
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 5, MAY 2019 2811

Merging the MODIS and Landsat Terrestrial Latent
Heat Flux Products Using the Multiresolution

Tree Method
Jia Xu , Yunjun Yao, Shunlin Liang , Fellow, IEEE, Shaomin Liu, Joshua B. Fisher,

Kun Jia , Xiaotong Zhang , Yi Lin , Lilin Zhang, and Xiaowei Chen

Abstract— The accurate estimation of the terrestrial latent
heat flux (LE) from satellite observations at high spatial and
temporal scales plays an important role in the assessment of
the water and heat exchange between the earth’s surface and
the atmosphere. Although a variety of data fusion methods
have been proposed to merge different LE products for more
reliable estimates, most of them have ignored the spatiotemporal
consistency of LE products across different resolutions. In this
paper, we apply the multiresolution tree (MRT) method to
improve the accuracy and reduce the inconsistency between the
Moderate Resolution Imaging Spectroradiometer (MODIS) LE
(MOD16) product and the Landsat-based LE product at different
resolutions. Eddy covariance (EC) ground measurements at
five sites, MODIS and Landsat images from January 2005 to
December 2005 in the north central USA, are used to evaluate the
performance of the MRT method. The results show that the MRT
method can improve the accuracy of the original LE products
(MOD16 and Landsat), and it has the potential to significantly
reduce the uncertainty and inconsistency of these products. The
bias decreased by 38.3% on average, and the root-mean-square
error (RMSE) decreased by approximately 49.2% after the MRT
was applied at each scale. Further studies are still required to
make the MRT method more universal on a variety of land cover
types for long-time periods.

Index Terms— Eddy covariance, Landsat data, MODIS,
multiresolution tree (MRT), terrestrial latent heat flux (LE).
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I. INTRODUCTION

THE terrestrial latent heat flux (LE), which is the heat
flux from the earth’s surface to the atmosphere pertain-

ing to the surface soil evaporation, vegetation interception,
and vegetation transpiration [1]–[5], is a major component
of the global and regional surface energy redistribution and
the water cycle. It is difficult to accurately measure terres-
trial LE because LE generally suffers from heterogeneity
across the land surface, complicated biophysical feedback
processes, and complex environmental controls [2], [6], [7].
Ground-based observation methods, such as the energy balance
Bowen ratio (EBBR) method [8]–[10] and the eddy covari-
ance (EC) method [11]–[13], are widely used for accurately
measuring the continuous LE at the point scale. However,
the scale mismatch between point and regional scales hinders
such observations as representing LE at regional and global
scales [14]–[17].

Satellite remote sensing provides observations of terrestrial
biophysical variables for estimating LE, and many methods
have been proposed to estimate LE during the past several
decades. However, satellite-based LE products can utilize
more than just remote sensing observations and can also
utilize meteorological data sets and LE algorithms. Due to
the errors in the meteorological inputs, the differences in
satellite-based biophysical variables derived from different
sensors, and the influence of the physical structures of different
LE algorithms [18], the differences among individual LE prod-
ucts vary considerably [19]. In addition, current satellite-based
LE products have either high spatial resolution and low tem-
poral resolution or coarse spatial resolution and high temporal
resolution [20]. While there are very few satellite-based LE
products with both high spatial resolution and high temporal
resolution, the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) LE product (MOD16) can cover the global
surface with moderate spatial resolution (∼1 km) and temporal
resolution (8 days) [21], [22]. However, many studies have
revealed the large uncertainties and the low accuracy of the
MOD16 product. For instance, the MOD16 product was found
to have large uncertainties [23] compared with other process-
based models, such as the revised Penman–Monteith (PM)
model [7] and the Priestley–Taylor Jet Propulsion Labora-
tory (PT-JPL) model [24]. The results also showed that the
MOD16 product underestimated LE in savanna and woodland
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ecosystems [25], and the croplands and grasslands in East
Asia [26]. In addition, the 1 km LE estimates tend to be
inaccurate and are not applicable at the field, local, or basin
scales because of a high level of spatial heterogeneity of
land cover within a pixel. Fortunately, the Landsat multispec-
tral data record from the Thematic Mapper (TM) and the
Enhanced Thematic Mapper Plus (ETM+) are estimable data
sources for producing LE products at high spatial resolution
(∼30 m) [27], and they are widely used to estimate LE based
on physical mechanisms or empirical algorithms [28], [29].
They are also able to bridge the gap between current LE
products with coarse resolution and point-based field measure-
ments and validate coarse resolution data. However, because
the temporal resolution of the Landsat data is relatively lower
(16 days) than that of the MOD16 product and Landsat
images are periodically contaminated by clouds, this temporal
resolution is often unattainable for many areas and insufficient
to meet the needs of accurate LE mapping. Moreover, some
Landsat LE products contained uncertainties as well. For
example, the Mapping Evapotranspiration at high resolution
with internalized calibration (METRIC) model-driven Landsat
LE product was underestimated by 11% compared with the
reference LE information from the energy-budget corrected
EC method [30].

To reduce the uncertainties among different LE products,
many data merging methods have been proposed to merge
multiple LE data sets for improving terrestrial LE estimations.
Previous studies revealed that the merged LE is more reliable
and accurate than the LE result from an individual data
set [31], [32]. For instance, Yao et al. [33] used the Bayesian
model averaging (BMA) method by merging five LE products
to enhance the daily LE estimation with smaller root-mean-
square errors (RMSEs) than those of the individual LE prod-
ucts. Although previous studies have shown that the BMA
method is more reliable and capable than the simple model
averaging (SMA) method, the weights for the individual data
sets using the BMA method are highly dependent on the
samples of the EC ground measurements of LE, which limits
its wide application [34]. Similarly, Feng et al. [35] found that
an empirical orthogonal function (EOF) method is efficient
to merge the two satellite-based LE data sets to improve
the consistency and reduce the uncertainties in LE estimates.
However, the EOF method failed to resolve the inconsistent
resolution among different LE products. Similarly, Wang and
Liang [36] applied the optimal interpolation (OI) method to
integrate multiple LAI products. The inputs from MODIS and
CYCLOPES are at the same resolutions (∼1 km) as well, and
even the slow computation limits its application. Overall, these
merging methods ignore the spatial and temporal consistency
across different resolutions and require higher computational
efficiency.

Recently, a multiresolution tree (MRT) method has been
applied to make consistent predictions across different spa-
tial resolutions using the hypothesis that a statistical model
is autoregressive in its levels of resolution [37]. The MRT
method has been widely used on large data sets to estimate
satellite-based variables across different spatial resolutions and
to overcome the computational complexity that other existing

Fig. 1. Framework of the MRT tree structure. Node t shows the relationship
between its parent t0, and its children α1, α2, α3, and α4. In this paper,
the Landsat LE product serves as the leaf node, and the MOD16 LE product
is in the middle of the tree.

methods may have [38]–[40]. For example, the MRT method
has been applied to resolve some geoscience issues, such as
the assimilation of soil moisture [41] and albedo data sets at
different resolutions [42]. Wang and Liang [36] applied both
the MRT and optimal OI methods to merge LAI products
from MODIS and Multi-angle Imaging SpectroRadiometer
(MISR) and proved that the MRT method possessed higher
computational efficiency and improved the quality of LAI
products. Because of its time efficiency and capability of
generating interpolations with minimal bias across different
spatial resolutions, this method can be used to merge terrestrial
LE products from multiple satellite data sets with different
spatial resolutions. However, there is a lack of similar studies
on improving terrestrial LE estimates based on the MRT
method for monitoring the dynamics of the regional water
budget.

In this paper, we use the MRT method to merge two
satellite-based LE products (MODIS and Landsat LE prod-
uct) to generate consistent LE data sets at different spatial
resolutions. The objectives of this paper are threefold: 1) to
evaluate MODIS and Landsat LE products using AmeriFlux
measurements from five flux tower sites in the north central
USA; 2) to merge two satellite-derived LE products (MODIS
and Landsat LE products) using the MRT method to eliminate
the inconsistency of different LE products; and 3) to compare
MODIS and Landsat LE products before and after fusion.

II. METHOD

The basic concept of MRT is a linear tree structure and the
data at different spatial resolutions are autoregressive (Fig. 1).

The liner state model can be written in a scalar version as
follows [43]:

x(t) = A(t)x(tγ ) + w(t) (1)

where x(t) and x(tγ ) represent the variable of interest at
child scale (fine scale) t and its parent scale (coarse scale) tγ ,
respectively. w(t) is the state transition noise that follows the
Gaussian distribution N(0, Q(t)). A(t) is the state transition



XU et al.: MERGING THE MODIS AND LANDSAT TERRESTRIAL LE PRODUCTS 2813

matrix from the parent scale tγ to its child node and is
generally assigned to an identity matrix [44], [45]. There is
a similar equation that transfers the variable from fine-scale t
to the coarse-scale tγ . [43]

Except for the state transition model, an observation
equation is also required in this method by linking the
satellite-based products to the variable of interest

y(t) = H x(t) + v(t) (2)

where y(t) is the satellite data with an observation noise v(t)
that follows the Gaussian distribution N(0, R(t)). Because
both the satellite data and the variable of interest are LE and
the same area is used, the observation matrix H is taken as the
identity matrix. The two variables from the fine scale to coarse
scale are previously processed: the state transition predicted
values x̂(tγ |t) using the observations to the scale t and the
observed values y(tγ ) at scale tγ . A Kalman filter is used to
combine this information [46]

x̂(tγ |tγ ) = x̂(tγ |t) + K (tγ )(y(tγ ) − H x̂(tγ |t)). (3)

Here, x̂(tγ |tγ ) is the optimal estimator at scale tγ by incor-
porating observations up to scale t . K (t) is the Kalman gain
and is taken by the following [46], [47]:

K (tγ ) = P(tγ |t)H V −1(tγ ) (4)

where V(t) is the innovation covariance

V (tγ ) = H P(tγ |t)H T + R(tγ ). (5)

Every child node provides an estimate to its parent node and
the optimal estimator x̂(tγ |tγ ) consists of a weighted sum
of the estimates of its children. The weight of the estimate
is controlled by the variance P∗(t), which indicates that the
larger the uncertainty of an estimate, the smaller the effect
of that estimate in the merging process. Through (1)–(5),
we obtained the optimal estimates at each scale. To take full
advantage of the fine-scale data and the coarse-scale data,
the Kalman smooth is used to obtain the final predicted value
x̂ �(t) and to integrate the variable at each resolution. The
Kalman smooth is given as follows [43], [46], [47]:

x̂ �(t) = x̂(t|t) + J (t)(x̂ �(tγ ) − x̂(tγ |t)) (6)

J (t) = F(t)P(t|t)/P(tγ |t) (7)

where J (t) is a weighted coefficient.
There are two steps in the MRT method: the “leaves to root”

Kalman filter and the “root to leaves” Kalman smooth. Starting
at the finest scale, the ascending propagation is recursively
updated until arriving at the root node. After the Kalman
filter process finishing, the descending propagation, that is,
the Kalman smooth starts at the next scale of the root scale
and continues to the finest scale. The Kalman filter aims to fill
in the gaps at each scale and provides the finer information
to the coarser scale. The Kalman smooth updates the state
estimation with the information at a coarser scale. After the
two steps, the data sets at different resolutions can be smooth
and consistent. Further details of the MRT method can be
found in Vyver et al. [48]

Fig. 2. Flowchart of the MRT fusion procedure from different satellite-based
LE products.

To implement the MRT method, our study includes several
steps, which are shown in Fig. 2. First, to evaluate the
data uncertainties of two satellite-based LE products, we use
the ground measurements to validate and provide additional
accurate information by comparing different satellite products.
Second, there is one basic assumption that the variables used
in the MRT method are zero mean in the spatial process, and
hence the surface extraction of the two satellite products is
implemented. Based on the detrending products, we calculate
the variance Q(t) for the leaves and obtain the observation
error v(t) using the standard deviation of the relative difference
between the finest resolution product and the ground measure-
ments. To obtain the variance R(t) other than the child nodes,
we calculate the relative difference between the parent nodes
and the aggregated data from their child nodes. Third, to obtain
and update the LE data at each scale involved, the “leaves to
root” Kalman filter and the “root to leaves” Kalman smooth are
implemented. After that, we add the updated spatial residual
back to the trend surface to obtain the optimal LE fusion data
at all levels. Finally, the MRT performance is compared with
several indicators for evaluation before and after MRT.

III. EXPERIMENTAL DATA AND PREPROCESSING

A. Study Area

The study area is located in northern Wisconsin, a state in
the USA (Fig. 3).

A subset of an approximately 45 km × 45 km area was
extracted from two satellite-based LE products in the Universal
Transverse Mercator (UTM) projection for 2005. The images
were selected based on the availability of the two LE products
and those that suffered less from cloud contamination in this
paper. The land cover types are 48.51% mixed forest (MF),
16.11% deciduous broadleaf forest (DBF), 14.31% grassland
(GRA), 10.19% open and closed shrubland (SHR), 5.89%
savannas and woody savannas (SAW), 2.22% cropland (CRO),
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TABLE I

LOCATIONS OF THE 5 FLUX TOWERS

Fig. 3. Map of land cover types from MODIS (IGBP classification) and the
locations of the EC towers.

1.08% water, 0.64% deciduous needleleaf forest (DNF), 0.57%
evergreen needleleaf forest (ENF), and 0.48% evergreen
broadleaf forest (EBF), which are from the MODIS land cover
type product (MCD12Q1) with 500 m resolution [49]. MODIS
tile h11v04 and Landsat TM scene p25r28 were selected to
match with each other.

As shown in Table I, ground measurements from five EC
towers are based on the eddy covariance (ECOR) method
and are provided by AmeriFlux. They cover four types of
vegetation, including SHR, MF, DBF, and CRO. The selected
sites differ in land cover types, elevations, and climatolog-
ical characteristics. The half-hour data included the surface
net radiation (Rn), shortwave solar radiation (Rs), soil heat
flux (G), LE, sensible heat flux (H), air temperature (Ta),
relative humidity (RH), and atmospheric water pressure (e).
We linearly aggregated the half-hour turbulent surface heat
fluxes and other climate parameters into daily and monthly
means. Because of the energy nonclosure problem [11], [50],
we used the following method, which was proposed by
Twine et al. [50], to correct the measured LE values at these
sites:

LEcor = (Rn − G)/(LEori + Hori) × LEori (8)

where LEcor is the corrected LE and LEori and Hori are the
uncorrected LE and H, respectively.

B. Satellite-Based LE Products

1) MODIS LE Product: The MODIS LE product (MOD16)
is produced based on an improved (PM) algorithm [1]
according to a beta version [21] after being adapted by
Cleugh et al. [51]. The MOD16 algorithm calculates the LE
as the sum of daytime and nighttime components, divides the
canopy and soil into wet and dry components, and modifies
the vegetation cover with FPAR (fraction of absorbed photo-
synthetically active radiation) derived from MOD15A2 [22].
The MOD16 product is composited every 8 days with 1 km
spatial resolution and data from 2005 that are used in this
paper. To merge each node of different resolutions in the same
projection, a reprojection of the MOD16 was processed from
the sinusoidal projection into the UTM coordinate system to
match with that of the Landsat-based LE product. The real
grid size of the nominal 1 km sinusoidal pixel is 926.6 m
and is resampled to the 900 m pixel size using the bilinear
interpolation method [52] to match it with the 30 m pixel size
of the Landsat TM scenes.

2) Landsat-Based LE Product: The Landsat L1T data are
calibrated and projected in the UTM projection, and the actual
pixel size is 30 m taken over a period of 16 days. To elim-
inate the radiation error and obtain the surface reflectance,
the atmospheric correction is required for the Landsat L1T data
using the Landsat ecosystem disturbance adaptive processing
system (LEDAPS) tool [53]. Only the Landsat scenes with less
than 30% cloudy pixels were selected to reduce the effect of
the cloud contamination.

We produced the Landsat-based LE product using the
modified satellite-based Priestley–Taylor (MS-PT) algorithm
developed by Yao et al. [54]. This algorithm was devel-
oped on the Priestley–Taylor (PT) model’s basis [55], which
uses the apparent inertia (ATI) derived from the diurnal air
temperature range (DT) for parameterizing the surface soil
moisture constraints. The forcing data requires only the net
radiation (Rn), the air temperature (Ta), the DT from the
modern era retrospective analysis for research and applica-
tions (MERRA) meteorological reanalysis data, and the NDVI
from the Landsat data for 2005. A spatial resolution resample
of 30 m for the MERRA data was implemented by using
the method described by Zhao et al. [56], which improves the
accuracy of interpolation by removing the sharp changes from
one side of the boundary to the other [56]. The details of the
MS-PT algorithm are given in the Appendix.
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C. Assessment Method

We used three different statistical criteria to evaluate the
performance of the MRT method in this paper: the root-
mean-square error (RMSE), the relative RMSE in percentage
(RMSE%), and the bias. The RMSE is calculated as the
square root of the average value of the differences between
the observed and predicted LE values. The lower the RMSE
is, the more reliable the model’s performance is. The RMSE%
demonstrates the relative error and is capable of capturing
outliers of MRT performance. Bias reflects the average value
of the differences between the observed and predicted LE
values. The results were also compared with histograms before
and after fusion. The metrics are calculated as follows:

RMSE =
√∑n

i=1 (Xobs,i − Xmodel,i )
2

n
(9)

RMSE% =

√√√√∑n
i=1

(
Xobs,i −Xmodel,i

Xobs,i

)2

n
(10)

Bias =
∑n

i=1 (Xobs,i − Xmodel,i )

n
(11)

where Xobs and Xmodel are the observed and estimated LE
values, respectively.

IV. RESULTS ANALYSIS

A. Evaluation of Satellite-Derived LE at the Flux Tower Sites

We compare two LE products with the ground measure-
ments for five AmeriFlux sites for 2005 using time series
to demonstrate the accuracy of the information. The uncer-
tainties among different LE products spatially and temporally
vary greatly [57], [58]. Due to the limitation of the temporal
resolution and the Landsat product missing at some sites, such
validation may not be able to evaluate the uncertainties, and
we focus on prototyping the merging algorithm in this paper.

The comparison between the two LE products and the EC
ground measurements showed that the Landsat LE product
provided better matches with the ground measurements than
that of the MOD16 since the finer spatial resolution of the
Landsat data are more suitable for matching with the EC
ground measurements (Fig. 4). In terms of the uncertainty
of the Landsat LE product, cloud contamination may be the
possible reason, even though the atmospheric correction has
been implemented using the LEDAPS tool. The MOD16 over-
estimated the LE in winter and underestimated the LE in
the vegetation growing period by approximately 10–20 W/m2.
Perhaps the biophysical processes and the pixel heterogeneity
at different times and locations can affect the accuracy of
the MOD16 [22]. Moreover, there was a significant scale
difference between the MOD16 and the ground measurements
since the MOD16 tended to underestimate in the vegetation
growing season when compared directly with the ground
measurements [59].

Fig. 5 shows the scatterplots of the comparison between
the satellite-derived LE products (the Landsat-based LE prod-
uct and the MOD16 LE product) and the ground measure-
ments for 2005. The outliers contaminated by cloud shadows

Fig. 4. Intercomparison of the Landsat and MOD16 LE products on time
series for 2005 for five flux tower sites. LE_cor refers to the corrected ground
measurements.

were removed. One notices that the Landsat estimated the LE
better with R2 of 0.866 and RMSE of 17.317 W/m2 than
the MOD16 with R2 of 0.626 and RMSE of 27.6 W/m2.
Therefore, we used the standard deviation of the relative error
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Fig. 5. Scatterplots of the comparison of the Landsat and MOD16 data using
the ground measurements. (a) Landsat. (b) MOD16.

of the Landsat data as the observation error v(t). However,
it might be unreasonable to directly evaluate the MOD16 using
the ground measurements because of the large differences in
the spatial resolutions. To obtain the observation error of the
MOD16, the Landsat data were aggregated to match the grid
size of the MOD16 and to estimate the relative error for each
scene. To implement the MRT method, we assumed that the
pixels of the study area had invariant errors within different
temporal and spatial variations.

B. MRT-Based Satellite-Derived LE Product Fusion

There is a basic assumption in the MRT method that the
data of the tree structure at each scale is zero mean. However,
the original LE products cannot satisfy the requirement, and
the spatial trend surface is required to be extracted from the
original data. To obtain the zero mean detrending data, a sim-
ple average [60] was applied, and the estimated detrending
data were then added back into the trend surface to generate
the merged LE products.

The two LE products and the corresponding merged results
were compared on time series from DOY 97 to DOY 121 and
DOY 233 to DOY 241 based on the availability of clear
scenes of the two LE products (Fig. 6). To avoid the potential
error, the pixels contaminated by clouds and water bodies
were excluded using a dark blue color in the Landsat and
the MOD16 products. Different from other common merging
methods, the MRT method provides separate results at differ-
ent spatial resolutions. One notices that the same Landsat data
may be shared by two adjacent MODIS scenes.

Data at finer resolution usually provide more information of
the random spatial processes than the coarser resolution, and
the average information carried by the coarser resolution data
can also fill the gaps for the finer resolution data. Compared
with the original products, both products after data fusion
tended to be consistent across different scales, and the dif-
ferences between the satellite products were greatly reduced.
The contaminated pixels or data gaps of the Landsat data were
effectively filled, particularly in DOY 97. For the MOD16,
the areas with overestimated or underestimated LEs were
smoothed after the MRT and became much closer to Landsat
than before. The obvious outliers, such as the yellow spots
in DOY 97, DOY 105, and DOY 103, were also eliminated.
Since Landsat provides coarser resolution data with finer
information for capturing the LE trends in the spatial domain,
the MOD16 LE values changed greatly, and the Landsat LE
values were adjusted lower. However, the abnormal LE values
in DOY 105 imply that the MRT method is limited if the inputs
have large differences. The principle of the MRT method
is adjusting the pixel values according to the uncertainties
at each scale. Therefore, the larger the uncertainties of the
estimates, the smaller the influence of those estimates in the
merging process. Moreover, the water body of the original
MOD16 product is the fill values, and accordingly we did
not estimate the LE of the water body when estimating the
Landsat-based LE product. Note that some margins of the
water body were assigned to certain values instead of fill val-
ues from the original products and even some abrupt changes
were simultaneously produced around the water body in the
merged MOD16, which were produced by spatial variability
and scaling effects because all the child nodes were taken into
account when transferred into the same parent nodes, not just a
single pixel. Therefore, we propose that spatial variability and
scaling effects cannot be ignored when merging two products
at different spatial resolutions.

C. Comparison of LE Products Before and After MRT

The two satellite products from 2005 and the corresponding
merged results were compared. Fig. 7 shows that the his-
tograms of the difference comparison between the MOD16 and
the aggregated Landsat before and after the MRT. The distrib-
ution of the difference between the two satellite products was
scattered with gray bars, and it was much more concentrated
after data fusion. The bias was close to zero, and the difference
was constrained to ±1 W/m2 in most cases, except for a
few outliers. The absolute difference of the outliers that were
larger than 20 W/m2 was approximately 6%–7% before data
fusion, while it dropped to lower than 1% after the MRT
method.

Based on the statistical comparison (Table II) before
and after the MRT method, the bias reduced by 38.3%
on average. The more important improvement was that
the RMSE significantly decreased by 49.2% on average
compared with its original values. This indicates that the
satellite products are more consistent and the lower RMSE (%)
implies fewer outliers. These significant improvements show
that the MRT method is capable of reducing the uncertainties
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Fig. 6. Time series comparison before and after MRT. The order from top to bottom is the LE (W/m2) from original MODIS, the MODIS after MRT,
the original Landsat, and the Landsat after MRT. The dark blue (0 value) means no data.

TABLE II

COMPARISON BEFORE AND AFTER THE MRT (THE UNITS

FOR BIAS AND RMSE ARE W/m2)

of the satellite-based LE products and yielding consistent LE
products at different scales.

In addition, Landsat and the MOD16 for estimating LE
are mostly based on vegetation information, especially for the

Landsat-based LE product, which mainly depends on NDVI.
Accordingly, the study area is mainly covered by vegetation.
Hence, it is sensitive to the surface variation of LE and the
fusion performance in the growing period is better than others.
However, a few differences still exist. They might be caused
by the actual differences between the physical structure of
the algorithms for the two LE products and the effects of the
sensor cloud residuals. It is worth noting that the performance
of the data fusion in DOY 105 was not as significant as in
other days. It also supports the expectation that the ability of
the MRT method is limited when the preprocessing products
have great differences.

Compared to the validations of the two LE products
before the MRT method shown in Fig. 5, Fig. 8 illustrates
the validations of the MRT-merged LE products versus the
ground measurements. The RMSE of the merged Landsat LE
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Fig. 7. Histograms of the differences comparison between the MOD16 and the aggregated Landsat before and after MRT. (a) DOY 97. (b) DOY 105.
(c) DOY 113. (d) DOY 121. (e) DOY 233. (f) DOY 241.

product decreased from 17.317 to 14.689 W/m2, and the R2

improved from 0.866 to 0.897, which means that the merged
Landsat product was more accurate after the MRT method.
Similarly, the merged MOD16 was significantly improved
with a decreasing RMSE from 27.6 to 19.739 W/m2 and
an increasing R2 from 0.626 to 0.794. Therefore, it simul-
taneously demonstrated that the MRT method is capable of
improving the accuracies while eliminating the inconsistencies
of the two LE products across different spatial resolutions.
One notices that the improvement of the clear overestimation
is more appreciable than that of the underestimation in the
MOD16 because the slight underestimation of the Landsat data
under the same conditions may be introduced to the MOD16.

V. DISCUSSION

A. Uncertainties of the Merged LE Estimates

1) Errors in the Individual LE Products: More than 80%
of the study area is occupied by MF, DBF, and GRA in which
the Landsat-based LE product has a higher R2 (0.7–0.8) than
the R2 of the MOD16 (0.5–0.6) according to the validation
of the ground measurements based on several hundred global
sites [33]. The uncertainty of the two terrestrial LE products
cannot be ignored. For example, Mu et al. [22] reported that
the uncertainty of the MOD16 is up to 20% based on the
individual point-based FLUXNET validation caused by the
biases of the MERRA and the other inputs of the MODIS
products [61]. Ershadi et al. [31] attributed the uncertainty of
the MOD16 to the influence of the sensitivity of resistances
parameterization of the PM algorithm. Ramoelo et al. [25]
drew a similar conclusion that different sites or climatic zones
lead to different performances of the MOD16 product. For the

Landsat-based LE product, the MERRA reanalysis data are
a major data force for Landsat-based LE estimation. Recent
studies have found large errors in the MERRA data [62], [63]
and it tends to underestimate Rn at high values compared with
the ground measurements, which may introduce substantial
uncertainties into the LE estimation. Calibrating and adjusting
the PT coefficients using the ground measurements at different
vegetation types and climatic zones are recommended to
reduce the errors of the LE estimation by 5%–25% [64].

2) Scaling Effects: The spatial scale mismatch between
the EC ground measurements and the satellite products can
directly affect the uncertainty in merged LE estimates. The
EC flux tower is approximately several hundred meters [65].
Either the 30 m spatial resolution of the Landsat or the 900 m
spatial resolution of the MOD16 product may not directly
match the EC measurements and may even further increase the
spatial differences. The evaluation of the merged LE products
when ignoring spatial scaling effects may also lead to bias
in the merged LEs. In addition, the abrupt changes around
the water body of the merged results reflect the impact of
scaling effects and the variability. To mitigate the scaling
effects, spatial homogeneity of the study area with pure pixels
is recommended.

3) Biases of the EC Measurements: The EC measurements
are used as a reference to evaluate the uncertainty, but
previous studies reported that the EC observed data have
large uncertainties. For instance, there is currently no agree-
ment on the interpretation of the reasons and the correc-
tion of the energy imbalance of EC measurements [66], [67].
EC measurements do not conserve energy, and the averaged
energy closure at the five EC sites is 85%, which is mainly
caused by the complexities of the wind patterns and the
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Fig. 8. Scatterplots of the validations of the MRT-merged LE products versus
the ground measurements. (a) Landsat. (b) MOD16.

footprint variability [68]. In addition, it may be partially
attributed to the fact that the EC method cannot capture large
eddies in the lower boundary layer and measures only small
eddies [11], [12]. Although several reasons for this energy
closure problem have been documented by a substantial body
of literature and we corrected for it in this paper, the errors
produced by the correction and measurements are still unclear.
The temporal upscaling from half hours to days may also
introduce 5%–10% bias in the daily LE values [69] and the
uncertainty of the EC measurements might further propagate
to the fusion process. Hence, EC sites with fewer observed
errors situated in the study area are conducive to precisely
evaluating the uncertainty of the LE products.

4) Fusion Method: The weight values derived from the
uncertainty evaluation using the EC ground measurements is
shared by some subgrid pixels because the EC sites are too
sparse in regions. The weight values analysis suggests a high
dependence on dense EC sites in the study area. In addition,
we postulate that the pixels at each scale have invariant errors
within different temporal and spatial variations, and thus, the
subsequent weighted values may not be adequately precise
in the fusion process. The footprint model [70] concerns the
relationship between the EC ground measurements and the
spatial distance and can be used to estimate the accurate
uncertainties of satellite products, which forms our next step.

B. Advantages and Limitations of the MRT Method

Compared to other merging methods, the MRT method
shows three distinct superiorities. First, it has high compu-
tational efficiency. The MRT method only required 5.5 s in

our study, while the optimal interpolation method took several
hours [36]. Second, the MRT method performs the capacity,
which is not available in other merging methods such as the
BMA method, to merge LE products at multiple resolutions
and keep them consistent at each scale. The previous study
showed that the MRT method also worked well in merging the
albedo products at multiple spatial resolutions [71]. Finally,
the MRT method can improve the accuracy of multiple LE
products as well. The accuracy of the LE products increased
by 15%–28% after the MRT method in this paper. Similar
research reported by Jiang et al. [72] that the RMSE decreased
from 1.30 to 0.45 compared to the reference map by the
MRT method, when merging multiple LAI products. Overall,
since the MRT method concentrates on data with multiple
resolutions that carry more information, the accuracies of
those products are considerably reinforced, and the merging
images remain consistent at each scale, which satisfies the
requirements of terrestrial satellite data fusion. We propose
that other LE retrieving algorithms and other land surface
modeling purposes can be better served by the MRT method
as well.

Regardless of the excellent performance, the MRT method is
also associated with three known limitations. First, it behaves
relatively unpredictably when used with one input LE product
that largely deviates from another. Shi et al. [60] drew a
similar conclusion about the limitation of the MRT method
when merging multiple broadband emissivity products. Sec-
ond, the parameters of the MRT method are empirical and
hard to predict, especially the state transition matrix from
one scale to another. For instance, Gupta et al. [45] assumed
that the state transition matrix is invariant across different
scales, but Frakt and Willsky [73] stated that it depends on
the parent-child cross-covariance and the state covariance.
Finally, the basic assumption of the MRT method is that
the data requires an expectation of zero mean at each scale.
Currently, there is no agreement on the extraction of the spatial
trend surface, and a variety of detrending methods have been
previously implemented, such as spline fitting, the lognor-
mal space [74], [75] and the power transformation [76], [77].
However, those methods suffer from either time-consuming
computation [38] or full empirical parameterization. We used
an average interpolation method to improve the efficiency in
this paper, but it may lead to unpredictable performance for
all the land cover types. Addressing these issues forms the
foundation of our ongoing process.

VI. CONCLUSION

Accurate LE estimation at high spatial and temporal reso-
lutions is essential in evaluating the surface energy balance.
Currently, the uncertainties of individual satellite-based LE
products are mainly derived from systematic sensor errors,
contaminated clouds, angular composition, and the physical
differences among the LE retrieving algorithms. To reduce
the errors and improve the accuracy of the LE products, it is
important to take full advantage of multiple LE products. This
paper applies a novel approach to merge satellite-based LE
products at different spatiotemporal resolutions.
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This paper uses the MRT method to merge the
Landsat-based LE product and the MOD16 product with the
main purpose of improving the consistency between different
LE products across different resolutions. To the best of our
knowledge, this is the first time that the MRT method has
been applied on satellite-based LE products.

The fusion results prove that the MRT method is capable
of reducing the inconsistency, improving the accuracy, and
generating consistent LE products among LE products at
different spatial scales. Therefore, we propose that the MRT
method has the potential to estimate other essential land
surface products with similar problems in other areas.

The MRT method is currently limited to several land cover
types and homogeneous pixels. This paper simplifies the
underlying surface of the study area and not all types of surface
coverage are represented. Since the merging performance is
greatly affected by the uncertainties of the LE products, the EC
ground measurements we used may not actually evaluate the
real error of each product. Our next step is to extensively and
precisely evaluate the errors of the LE products at regional
scales to make the MRT method more universal.

APPENDIX

MS-PT ALGORITHM

The modified satellite-based PT (MS-PT) algorithm was
developed by Yao et al. [54] and was calculated as the sum of
the unsaturated soil evaporation (LEs), the saturated wet soil
surface evaporation (LEws), the canopy transpiration (LEc),
and the canopy interception evaporation (LEic). It can be
expressed as follows:

LE = LEs + LEws + LEc + LEic (A1)

LEs = ∂(1 − fwet) f sm
�

� + γ
(Rns − G) (A2)

LEws = ∂ fwet
�

� + γ
(Rns − G) (A3)

LEc = ∂(1 − fwet) fc fT
�

� + γ
Rnc (A4)

LEic = ∂ f wet
�

� + γ
Rnc (A5)

fsm = ATIk =
(

1

DT

)DT/DTmax

(A6)

fwet = f 4
sm (A7)

fc = NDVI − NDVImin

NDVImax − NDVImin
(A8)

where DTmax is the maximum diurnal air temperature range
(40 °C) and fc is vegetation cover fraction. NDVImin and
NDVImax are the minimum and maximum of the NDVI and
are set as 0.05 and 0.95 [78] in this algorithm, respectively.
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