBS model with
the tower based inputs, the accuracy of the model estimates ranged
between 5 and 15%. However, when the model uses remote sensing
and reanalysis inputs, the errors increased significantly (up to 40%),
suggesting that the scale differences between the datasets affect the
comparisons. Su et al. (2005) also found that the difference between
the (instantaneous) remote sensing and tower based estimates can be
mainly attributed to the estimation of available energy — i.e. net
radiation minus soil heat flux.

The PM and PT approaches have been widely used for many years.
Although, the equations are well developed, many studies have
contributed to the parameterization of the surface conductance (see
Section 2 for more details). Not claiming completeness, some
evaluation of the approaches can be found in Allen et al. (2006),
Castellvi et al. (2001), Crago (1996), Debruin and Keijman (1979),
Gavilan et al. (2007), Green et al. (1984), Guo et al. (2007), Irmak et al.
(2005), Lhomme (1997), Liu and Lin (2005), Ortega-Farias et al.
(2004), Shuttleworth and Calder (1979), Stannard (1993), and Wang
et al. (2006).

Recently, Ferguson et al. (2010) performed a sensitivity study of ET
(PM-Mu estimates) based on an ensemble generation framework
using different remote sensing (input) datasets. They found that
although differences in the climatic variables contribute significantly
Fig. 5. Scatter plot (monthly mean) comparisons of (a) air temperature (Tair), (b) mass m
radiation (LWin), and (e) wind speed (WS), for years 2003 through 2006 over 12 flux tow
to the final ET uncertainty estimates, LAI and fractional vegetation
cover have the highest impact especially in the humid basins. Su et al.
(2005) using the SEBS retrieval algorithm found that the accuracy of
surface fluxes and ET estimates depends on the scale and represen-
tativeness of the input datasets. Fig. 5 presents for five ET input
variables (namely air temperature, mass mixing ratio, incoming
shortwave radiation, incoming longwave radiation, and wind speed)
scatter diagrams of remote sensing retrievals against observations
from 12 eddy-flux towers. (See Table 3 and Fig. 4 for the tower
locations.) We consider these are the most important variables that
affect the accuracy of our ET estimates. Although, vegetation
characteristics (like LAI, fc and NDVI) play an important role in the
ET estimation, continuous measurements at the tower sites are
unavailable. Among the five variables, the correlations (Kendall's τ)
between the remotely sensed and tower observations ranged from
0.17 to 0.83. The root mean square differences (RMSD) are also
provided. It is to be noted that incoming SW and LW radiation have
high RMSDs, many outliers and a consistent bias (see Fig. 5). These
input differences significantly affect the correlations between the
towers estimated and remote sensing estimated ET retrievals. The
Level-2 Ameriflux data (http://public.ornl.gov/ameriflux/) were used
for the instantaneous flux comparisons. Note that the above
comparisons are performed using instantaneous remote sensing
retrievals to the hourly observations over the towers.

4. Evaluation of the ET estimates

4.1. Local and regional scale comparisons

Fig. 6 shows the monthly mean scatter plots of Rnet, Gflux, Hflux and
LEflux between tower based (hourly scale) and the remote sensing
(instantaneous) estimates. Note that the tower data are available only
ixing ration (MMR), (c) incoming shortwave radiation (SWin), (d) incoming longwave
ers.

http://public.ornl.gov/ameriflux/
image of Fig.�5
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at hourly time periods and thus were matched with the remote
sensing based on the time of retrieval. Results show high scatter in the
all the four variables. As discussed in Section 3, the bias in the
incoming SW and LW radiation can be seen in the net radiation plot.
Although the net radiation estimates correlate well with the in situ
observations (τ=0.72), the bias (~125 W/m2) and the root mean
square difference (RMSD; ~132 W/m2) are higher, which we attribute
to differences in albedo, surface temperature (not shown) and other
spatial and temporal scale effects.

Comparisons between satellite retrieved latent heat flux and tower
measured values raises a number of challenges and issues, which
include the following. Firstly, the fluxes from remote sensing are
instantaneous retrievals while the reported (available) flux tower
data are normally aggregated over a 1-hour period. Our analysis of
high temporal resolution (5 min) tower flux data shows indicative
variability – especially near the EOS Aqua afternoon overpass –

probably due to boundary layer clouds – that result in fast responses
in the fluxes. Thus averaging the tower observations eliminates much
of this high frequency ‘noise’, resulting in reporting intervals that
range from 0.5 to 1 h (depending on site conditions and biome type).
Complicating a comparison with retrievals from polar orbiting
satellites is that the overpass times vary somewhat from orbit to
orbit. For the Aqua afternoon overpass, it varies between 1300 h to
1400 h local standard time. These temporal scaling problems pose a
major challenge to direct comparisons.

A second factor is the differences in spatial scales between the
satellite footprints and the tower footprint, and the heterogeneity of
the land surface within the satellite footprint (Kustas et al., 2004; Li et
al., 2008). As indicated in Table 2, the scale of the satellite inputs
ranged from 1 to 25 km, with most critical inputs at resolutions
Fig. 6. Monthly mean remote sensing estimates (a) net radiation (Rnet); (b) soil heat flux (
with ground observations from flux towers for years 2003–2006. Tower fluxes averaged ov
considering that the satellites overpass time varied quite significantly.
N101 km while the eddy flux tower, in contrast, has a foot print of
b100 km, with the towers usually located in homogeneous land cover.
To put these results into context, we consider the results of McCabe &
Wood, 2006 who analyzed the spatial scaling effects from using land
surface temperature inputs from Landsat (60 m), ASTER (90 m) and
MODIS (1020 m) with the SEBS algorithm for the Walnut Creek (IA)
catchment (area ~53 km2) that was the focus of the SMACEX'02
experiment. The landcover is a mix of corn and soybean, and they
analyzed satellite data obtained between 10:30 and 11:12 am on July
1, 2002. The spatial variability (standard deviation and coefficient of
variation (Cv) of the retrieved ET across the catchment from Landsat
(ASTER) was 97 W/m2 and 0.26 (103 W/m2 and 0.26). When the high
resolution remote sensing retrievals are averaged only to the
overlying MODIS pixel centered on one of the 14 flux towers in the
experiment, the within MODIS pixel variability (standard deviation
and coefficient of variation) for Landsat (ASTER) was 85 W/m2 and
0.23 (95 W/m2 and 0.24). Thus, it can be concluded that for conditions
where the radiation and meteorological conditions are homogeneous
and landcover is constant, the variability in ET retrieval becomes
stable somewhere just above 1 km with a Cv of about 0.25. In the
current study, the remote sensing inputs are coarser (1000 m),
suggesting that comparisons with single tower sites will always be
problematic.

A third, long addressed issue with tower data is the lack of energy
balance closure (see Twine et al., 2000 for an analysis of this problem).
To show the mean annual closure residual, we calculate the mean
closure ((LEflux+Hflux)/(Rnet−Gflux)) for all the towers (Table 3).
With these issues in mind and the differences observed between the
input datasets in Fig. 5, the comparisons observed in Fig. 6 can be put
into context. Ferguson et al., 2010 found that the uncertainties in
G-flux); (c) sensible heat flux (H-flux); and (d) latent heat flux (LE-flux), as compared
er the hour were used to compare with the instantaneous fluxes from remote sensing,

image of Fig.�6
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vegetation parameterization and surface temperature (the affect of
the latter on net radiation estimates) accounted for the maximum
impact on the accuracy of the ET estimates. All the three models
predict similar correlations for LE and H (instantaneous estimates),
with H estimates showing more uncertainty than the LE estimates.
Fig. 7. a. Time series comparisons of 3 process basedmodel ET (monthly total) estimates usin
estimates. b. Continued from Fig. 7a.
The instantaneous fluxes of latent- and sensible heat fluxes are
scaled to equivalent daily ET and daily sensible heat flux, respectively,
using the approach discussed in Section 3, and are further averaged
(or summed) to monthly for comparison to flux tower estimates.
Figs. 7 and 8 show the time series comparisons of the three remote
g remote sensing data. Observations from 12 eddy-flux towers are compared against the

image of Fig.�7
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sensing estimates of ET and Hflux to the tower fluxes. Level 4 (quality
checked and gap filled data) Ameriflux data were used for the current
comparisons. Table 4 presents the statistics of the comparisons at the
individual towers. The mean correlation (Kendall's τ) for all sites,
though the agreement varies for individual sites, is 0.51 (0.53), 0.55
Fig. 8. a. Time series comparisons of 3 process based model H-flux (monthly mean) estim
against the estimates. b. Continued from Fig. 8a.
(0.56) and 0.65 (0.53) for LE (H) from the SEBS, PM-Mu and PT-Fi
models respectively. The mean RMS differences (RMSD) between the
tower estimates of LE (H) ranged between 20 (35) and 27 (47) W/m2

between the three models which correspond to 4.53 and 5.90% of the
total annual evaporation across the towers.
ates using remote sensing data. Observations from 12 eddy-flux towers are compared
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Table 4
Statistics of estimated surface fluxes against the eddy-flux tower observations.

Tower Kendall's tau

Latent heat flux Sensible heat flux Biome type

SEBS PM-Mu PT-Fi SEBS PM-Mu PT-Fi

ARM 0.55 0.53 0.60 0.52 0.54 0.57 Croplands
AUD 0.51 0.27 0.37 0.54 0.55 0.51 Grasslands
BLO −0.11 0.22 0.72 0.70 0.68 0.63 Evergreen needleleaf forest
BON 0.77 0.61 0.71 0.45 0.45 0.41 Croplands
FPE 0.55 0.54 0.59 0.70 0.71 0.67 Grasslands
HAV 0.65 0.73 0.77 0.41 0.49 0.41 Deciduous broadleaf forest
MEA 0.77 0.69 0.67 0.40 0.43 0.34 Croplands
MMF 0.69 0.78 0.76 0.22 0.24 0.21 Deciduous broadleaf forest
NIW 0.32 0.55 0.71 0.56 0.59 0.64 Evergreen needleleaf forest
SYL 0.74 0.76 0.74 0.61 0.67 0.63 Mixed forests
TON 0.01 0.32 0.33 0.68 0.71 0.69 Woody savannas
UMBS 0.72 0.62 0.77 0.57 0.62 0.63 Deciduous broadleaf forest
Mean 0.51 0.55 0.65 0.53 0.56 0.53

Tower RMSD

Latent heat flux (W/m2) Sensible heat flux (W/m2) Biome type

SEBS PM-Mu PT-Fi SEBS PM-Mu PT-Fi

ARM 15.71 25.32 13.24 38.04 62.22 44.23 Croplands
AUD 19.89 20.10 18.75 21.98 39.74 21.83 Grasslands
BLO 58.53 56.23 32.65 55.37 53.76 37.01 Evergreen needleleaf forest
BON 20.98 33.74 24.84 40.08 53.75 44.24 Croplands
FPE 28.41 32.78 24.26 23.26 31.76 21.44 Grasslands
HAV 16.14 10.78 12.20 35.23 34.32 31.65 Deciduous broadleaf forest
MEA 29.09 32.79 27.60 45.85 52.37 44.16 Croplands
MMF 29.61 25.73 21.28 51.68 48.07 42.54 Deciduous broadleaf forest
NIW 33.57 31.52 13.48 42.35 40.06 20.75 Evergreen needleleaf forest
SYL 12.60 7.41 13.07 46.60 48.97 42.21 Mixed forests
TON 27.22 27.15 19.39 41.14 42.76 29.03 Woody savannas
UMBS 21.45 22.91 19.75 44.35 50.22 47.23 Deciduous broadleaf forest
Mean 26.10 27.21 20.04 40.49 46.50 35.53

Tower BIAS

Latent heat flux (W/m2) Sensible heat flux (W/m2) Biome type

SEBS PM-Mu PT-Fi SEBS PM-Mu PT-Fi

ARM 5.55 −20.22 −3.42 30.84 56.61 39.81 Croplands
AUD 13.86 −13.06 9.48 5.04 31.96 9.42 Grasslands
BLO −39.90 −39.03 −21.83 43.19 42.33 25.12 Evergreen needleleaf forest
BON −12.58 −28.71 −20.12 31.07 47.19 38.60 Croplands
FPE −2.66 −18.42 −5.63 9.60 24.46 12.42 Grasslands
HAV 6.23 1.83 6.52 21.29 25.69 21.01 Deciduous broadleaf forest
MEA −12.51 −24.04 −15.40 32.79 44.33 35.69 Croplands
MMF −14.28 −15.78 −9.74 38.28 39.77 33.73 Deciduous broadleaf forest
NIW −24.91 −25.08 −8.04 22.21 22.68 5.99 Evergreen needleleaf forest
SYL 4.57 0.42 6.67 40.54 44.70 38.44 Mixed forests
TON −12.40 −18.84 −0.45 25.53 31.98 13.58 Woody savannas
UMBS −3.91 −11.97 −9.50 35.38 43.43 40.97 Deciduous broadleaf forest
Mean −7.74 −17.74 −5.95 27.98 37.93 26.23
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While a few of our towers overlap with those used by Mu et al.
(2007), their observation period differs, which make comparisons
difficult. Nonetheless, the mean absolute difference in the RMSD and
bias statistics across the overlapping towers (BLO, BON, FPE, NIW,
TON, and UMBS), between the PM-Mu estimates from the current
study and Mu et al. (2007) estimates, are 5.20 W/m2 and 2.0 W/m2

respectively. Significant improvements in our PM-Mu based ET
estimates were found over the BON, NIW, and TON towers. Although
four of our towers match those used by Fisher et al., 2008, they did not
provide the RMSD and bias for individual towers and furthermore the
model was driven using in situ data.

Comparisons among the threemodels (Table 4) show the following
results. For croplands (ARM, BON and MEA towers), grasslands (AUD
and FPE towers) and woody savannas (TON tower), where the soil
evaporation plays a dominant role, PT-Fi and SEBS estimates of ET
showed the highest correlations against tower observationswhile PM-
Mu estimates ofHflux showed the highest correlations. Over croplands,
it is observed that the SEBS and PT-Fi estimates match well (high
correlation and lowbias; see Fig. 7a andb)with the tower observations
in winter time, there is a significant bias observed in the summer
months, which corresponds to the growing season. The three cropland
sites have a fetch which comprises of agricultural fields and thus have
high ET during the summer time. On the other hand, when a remote
sensingpixel is classified as croplands, it generallymeans that the pixel
is dominated (N50% of the region) by cropland.

TheRMSDandbias for all themodelswerewithin a small range.Over
dense canopy, e.g. evergreen needleleaf forests (BLO and NIW towers)
anddeciduousbroadleaf forests (HAV,MMFandUMBS towers), PT-Fi ET
estimates showed the highest correlations. One final observation
regarding the comparisons between the tower and remote sensing
observation is the difference in the bias estimates between the LE andH
flux estimates over the HAV, NIW and SYL towers. Although there is a
low bias (b7W/m2), for all the three models observed in the LE flux
estimates over theHAV and SYL towers, the sensible heatflux estimates
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are significantly different, with a range of 20–40W/m2 as compared
with the observations. A similar observation is observed over the NIW
tower for the PT-Fi estimates. One of the reasons, apart from the scale
differences, could be associated with the energy balance closures over
these towers. The closure estimates (Table 3) over these towers
(b=0.80) suggest that the sum of the turbulent heat fluxes (H+LE)
is less than the available energy (Rnet-G) which is a common
observation over eddy flux towers (Twine et al., 2000). Considering
the scale differences between the remote sensing estimates and tower
footprint, differences between the input datasets and the uncertainties
added by the temporal scaling (Ferguson et al., 2010), we conclude that
the remote sensing estimates from the three models provide realistic
quantification of the turbulent heat fluxes.

Energy balance residual could not be calculated using the Level 4
(gap filled and Ustar filtered records) Ameriflux data, due to the
unavailability (i.e. not reported) of net radiation, which is only
available in the Level 2 data).

4.2. Regional scale comparisons

The monthly remote sensing based ET estimates were also
compared across 26 global river basins using a water budget analysis.
Table 5 lists the 26 selected basins with the corresponding climatic
zones and gauge locations. Since no observational evaporation dataset
exists over the basins and observed basin discharge values are
unavailable for the 2003–2006 period, the remote sensing estimates
are compared to an inferred ET using the climatological values of
precipitation, Pclim, and basin discharge, Qclim as follows. The inferred
(climatological) ET is calculated as Einf=Pclim−Qclim, under the
assumption that over long time periods, the change in total water
storage (soilmoisture, lakes,wetlands, etc.) is negligible. The observed
climatological discharge values for the basins were obtained from
Global Runoff Data Center (GRDC) in Koblenz, Germany (Fekete et al.,
2002). Even though the dataset is referred to as observed climatology,
the data from each basin could range from a few years to up to
~100 years during the period 1901–2000. The time period (considered
for the climatological product) for each basin is reported in Table 5.
According to the station list catalogue reported byGRDC, only 11 out of
the above 26 basins have reported data beyond year 2000, and only 4
Table 5
Selected river basins for basin scale comparisons of ET.

River basin Gauge location Climate

Amazon Obidos, Brazil Tropical
Mississippi Vicksburg, USA Mid-latitude rainy
Ganges Paksey, Bangladesh Mid-latitude rainy
Niger Gaya, Niger Semi-arid (north) tr
Murray-Darling Lock 9, Australia Semi arid
Amur Komsomolsk, Russia Arctic
Mekong Pakse, Laos Tropical
Brahmaputra Bahadurabad, Bangladesh Mid-latitude rainy
Changjiang Datong, China Mid-latitude rainy
Danube Drobeta-Turnu Severin, Romania Mid-latitude rainy
Lena Kyusyur, Russia Arctic
Mackenzie Norman Wells, Canada Arctic
Ob Salekhard, Russia Arctic
Olenek D/S of Pur River, Russia Arctic
Parana Corrientes, Argentina Mid-latitude rainy
Pechora Ust-Tsilma, Russia Arctic
Severnaya Dvina Ust-Pinega, Russia Arctic
Volga Volgograd, Russia Mid-latitude rainy
Xi Jiang Wuzhou, China Mid-latitude rainy
Yana Dzanghky, Russia Arctic
Yenisei Igarka, Russia Arctic
Yukon Ruby, United States Arctic
Senegal Bakel, Senegal Arid hot/tropical
Indigirka Vorontsovo, Russia Arctic
Irrawaddy Sagaing, Myanmar Mid-latitude rainy
Kolyma Sredne-Kolymsk, Russia Arctic
beyond year 2003. The climatological data product is yet to be updated
with data beyond year 2000.

To match the climatological product, we calculate a mean annual
precipitation using the GPCC precipitation data for 100 years (1901–
2000). Both the precipitation and runoff products are available at a 1°
spatial resolution, so the three remote sensing based ET estimates
were linearly scaled from 5 km to 1° using a box-averaging method,
where N50% of the grid cells under a 1° domain are needed to upscale
the estimates. The mean precipitation for the 100 years is compared
(Fig. 9a) to the mean precipitation for 2003–2006. This comparison
shows that the variability in precipitation was small with tau=1.0
and RMSD of 52 mm/year. We thus assume that the runoff ratio is not
much different, ignoring any water management changes, for the two
time periods (2003–2006 and 1901–2000). With that we compare the
basin average estimates of remotely sensed ET to the inferred ET
estimates (Fig. 9b), with tau ranging from 0.72 to 0.80; RMSD of 118 to
194 mm/year and bias ranging from −132 to 53 mm/year. RMSD
(bias) found in the remotely sensed estimates is approximately 34%
(10%) of the estimated mean annual (2003–2006) ET across the 26
basins. Results also show that the SEBS, PM-Mu and PT-Fi estimates
complement each other across the basins, suggesting an opportunity
for a multi-model ET estimate.

To put the remote sensing estimates into context, ET estimates
(Sheffield andWood, 2007) from theVIC land surfacemodel (Cherkauer
et al., 2003; Liang et al., 1994, 1996) and the ERA-interim reanalyses
model (Simmons et al., 2007; Uppala et al., 2008) are also compared in
Fig. 9b to the inferred ET estimates, with comparable values (τ=0.72–
0.89; RMSD ranging from 104 to 194 mm/year and bias −132 to
115 mm/year). Although VIC and ERA-interim showed high correlation
and lowRMSD,highbiaseswere found in their estimates as compared to
the inferred ET estimates. Analysis of the low-bias in theVICevaporation
estimates are due to high model estimates of basin discharge, which is
being resolved through new global calibrations (Sheffield, personal
communication). The ERA-interim estimates are consistentwith results
obtained by Betts et al. (2009), who compared the hydrometeorology of
threeAmerican river basins (Amazon,Mississippi andMackenzie rivers)
against observations. Comparisons over the Mississippi and Mackenzie
River basins showed that the ERA-interim estimates were higher than
the observations. These high values, which are consistent over all the
Upstream area (km2) GRDC time period

4,618,746 1928–1998
2,964,254 1928–1983
1,000,000 1969–1975

opical savannah (south) 940,050 1952–1990
1,000,000 1965–1984
1,730,000 1932–1990
545,000 1980–1991
636,130 1969–1992

1,705,383 1922–1988
576,232 1971–1983

2,430,000 1934–2000
1,570,000 1943–1996
2,430,000 1930–1999
198,000 1965–1999

2,300,000 1904–1983
248,000 1932–1998
348,000 1881–1999

1,360,000 1879–1984
329,705 1915–1986
216,000 1938–1989

2,440,000 1936–1999
670,810 1956–1984
218,000 1904–1989
305,000 1936–1998
117,900 1978–1988
361,000 1927–2000



Fig. 9. (a) Comparison of the 100 year (1901–2000) precipitation climatology to the 4 year (2003–06) climatology over the 26 selected basins; (b) Annual ET comparisons over the
26 selected basins.
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basins, are clearly seen in the scatter plot of Fig. 9b. Observational
datasets for the Amazon basin are unavailable for the time period
analyzed by Betts et al. (2009). Table 6 shows the comparisons of the
basin scale ET estimates from the various models.

4.3. Continental/global scale comparisons

Global validation of evapotranspiration is problematic, considering
that no observations are available at these spatial and temporal scales.
The remote sensing ET products can be assessed at a global scale using
the same approach as in Section 4.2 for the large basins. Since observed
discharge into the oceans from the global land area is unavailable, a
GRDC composite runoff product (Fekete et al., 2002) is used. This
product is based on a combination of the GRDC observations from over
1000 basins and a simple water balance model that extrapolates from
the gauges basins to ungauged areas. As before, the remote sensing ET
estimates, and estimates from VIC and ERA-interim, are compared to
an inferred ET which is based on a (P-Q) climatology.

Fig. 10a shows the global latitudinal profiles, averaged for the
years 2003–06, for the six evaporation datasets. A corresponding
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Table 6
Comparison of the modeled and inferred ET estimates over the 26 basins.

River basin inf-ET SEBS PM-Mu PT-Fi VIC ERA

Amazon 1041.75 1188.04 1080.16 913.58 969.73 1244.93
Mississippi 554.16 411.17 247.69 393.69 526.84 688.44
Ganges 739.58 823.44 307.25 528.19 405.43 855.47
Niger 593.21 621.36 249.70 496.89 439.19 526.25
Murray-Darling 459.54 332.33 357.59 711.30 370.76 449.08
Amur 366.34 345.63 228.70 350.42 298.66 430.32
Mekong 757.01 983.90 567.69 661.27 642.92 933.84
Brahmaputra 435.67 773.81 299.84 422.82 245.64 593.86
Changjiang 531.72 875.71 403.29 590.93 399.46 736.80
Danube 535.71 371.46 278.43 385.44 470.67 616.18
Lena 157.11 224.68 157.67 210.79 175.50 281.74
Mackenzie 233.02 231.35 154.76 247.85 198.29 336.42
Ob 308.80 293.72 203.34 324.69 239.12 392.79
Olenek 116.43 230.90 163.41 113.23 92.55 216.95
Parana 1004.40 649.80 595.12 673.44 943.43 1107.24
Pechora 120.40 257.79 187.66 214.61 182.91 270.53
Severnaya Dvina 327.29 226.97 196.05 244.68 290.24 389.79
Volga 392.14 295.27 228.14 321.24 317.16 468.36
Xi Jiang 705.80 1201.78 498.51 698.36 574.00 938.14
Yana 82.43 65.22 35.43 25.41 106.01 197.57
Yenisei 180.08 277.41 174.90 265.50 222.89 351.61
Yukon 109.51 274.72 177.37 217.17 94.72 267.58
Senegal 751.53 643.03 391.94 848.37 633.81 824.44
Indigirka 71.44 143.83 58.90 50.22 78.08 202.29
Irrawaddy NaN 942.60 552.07 626.46 612.63 882.50
Kolyma 98.08 258.89 139.91 137.93 115.32 229.79
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scatter plot of the latitudinal band estimates of the models versus the
(P-Q) inferred estimates is shown in Fig. 10b. The three remote
sensing estimates (SEBS, PM-Mu and PT-Fi) fall within the range of
VIC and ERA-interim estimates with high tau (≥0.80) and lower bias
as shown in Fig. 10b. It is our contention that the P-Q climatology, as
an estimate for large basin and global ET over this period, is the best
available estimate for evaluating our remote sensing estimates.
Fig. 10. (a) Global latitudinal profiles of annual ET; (b) Comparison of the latitudinal profiles
per latitude band.
Remote sensing estimates from PT-Fi model show suppressed ET
estimates between 12°S and 12°N latitudes. It was found by Mu et al.
(2007) that the NDVI estimates exhibit scaling issues and saturated
signals (owing to cloud cover) in the tropics where the land cover
corresponds to high biomass conditions. These NDVI estimates are
used by Ganguly et al. (2008) to create the global LAI dataset used in
the current study, which we believe underestimates LAI due to this
saturation. Furthermore, remote sensing estimates of LAI are usually
lower than ground based measurements due to the lack of a clumping
parameterization in the LAI models (Garrigues et al., 2008; Law &
Waring, 1994). Since LAI estimates directly affect evapotranspiration
estimates through the surface conductance (or resistance), parame-
terization, and evaporation of intercepted precipitation, which scales
with LAI, an underestimation of LAI over the tropics will have the
impact seen in Fig. 10a. The impact of intercepted precipitation on
evaporation can be very high given the high precipitation rates over
the tropical forests. We are unable to estimate the magnitude of this
error from this source at this time. At this point, we find that the PT-Fi
model gets most affected by the saturation of NDVI (and LAI),
considering that the other two models do not use NDVI as an input.

Zonal monthly Hovmöller diagrams of total evapotranspiration
over six continents are presented in Fig. 11. Antarctica is excluded
from our current analysis. Here the total ET represents the average of
the three models. Fig. 11 shows clearly the seasonal cycle of ET across
the four year period, with some evidence of drought events across the
continents. Some examples include the heat wave in Europe (July–
August 2003), and the droughts over Amazon River basin (ARB; July–
September 2005) and over the Australia (January–April 2005).
Further analysis of the above events (not shown) revealed that the
ET estimates were sensitive to the precipitation amounts, particularly
in the water limited regions of Europe and Australia. The P-ET
estimates (not shown) show values close to or below zero for the
respective periods, thus confirming the droughts in the regions, and
over the Amazon basin, we found reduced precipitation during the
previous wet season, reduced ET duringMarch–December period (see
of annual ET from 5 models to the inferred ET. Horizontal bars show the fraction of land
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Fig. 11. Hovmöller diagram (monthly timescale) of the mean (of the 3 models used in the current study) evapotranspiration (mm/month) for the 6 continents.
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Fig. 11) and negative values of P-ET for July–September 2005 — all
indicators of drought throughout the basin.

Fig. 12 presents the interannual variation in ET as estimated by the
SEBS, PM-Mu and PT-Fi algorithms. Although, a high spatial
(Pearson's) correlation (N0.87) exists among the three model
estimates, there exist differences among the estimates as was pointed
out earlier (Fig. 10). More specifically, the PM-Mu algorithm provides
a lower estimate for ET compared to SEBS and PT-Fi models. Some
examples are over central Asia, Australia, Europe and western US.
During the course of the comparisons, we found (not shown) that
over water limited regions the ET estimates were not sensitive to the
soil moisture dynamics of the region. Although relative humidity and
thus vapor pressure deficit, along with vegetation characteristics, are
assumed to reflect the dynamics of the soil moisture, Ferguson and
Wood (in preparation) suggest that the degree to which soil moisture
controls VPD varies as a function of dryness. The differences between
the three process based ET estimates and their sensitivity to soil
moisture are being investigated as part of the GEWEX Landflux
initiative and will be the focus of a subsequent paper.

5. Summary and conclusions

The goal of the study was to develop a global dataset of
evapotranspiration for climate studies using primarily NASA Earth
Observing System remote sensing data. We use remote sensing
datasets obtained from various sensors (AIRS, AVHRR, CERES and
MODIS onboard the NASA Aqua (EOS PM-Mu) and NOAAAVHRR polar
orbiting satellites. Three process based models (Surface Energy
Balance System — SEBS (Su, 2002); Penman–Monteith based
algorithm — PM-Mu (Mu et al., 2007); and Priestley–Taylor based
approach — PT-Fi (Fisher et al., 2008) were used to generate global
instantaneous fluxes for the years 2003–2006. The instantaneous
fluxes are then scaled to a daily value using the assumption of
constant evaporative fraction over the day. The daily net radiation for
the temporal scaling is obtained from the Surface Radiation Budget
(SRB) dataset.

Evaluation of the coarse resolutions ET data has been an ongoing
concern (Kalma et al., 2008) considering the fact that no robust
methods or datasets exist at regional scales. To account for such
issues, we evaluate our dataset at three different scales. First, the
instantaneous fluxes are compared with eddy-flux observations from
12 towers, across the continental USA. Results show good agreement,
with correlations of 0.43–0.54 in the instantaneous LE fluxes, between
the remote sensing and tower fluxes, considering the various
uncertainties that exist between input datasets due to spatial and
temporal scaling issues. The daily ET values, summed up to themonthly
scale, are compared with 12 flux towers with the results showing good
correlations (0.51–0.65) and errors (RMSD: 20–27W/m2) within the
expected range, again given input and scaling uncertainties. The scale
mismatch between ET estimates based on remote sensing and tower
observationsmakes their comparisons difficult and theevaluation of the
remotely sensed estimates challenging. McCabe and Wood (2006) is
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Fig. 12. Global annual ET for years 2003 through 2006.

819R.K. Vinukollu et al. / Remote Sensing of Environment 115 (2011) 801–823
perhaps the only research that has investigated the impact of errors in
ET retrievals due to the scale of the remote sensing inputs, and the
results of our study suggests that additional work along the lines of
McCabe andWood (2006) is required to better understand the errors in
‘climate-scale’ ET estimates as called for by the GEWEX Landflux
initiative.

The second range of comparisons is carried out at spatial scales of
N104 km2 and at monthly to annual temporal scales. The basin scale
comparisons indicate that the remote sensing estimates agree well
with inferred evaporation calculatedusing climatological precipitation
and basin discharge. The remote sensing estimates represent well,
with correlations of 0.72–0.79 across the three model estimates, the
basin scale inferred ET estimates. We find that the three models
complement each other over basins across 6 climatic zones and varied
vegetation types. This suggests the prospect for amulti-model analysis
(e.g. Vinukollu et al., 2010) of remote sensing based ET estimates,
which is planned as part of the on-going GEWEX Landflux study.

The third evaluation scale is a global comparison using latitudinal
profiles. At this scale, the remote sensing estimates, when compared
to the inferred ET from a (P-Q) analysis had higher Kendall's tau
(0.80–0.85) and lower bias (mean bias ~−23 mm/year) than the
estimates from land surface and reanalysis models (VIC and ERA-
interim). We further extend the analysis over six continents by
plotting Hovmöller diagram of mean evapotranspiration from
averaging the three model estimates for 2003–2006. The seasonal
cycle over the continents is well represented and the suppression of
ET during major droughts in Europe, Australia and the Amazon are
picked up. Nonetheless, the models, as formulated, appear to under-
represent the sensitivity to soil moisture over water limited regions.
The sensitivity of the ET estimates to the various input forcings and
furthermore soil moisture is being investigated by the authors in a
subsequent study. Overall, this points out the importance of analyzing
the hydrological consistency of ET along with other water and energy
budget components to further improve our understanding of coupled
dynamic systems (McCabe et al., 2008b).

A primary focus of GEWEX and the NASA Energy and Water
System (NEWS) study is to provide a quantitative description of water
cycle variables over multiple decades. Although many variables
pertaining to radiation, clouds, water vapor, precipitation, surface
air temperature, river discharge, etc. are available for 20+years, a
need still exists to produce a global, multi-decadal land surface
turbulent heat flux data product — the focus of the GEWEX Landflux
project. The current study is a step in this direction, where we
retrieved and analyzed a four years (2003–06) ET data set based on
high quality NASA Earth Observing remote sensing products. Most of
the remote sensing data for the current study is from sensors onboard
the NASA Aqua satellite. A future step is to retrieve the turbulent heat
fluxes using the global data compiled under the International Satellite
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Land Surface Climatology Project (ISLSCP) as a contribution to the
GEWEX Landflux initiative.
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Appendix A. Methodology to calculate interception losses

A.1. Nomenclature

Fc Fractional vegetation cover (amount of grid covered with
vegetation)

f fraction of vegetation in the vegetated part of the remote
sensing grid

LAI Leaf Area Index
n fraction of precipitation that hits the ground un-inter-

cepted, i.e. free throughfall
Smax(t) Maximum storage capacity at time t
Sc(t) Minimum quantity of precipitation required to attain

canopy saturation at time t
S(t) Actual storage at time t
Tdrip(t) throughfall (leaf drip) at time t
E(t) Actual (canopy) evaporation at time t
Ep(t) Potential (canopy) evaporation at time t

A.2. Procedure

1. Calculate the vegetation fraction, f and free throughfall fraction, n:

f = 1−exp −0:5⋅LAIð Þ½ �

(Kustas & Norman, 1996)

n = 1−f

2. Calculate the maximum storage capacity of the canopy, Smax.
Literature has revealed that this is a variable is a function of the
leaf area index. However there are various empirical relationships
that have been developed based on the biome type. See de Jong
and Jetten (2007) for a detailed review of this parameter. For the
current study, we consider the relationship developed by Brisson
et al. (1998) which is also used in the Variable Infiltration
Capacity land surface model.

S max tð Þ = 0:2LAI

3. Calculate the value of the actual storage at time t, S(t):

S tð Þ = MIN S max tð Þ; S t−1ð Þ + 1−nð ÞP tð Þ½ �
4. Calculate the throughfall, i.e. the water that drains from the
leaves, at time t, Tdrip(t):

Tdrip tð Þ = MAX S′ t−1ð Þ + 1−nð ÞP tð Þ−S max tð Þ;0� �

5. Calculate the saturation capacity of the canopy at time t, Sc(t):

Sc tð Þ = Fc⋅S max tð Þ 1−e−P tð Þ=S max tð Þh i

(Kozak et al., 2007; Merriam, 1960)
6. If the actual storage is less than the saturation capacity of the

canopy, then we assume that there will be no throughfall, i.e.

if S′ tð Þ b Sc tð Þ� �
; thenTdrip tð Þ = 0

7. Calculate the potential evaporation, Ep(t), based on Priestley–
Taylor algorithm:

Ep tð Þ = α
Δ

Δ + γ
Rnet�veg

8. If the actual storage is less than the saturation capacity of the
canopy, then we scale the canopy evaporation, E(t), as follows:

E tð Þ = S′ tð Þ
Sc tð Þ :Ep tð Þ

Otherwise,

E tð Þ = Ep tð Þ

9. When the canopy is completely saturated, i.e. S(t)≥Sc(t), we
assume that the evapotranspiration process ceases,

ET tð Þ = 0

For S(t)bSc(t), we use the following expression for calculating the
evapotranspiration (ET).

ET′ tð Þ = 1− S tð Þ
Sc tð Þ

� �
ET tð Þ

Note that the evapotranspiration, ET(t), is obtained from the three
process models used in the current study, namely SEBS, PM-Mu
and PT-Fi. Also it is to be noted that above value of ET is only over
the vegetated part of the grid.

10. At the end of each time step, we revisit the actual storage by
subtracting the canopy evaporation and throughfall, and pass the
actual storage to the next time step:

S″ tð Þ = S′ tð Þ−E tð Þ−Tdrip tð Þ
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