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A B S T R A C T

Land surface models range in complexity of terrestrial evapotranspiration, yet it is unknown how model com-
plexity translates to accuracy of modeled evapotranspiration estimates. Here, we use the International Land
Model Benchmarking system to assess ET estimates from three models of varying complexity driven by the same
forcing datasets: an earth system model, a terrestrial biosphere model, and a stand-alone ET model. The per-
formance assessment includes both temporal and spatial evaluation, and different plant functional types across
China. Our results indicate that the most complex model, an earth system model, performed best against the
benchmarking datasets and metrics. Terrestrial biosphere model performed best in simulating inter-annual
variability of ET, while earth system model performed best in simulating the seasonal cycle. The more complex
models (earth system model and terrestrial biosphere model) perform better in forest, shrub and crop ecosys-
tems, while the simpler model (stand-alone ET model) perform better in grass ecosystems. Our study demon-
strates the impact of model complexity on ET estimates and highlights directions for future ET model im-
provements.

1. Introduction

Evapotranspiration (ET) is a key component of the global water
budget and is crucial to agriculture and water management, the sus-
tainability of ecosystems, and the water and carbon exchanges between
land and atmosphere (Fisher et al., 2017). However, the estimation of
large-scale ET from ground-based measurements alone remains chal-
lenging due to the sparse network of point observations and the high
spatial and temporal variability of ET (Lu et al., 2017). To address this
limitation, various terrestrial ET models have been developed (Jiménez
et al., 2011; McCabe et al., 2016; Mueller et al., 2011; Vinukollu et al.,
2011).

Terrestrial ET models play a vital role in diagnosing and predicting
global water fluxes and in evaluating the impacts of changing climate
(Mao et al., 2015). In recent years, a variety of physical process models
have been developed to estimate the spatial distribution of evapo-
transpiration (ET) at various scales ranging from the stand scale to
global. From empirical and semi-empirical method (i.e. Jackson model,
Priestley-Taylor model) to physical processed method (i.e. Shuttle-
worth-Wallace model, Community Land Model), much progress has
been made incorporate more physical processes into ET simulations
(Bonan et al., 2013; Jackson, 1985; Priestley and Taylor, 1972;
Shuttleworth and Wallace, 1985). In addition, some statistic and ma-
chine learning methods were used to improve ET models performance
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and accuracy (Adnan et al., 2020; Alizamir et al., 2020). As ET models
become increasingly complex and the number of model parameters
rapidly expands, there is a growing need for a comprehensive and
multifaceted evaluation of the performance of models of different levels
of complexity (Haughton et al., 2016; Hogue et al., 2006). In this study,
“complexity” is defined in terms of the number of process-related
variables and parameters and the hierarchy of model structure. In ter-
restrial ET models, for example, the Priestley-Taylor model (Priestley
and Taylor, 1972)—a simplification of the Penman-Monteith equation
(Monteith, 1965)—requires less forcing data and thus does not consider
explicitly the impact of vapor pressure deficit (VPD) or canopy re-
sistance. This method is convenient to use in the absence of detailed
meteorological measurements. By contrast, the Penman-Monteith
model and the Shuttleworth-Wallace model (Shuttleworth and Wallace,
1985) consider complex biogeochemical and biogeophysical land sur-
face processes and therefore require more meteorological measure-
ments and parameters (Fisher et al., 2011). Specifically, the Shuttle-
worth-Wallace model partitions ET into soil water evaporation and
plant transpiration and contains more complexity estimation of ET
processes.

In recent decades, earth system models (ESM) which simulate bio-
geochemical processes on the land surface, which are fully coupled with
physical climate simulations, have been developed rapidly and widely
used (Bonan and Doney, 2018). Meanwhile, the estimation of the
physical-process variables of an ESM such as ET is becoming increas-
ingly comprehensive and sophisticated. Compared to other terrestrial
ET models, ESM require higher temporal-spatial resolution forcing data
and physical parameters (Mueller et al., 2013). Although more com-
plicated ET models can provide more details involved in atmosphere-
terrestrial water exchange, they are also potentially prone to greater
uncertainties propagated from other related processes (Orth et al.,
2015). There remains a lack of knowledge on the optimal complexity of
ET models on the regional scale.

Model benchmarking has emerged as an effective approach to
evaluate model performance relative to multiple observational con-
straints as well as other models (Collier et al. 2018). Most recently, the
International Land Model Benchmarking (ILAMB) System (Collier et al.,
2018; Luo et al., 2012; Stofferahn et al., 2019), the ESM Evaluation
Tool (Eyring et al., 2016), the Program for Climate Model Diagnosis and
Intercomparison Metrics Package (Gleckler et al., 2016) and other
benchmarking system were created to explore land surface model in-
tercomparison and facilitate internationally accepted benchmarks
(Schwalm et al., 2013).

The aim of this paper is to leverage the ILAMB benchmarking tool to
assess the performance among three terrestrial ET models with various
levels of complexity at the regional scale (Polhamus et al., 2013).
Taking China as an example research area, these objectives are ac-
complished by evaluating the performance of three ET models of

varying levels of complexity for: 1) inter-annual and seasonal variation;
2) spatial variation; and, 3) different plant functional types (PFT). To
facilitate the comparison, we used the same forcing datasets for each of
the three ET models, in order to limit the uncertainty of the forcing data
(Badgley et al., 2015) and focus on the effect of model complexity.

2. Methodology

2.1. ILAMB description

As land surface models become increasingly complex and observa-
tional data volumes rapidly expand, there is a growing need for com-
prehensive and multifaceted evaluation of model fidelity. Building on
past model evaluation work (Randerson et al., 2009), Luo et al. (2012)
and Collier et al. (2018) developed an extensible model benchmarking
package in support of the goals of the International Land Model
Benchmarking (ILAMB) activity. The ILAMB benchmarking system
compares model estimates against the best-available observations and
observation-based extrapolations, including atmosphere CO2 con-
centrations, surface fluxes, hydrology, soil carbon and nutrient bio-
geochemistry, ecosystem processes and states, and vegetation dy-
namics.

To evaluate the differences between reference and model datasets, a
variety of statistical approaches have been adopted, including calcula-
tions of bias, root-mean-square error (RMSE), phase, amplitude, spatial
distribution, Taylor diagrams and scores, functional relationship me-
trics, and perturbation and sensitivity tests. Bias is calculated as follows:

=bias v vx x x( ) ( ) ( )mod ref (1)

The variable x is spatial domain which represents the areas created
by cell boundaries or the areas connected with data sites. v x( )mod is the
mean value over time of a modelled dataset. v x( )ref is the mean value
over time of a reference dataset. We then nondimensionalized the
biases into a relative error using the centralized RMS (Root Mean
Square) of the reference dataset following Eq. (2):

=x t x x tcrms( ) 1
t t

(v ( , ) v ( )) d
f 0 t

t
ref ref

2
0

f

(2)

The variable t is the temporal domain which is defined by the be-
ginning and end of studied period. The relative error in bias is:

=x x x( ) |bias( )|/crms( )bias (3)

The bias score as a function of space is:

=xs ( ) e x
bias

( )bias (4)

And the scalar score

= xS s ( )bias bias
Ì¿

(5)

Nomenclature

DBF deciduous broadleaf forest
DNF deciduous needleleaf forest
DOLCE Derived Optimal Linear Combination Evapotranspiration
E3SM Energy Exascale Earth System Model
EBF evergreen broadleaf forest
ELM Energy Exascale Earth System Model Land Model
ENF evergreen needleleaf forest
ESMs earth system models
ET evapotranspiration
GLEAM Global Land Evaporation Amsterdam Model
GSWP3 Global Soil Wetness Project Phase 3
IAV inter-annual variability
ILAMB International Land Model Benchmarking

MF mixed forest
NDVI Normalized Difference Vegetation Index
PFT plant functional types
PM plateau and mountain climate
PT-JPL Priestley Taylor-Jet Propulsion Laboratory
r correlation
RMSE root mean square error
Rn net radiation
SC seasonal cycle
SD standard deviation
SM subtropical monsoon climate
SWH Shuttleworth Wallace Hu
TC temperate continental climate
TM temperate monsoon climate
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that is, the spatially integrated bias score. RMSE over the period of the
reference dataset is estimated as follows:

=x t x t x tRMSE( ) 1
t t

(v ( , ) v ( , )) d
f 0 t

t
mod ref

2
0

f

(6)

To score the RMSE, we use the methods similar to Eqs. (2)–(5).
Please refer to Collier et al. (2018) for more details. ILAMB evaluates
the phase shift of the annual cycle of data sets that have intra-annual
variability by comparing the timing of the maximum value in a year, c
(v) within each. Then, we approximate the phase shift from the re-
ference to model data sets by subtracting their respective c(v),

=x t x t x( ) argmax(c ( , )) argmax(c ( , ))
t

mod
t

ref (7)

As the units for phase shift are consistent across all variables, no
normalization is needed and we can remap the shift to the unit interval
by

= +x xs ( ) 1
2

(1 cos( 2 ( )
365

))phase (8)

And the scalar score is:

= xS s ( )phase phase
Ì¿

(9)

The score for the inter-annual variability is calculated by removing
the annual cycle from both the reference and the model,

=x t x t xiav ( ) 1
t t

(v ( , ) c ( , )) dtref
f 0 t

t
ref ref

2
0

f

(10)

=x t x t xiav ( ) 1
t t

(v ( , ) c ( , )) dtmod
f 0 t

t
mod mod

2
0

f

(11)

=x x x( ) (iav (x) iav ( ))/iav ( )iav mod ref ref (12)

and then computing a score as a function of space,

=xs ( ) e x
iav

( )iav (13)

The scalar score is estimated by:

= xS s ( )iav iav
Ì¿

(14)

To score the spatial distribution of the time averaged variable by
generating a Taylor diagram (Taylor, 2001), we estimate the normal-
ized standard deviation,

= x
x

stdev(v ( ))
stdev(v ( ))

mod

ref (15)

and the spatial correlation R of the period mean values v x( )mod and
v x( )ref , and then assigning a score by the following relationship

= +
+

RS 2(1 )
( )

dist 1 2 (16)

where the main idea is that we penalize the sore when R and σdeviate
from a value of 1. The overall score for a given variable and data
product is a composite of the suite of metrics defined above. We use a
weighted sum,

=
+ + + +

+ + + +
S

S 2S S S S
1 2 1 1 1overall

bias rmse phase iav dist

(17)

where the RMSE score is doubled to emphasize its importance. In ad-
dition, we show the relative score (i.e., Z score), indicating which
models or model versions perform better with respect to others con-
tained in the overall analysis. More details of the underlying metrics are
available in Collier et al. (2018).

2.2. Data sets

To quantify and explain uncertainties and scale mismatches

between reference datasets and model datasets, the ILAMB system de-
veloped a two-element rubric to weight each dataset (Table 1). The first
weight of the datasets indicates the presence of quantitative uncertainty
in the measurements themselves. A second weight reflects spatial and
temporal coverage of the datasets. The reference datasets in ILAMB
include in-situ observations (FLUXNET data), observation-satellite-me-
teorological ensemble data (FLUXCOM), multi ET product ensemble
data, and remotely sensed data. As the aim of the ILAMB system is to
evaluate model performance at the regional and decadal scales, users
can give more weight to global products which have longer time series.
The weights are combined multiplicatively to assign a total weight to
each dataset. The weight for a given variable is then normalized relative
to the sum of the weights of all the datasets for that variable (Eq. (18)).

In this study, we used four datasets to benchmark ET: FLUXNET,
FLUXCOM, DOLCE, and GLEAM. Note that the FLUXCOM product was
not used in inter-annual variability evaluation because it is known to
poorly represent inter-annual variability (Jung et al., 2019). We assign
the certainty weight and the scale weight as 3 and 5, respectively, for
both the FLUXCOM and GLEAM datasets according to Collier et al.
(2018). In addition, we assign the same weight for the FLUXNET and
DOLCE dataset in order to more objective assessment (Table 1). For
example, the normalized total weight of the FLUXNET dataset for the
ET variable is estimated as:

= ×
× + × + × + ×

w 3 5
3 5 3 5 3 5 3 5

25%FLUXNET
ET

(18)

The in-situ data used in this study were obtained from 12 FLUXNET
sites in China (Fig. 1): the Changbaishan temperate broad-leaved mixed
forest (CN-Cha), Changling grassland (CN-Cng), Dangxiong alpine
meadow (CN-Dan), Dinghushan subtropical evergreen broad-leaved
forests (CN-Din), Duolun grassland (CN-Du2), Haibei alpine shrub
wetland (CN-Ha2), Haibei alpine meadow (CN-Ha2), Qianyanzhou
evergreen needleleaf forests (CN-Qia), Siziwang Grazed grassland (CN-
Sw2), Yucheng cropland (YC), NeiMeng temperate grassland (NM),
Xishuangbanna evergreen broadleaf forest (XSBN). Eddy covariance
flux data of the 12 sites were extracted from the Tier 1 Subset product
(FLUXNET2015 Dataset), which was downloaded directly from the
FLUXNET website (http://FLUXNET.fluxdata.org/) and from China-
FLUX (http://www.chinaflux.org/). Detailed descriptions are available
in Table 2.

To assess the performance among three levels of complexity ter-
restrial ET models in different plant functional types (PFT), we used
vegetation classification data (Fig. 1) provided by Environmental and
Ecological Science Data Center for West China, National Natural Sci-
ence Foundation of China (http://westdc.westgis.ac.cn). The datasets
are based on the results of vegetation field investigation from 1949 to
2000, satellite images, soil data and meteorological data.

2.3. ET model descriptions

To limit the uncertainty of the forcing data and focus on the effect of
different model complexity, we used the same meteorology datasets
from 1980 to 2010 (GSWP3, https://www.isimip.org/gettingstarted/
details/4/) and satellite remote sensing datasets (Normalized
Difference Vegetation Index (NDVI) GIMMS product, https://glam1.
gsfc.nasa.gov/) to run the three models. The simplest ET model is the

Table 1
References and weighting of evapotranspiration (ET) data sets used to blend the
overall score.

Reference datasets Certainty Scale Source

FLUXNET 3 5 Pastorello et al. (2017)
FLUXCOM 3 5 Jung et al. (2019)
DOLCE 3 5 Hobeichi et al. (2018)
GLEAM 3 5 Martens et al. (2018)
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Priestley Taylor-Jet Propulsion Laboratory (PT-JPL) model which is
developed from Priestley-Taylor model (Fisher et al., 2008; Priestley
and Taylor, 1972). The PT-JPL model incorporates a variety of data
sources from meteorological data (i.e., net radiation (Rn), air tem-
perature, vapor pressure) and satellite observations (NDVI, visible
spectrum reflectance, near-infrared spectrum reflectance). We use the
Shuttleworth-Wallace-Hu (SWH) model as a representative of inter-
mediate complex models (Hu et al., 2013; 2017), which is developed
based on the Shuttleworth-Wallace model and coupled light use effi-
ciency model (Shuttleworth and Wallace, 1985). Meteorological data
(i.e., air temperature, precipitation, relative humidity, wind speed, and
Rn) and satellite products (i.e., NDVI) are the forcing data for the SWH
model. We used the version 1 of the Energy Exascale Earth System
Model (E3SM) Land Model (ELMv1) as a representative of the most
complex ET model, which was branched from the version 4.5 of the
Community Land Model (CLM4.5; Oleson et al. (2013)) with a specific
version tag 4_5_71 (Cai et al., 2019). The forcing fields include surface

air temperature, precipitation, wind speed, relative humidity, surface
pressure, incoming solar radiation, and incoming longwave radiation
(Fig. 2).

3. Results

3.1. Overall performance

In ILAMB, compared with the reference datasets, we found a strong
performance gradient among the three ET models. The most compli-
cated model, ELM (overall absolute score: 0.71) perform best compared
with reference datasets. The intermediate complexity model, with an
overall score of SWH (0.67) is 0.04 lower than the ELM model. And the
performance of the simplest model, PT-JPL (overall absolute score:
0.63) was lowest relative to the other models.

3.2. Inter-annual variability and seasonal cycle simulation performance

Compared with the inter-annual variability of reference ET dataset,
the results (Fig. 3) showed that 1) the simulation of inter-annual
variability of the three ET models (ELM, SWH, PT-JPL) is better in
eastern China than in western China; 2) the three ET models perform
poor in some special geographical regions such as Qinghai-Tibet pla-
teau and southwest mountains region; 3) the overall performance of
inter-annual variability can be sorted in order of: SWH (mean
score = 0.75) > ELM (mean score = 0.73) > PT-JPL (mean
score = 0.70).

For the different climate region in China (Fig. 3d), ELM model had
the lowest score in simulating the inter-annual variability of ET in the
plateau and mountain climate region (mean score = 0.47). There is a
need to improve the ET inter-annual variability simulation of the three
terrestrial ET models in the temperate continental climate region (mean
score: ELM = 0.62, SWH = 0.68, JPL = 0.56). All three ET models

Fig. 1. Locations of the 12 ChinaFLUX sites and distribution of plant functional type and climate zones.

Table 2
The list of ChinaFLUX sites used in this study.

Site ID PFT Lat (°N) Lon (°W) Data period References

CN-Cha MF 42.4 128.1 2005–2014 Guan et al. (2006)
CN-Cng GRA 44.59 123.51 2007–2010 –
CN-Dan GRA 30.50 91.07 2004–2008 Shi et al. (2006)
CN-Din EBF 23.17 112.54 2003–2005 Zhang et al. (2010)
CN-Du2 GRA 42.05 116.28 2006–2008 Chen et al. (2009)
CN-Ha2 WET 37.61 101.33 2003–2005 –
CN-HaM GRA 37.37 101.18 2002–2004 Kato et al. (2006)
CN-Qia ENF 26.74 115.06 2003–2005 Yu et al. (2006)
CN-Sw2 GRA 41.79 111.9 2010–2012 –
YC Crop 36.83 116.57 2003–2010 Yu et al. (2006)
NM Grass 43.33 116.24 2004 Yu et al. (2006)
XSBN EBF 21.93 101.27 2003–2010 Yu et al. (2006)
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perform equally well in the temperate monsoon climate region (mean
score: ELM = 0.88, SWH = 0.89, JPL = 0.88). In the subtropical
monsoon climate region, PT-JPL model had the worst performance of
ET inter-annual variability simulation (mean score = 0.77).

In terms of seasonal cycle score, which compares the timing of the
maximum ET of the annual cycle between reference dataset and model
dataset, ELM and PT-JPL (mean score = 0.91, 0.90) performs better
than SWH model (mean score = 0.78). In northwestern and south-
western of China, the simulation of seasonal cycle of the three ET
models had lower scores especially the SWH model (Fig. 4).

In different climate region of China (Fig. 4d), the three ET models
had the worst performance in temperate continental climate region
especially SWH model (mean score: ELM = 0.86, SWH = 0.69,
JPL = 0.84). In the monsoon climate region, the three ET models
perform better than plateau and mountain climate region and tempe-
rate continental climate region. The ELM model performs well in dif-
ferent climate region of China.

3.3. Spatial variability performance

Taylor diagrams (Taylor, 2001) were used to analyze the spatial

distribution of the time averaged ET. Taylor diagrams are particularly
useful in evaluating multiple aspects of complex data series, since each
graph shows a statistical summary of how well patterns match each
other in terms of their correlation (r), their root mean square error
(RMSE), and the normalized standard deviation (SD). The radial dis-
tance from the origin represents the amplitude of the ET variation (SD),
normalized by the reference value (SD = 1). The azimuthal angle of a
particular point indicates its correlation to the reference. And the dis-
tance between a point and the reference shows the mean absolute dif-
ference between those datasets (RMSE). We used 31 year- averaged ET
values of three models to assess spatial variability performance based
on Taylor diagrams. As shown in Fig. 5, the results indicated that 1) the
correlation between ELM (r = 0.96) and reference datasets is stronger
than those of SWH (r = 0.91) and PT-JPL (r = 0.72); 2) even though
the three model have different correlation, the standard deviation of
three models has shown the similar distance relative to benchmark
(SDELM = 1.19, SDSWH = 0.81, SDPT-JPL = 1.20); 3) the ELM model has
the smallest RMSE (0.32) when compared with SWH (0.41) and PT-JPL
(0.79). On the whole, the most complex model, ELM which is closest to
the benchmark has a good performance on spatial variability simula-
tion.

Fig. 2. Evapotranspiration models: Priestley Taylor-Jet Propulsion Laboratory (PT-JPL) model, Shuttleworth-Wallace-Hu (SWH) model, and Energy Exascale Earth
System Model Land Model (ELM).
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3.4. Model performance in different plant functional types

In different plant functional types (PFT), the three levels of com-
plexity terrestrial ET models have different performance relative to the
reference datasets. The most complicated ET model, ELM, shows the
best performance in DNF, ENF, MF, DBF, and Crop (overall
score = 0.75, 0.69, 0.70, 0.72, 0.71) but performs worst in Grass
(overall score = 0.61). The best performance of the intermediate
complexity model, SWH is achieved in EBF and Shrub (overall
score = 0.72, 0.69). And the simplest model, PT-JPL have the best
performance in Grass (overall score = 0.71). Both of SWH and PT-JPL
models has poor performance in forest ecosystems. Additionally, the
relative score revealed that PT-JPL model perform worse in ENF, DBF,
and EBF compared to the other models. (Fig. 6)

4. Discussion

4.1. Overall performance of the three levels of complexity terrestrial ET
models

Our findings suggest that the performance of terrestrial ET models is
related to some extent, but not entirely, to model complexity. The re-
sults showed that model complexity is positively correlated with ILAMB
overall scores. As the ET models become increasingly complex, they
contain an increasing number of biophysical, biochemical and biogeo-
graphy descriptions. Several reports have shown that adding com-
plexity to a land surface model may improve performance. Leplastrier
(2002) investigated the performance of five modes of a land surface
model, the Chameleon Surface Model (CHASM) and they found that the

performance of more complex modes of CHASM is superior to more
simple modes. Medici et al. (2012) analyzed three hydro-chemical
models varying different level of complexity and the results presented
that increased model complexity can improve performance if sufficient
data are available for model testing. Our results support these earlier
conclusions, though notable exceptions exist. However, there remains a
lack of comparisons of different complexity ET models and exploration
of the differences in their mechanisms. In future work on ET model
evaluation, large ensembles of models of different complexity are
needed in order to compare and improve ET modeling, in addition to
the incorporation of more observed ET datasets as benchmark datasets
in the ILAMB system.

4.2. Temporal and spatial simulation performance

Given that direct model evaluation is possible only with con-
temporary in-situ observations, it is difficult to assess the models' ca-
pacities to capture spatial variation at large scale. Khosa et al. (2019)
evaluated and calibrated surface, empirical and satellite-based models
performance including inter-annual variation and seasonal cycle per-
formance compared with in situ ET measurement in South Africa. Ma
et al. (2019a) validated a 31-year ET product by using plot-scale eddy
covariance measurement and basin-scale water-balance-derived eva-
potranspiration rates and quantified the spatial and temporal variability
of ET in China. However, we still lack a quantitative assessment of ET
model performance distribution for inter annual variability and sea-
sonal cycle. In this study, we leveraged the ILAMB system to enable
improved testing of multiple terrestrial ET models, which used a wide
variety of regional-scale gridded observations, site specific

Fig. 3. The spatial distribution of inter-annual variability (IAV) score of three models: (a) ELM, (b) SWH and (c) PT-JPL and (d) the inter-annual variability score in
different climate change: plateau and mountain climate (PM), temperate continental climate (TC), temperate monsoon climate (TM), subtropical monsoon climate
(SM).
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Fig. 4. The spatial distribution of seasonal cycle (SC) score of three models: (a) ELM, (b) SWH and (c) PT-JPL and (d) the seasonal cycle score in different climate
change.

Fig. 5. Taylor diagram showing correlation coefficient, RMSE, and standard deviation of spatial variability performance for the three ET models.
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observations, and integrative observations to allow a more robust
model benchmarking framework.

As shown in Fig. 3, SWH performs best in terms of inter-annual
variability simulation. And the simulation of inter-annual variability of
the three ET models (ELM, SWH, PT-JPL) is poor in the northwest of
China (temperate continental climate region). In the northwest arid
region, temperature and precipitation experienced a sharp increasing in
the past 50 years (Yang et al., 2018). The precipitation trend changed in
1987, and since then has been in a state of high volatility. Temperature
experienced a “sharp” increase in 1997; since then, it has remained
highly volatile, and the increasing trend slowed (Chen et al., 2015;
Wang et al., 2017). Meanwhile, whether reanalysis climate product or
interpolation climate data is effected by in situ measurements which is
less distributed in the northwest of China. These may be one of the
reasons for the poor inter-annual variability simulation performance in
the northwest of China.

In some ecosystems that occupy particular eco-geographical loca-
tions and have special biogeochemical cycling, such as the Qinghai-
Tibet Plateau (plateau and mountain climate region), the ELM model
had the poorest performance for inter-annual variability. The atypical
conditions in these regions could have affected the ELM soil thermal
conductivity scheme (Farouki’s scheme, Bonan et al. (2013)). Wang
et al. (2014) found that the Farouki’s scheme underestimated the up-
ward shortwave radiation and overestimated the upward longwave and
net radiation in Qinghai-Tibet Plateau. Several reports have shown that
energy conditions are influential factors limiting ET in the entire Qin-
ghai-Tibet Plateau especially at upper elevation (Ma et al., 2019b;
Mingyue et al., 2019). Hence, reducing the uncertainty of soil thermal
conductivity scheme may help improve the performance of the ET
model in Qinghai-Tibet Plateau.

In terms of seasonal cycle simulation, ELM performed better than
PT-JPL and the SWH model. In the northwest and southwest of China,
the simulation of seasonal cycle of the three ET models had lower
scores, especially SWH model. This is possibly due to the special geo-
graphical environment, in particular aridity of the northwest region and

the southwest region (Yunnan Plateau). The lack of parameter locali-
zation for these regions is potentially responsible for the poor model
performance.

In term of the spatial distribution simulation, ELM and SWH models
have higher correlation coefficients with the reference dataset (0.96,
0.91, respectively), which is higher than the coefficient for PT-JPL
model (0.72). On the other hand, ELM and the SWH model showed the
smaller RMSE in comparison with the benchmark data. Considering the
evidence above, we found that the more complex models (ELM, SWH)
perform better for the ET spatial distribution than the simpler model
(PT-JPL). A possible explanation for these results may be some key
parameters of terrestrial ET model are space-time scale dependent and
relate to traits in specific environmental (Chaney et al., 2016; Peaucelle
et al., 2019). For the more complex models (ELM, SWH), the variations
of key parameters are considered in the physical-process simulation in
different PFT. It is therefore likely that the more complex models si-
mulate spatial distribution better in China, due to their ability to better
consider the variations and diveristy in the ecosystem characteristics.

4.3. Model performance in different plant functional types

The most complex ET model, ELM shows the best performance in
most forest ecosystem (DNF, ENF, MF, DBF) and Crops. The best per-
formance of the intermediate complexity model, SWH is achieved in
EBF and Shrubs. And the simplest model, PT-JPL have the best per-
formance in Grass.

ELM and SWH model coupled exchanges of energy, water, and
carbon and incorporated photosynthesis process simulation. Plant sto-
mata function as a controlling interface to regulate plant water loss and
carbon dioxide uptake, and play a crucial role in ET and carbon ex-
change (Miner et al., 2017; Shan et al., 2019). Specifically, stomatal
resistance is one of the largest drivers of ET under the situation that the
canopy is fully coupled to the surrounding boundary layer, and there-
fore it provides links between ET and photosynthesis (De Kauwe et al.,
2015; Shan et al., 2019). Both the ELM and SWH models incorporate

Fig. 6. Overall score of ELM, SWH, PT-JPL model evapotranspiration estimates in different plant functional types.
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Ball-Berry model (Ball et al., 1987) to calculate stomatal resistance.
SWH used a light use efficiency model (Running et al., 2004) to esti-
mate the photosynthesis rate, which is a key parameter in the Ball-Berry
model, while the photosynthesis rate in ELM is based on biochemical
models (Collatz et al., 1992; Farquhar et al., 1980). ET integrates bio-
chemical and biophysical land surface processes between the Earth’s
surface and atmosphere (Jung et al., 2010; Zhang et al., 2016). Cou-
pling biochemical and biophysical processes in terrestrial ET models is
thus expected to lead to improved performance. This improved process
representation could explain why the ELM model performs better in
particular in forest ecosystems, which have a more complex canopy
structure.

Even though the PT-JPL model is developed using a semi-empirical
satellite-based ET model, it performs best in grass ecosystems. This
result may be explained by the fact that PT-JPL model performed better
in water-limited regions, where remotely sensed information on dy-
namic vegetation responses to changes in water availability aid in the
prediction of ET (Ershadi et al., 2014).

5. Conclusion

We evaluated three terrestrial ET models of different complexity in
the ILAMB benchmarking system in China. Our results indicate that
more complex models outperform simple models on the whole, as
complex models marked highest ILAMB scores, though some exceptions
exist. In terms of temporal simulation performance, the SWH model
performed best for inter-annual variability simulation and ELM per-
formed best for seasonal cycle simulation. For some special geo-
graphical environment regions, such as the Qinghai-Tibet Plateau and
northwest region, models need to improve their ability to capture inter-
annual variability and the seasonal cycle of ET. From the point of view
of spatial distribution simulation, ELM and the SWH model are more
closely related to the reference datasets, while the PT-JPL model per-
formed poorly for the spatial distribution simulation of ET. In different
PFT, the more complex models (ELM, SWH) performed better in forest,
shrub and crop ecosystems and the simpler model (PT-JPL) performed
better in grass ecosystems. We suggest that the performance difference
may be due to different parameterizations and the simulation of im-
portant physical processes such as canopy resistance. This study pro-
vided a thorough evaluation of terrestrial ET models of different com-
plexity by leveraging the strength of the ILAMB system. The approach
will help guide efforts to understand the influence of model complexity
on model performance and provide guidance on future directions of
improving terrestrial ET models.
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