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A B S T R A C T   

Crop phenology represents an integrative indicator of climate change and plays a vital role in terrestrial carbon 
dynamics and sustainable agricultural development. However, spatiotemporal variations of crop phenology 
remain unclear at large scales. This knowledge gap has hindered our ability to realistically quantify the 
biogeochemical dynamics in agroecosystems, predict future climate, and make informed decisions for climate 
change mitigation and adaptation. In this study, we improved an EVI-curve-based approach and used it to detect 
spatiotemporal patterns in cropping intensity and five major phenological stages over North America during 
2000–2016 using vegetation index in combination with agricultural survey data and other ancillary maps. Our 
predicted crop phenological stages showed strong linear relationships with the survey-based datasets, with R2, 
RMSEs, and MAEs in the ranges of 0.35 –0.99, three to ten days, and two to eight days, respectively. During the 
study period, the planting dates were advanced by 0.60 days/year (p < 0.01), and harvesting dates were delayed 
by 0.78 days/year (p < 0.01) over North America. A minimum temperature increase by 1 ◦C caused a 4.26-day 
planting advance (r = − 0.50, p < 0. 01) or a 0.66-day harvest delay (r = 0.10, p < 0.01). While, a higher 
maximum temperature resulted in a planting advance by 4.48 days/◦C (r = − 0.62, p < 0.01) or a harvest advance 
by 2.22 days/◦C (r = − 0.40, p < 0.01). Our analysis illustrated evident spatiotemporal variations in crop 
phenology in response to climate change and management practices. The derived crop phenological datasets and 
cropping intensity maps can be used in regional climate assessments and in developing adaptation strategies.   

1. Introduction 

Vegetation phenology, defined as the development, differentiation, 
and initiation of plant organs (Hodges, 1991), is an integrative indicator 
of climate change (Badeck et al., 2004). Changes in vegetation 
phenology may have significant feedback to ecosystems and climate via 
the biogeochemical (e.g., CO2 releases or uptakes) and biophysical 
processes (e.g., albedo) (Jin et al., 2013; Chen et al., 2015). Compared to 

natural vegetation phenology, crop phenology is more complicated. It is 
regulated by not only natural factors (e.g., climate) but also intensive 
management practices (e.g., cultivars and decisions on sowing dates) 
(Tao et al., 2012). Crop phenology usually exhibits multiple cycles in a 
season as a result of diverse cropping systems and multiple crop in-
tensity (Li et al., 2014; Yan et al., 2014, 2019). Globally, agricultural 
fields occupy approximately 37.2% of the global ice-free land surface, in 
which approximately 32% is used for crop production (Ren et al., 2008). 

* Corresponding authors. 
E-mail addresses: wei.ren@uky.edu (W. Ren), bo.tao@uky.edu (B. Tao).  

Contents lists available at ScienceDirect 

ISPRS Journal of Photogrammetry and Remote Sensing 

journal homepage: www.elsevier.com/locate/isprsjprs 

https://doi.org/10.1016/j.isprsjprs.2020.10.005 
Received 4 December 2019; Received in revised form 20 September 2020; Accepted 8 October 2020   

mailto:wei.ren@uky.edu
mailto:bo.tao@uky.edu
www.sciencedirect.com/science/journal/09242716
https://www.elsevier.com/locate/isprsjprs
https://doi.org/10.1016/j.isprsjprs.2020.10.005
https://doi.org/10.1016/j.isprsjprs.2020.10.005
https://doi.org/10.1016/j.isprsjprs.2020.10.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2020.10.005&domain=pdf


ISPRS Journal of Photogrammetry and Remote Sensing 170 (2020) 156–173

157

Accurate information of crop phenology over large areas is crucial for 
advancing our understanding of agricultural ecosystem functioning and 
structure, monitoring crop growth, realistically estimating carbon dy-
namics, and developing viable management practices for climate 
adaptation and mitigation (Lobell et al., 2013; Diao, 2020; Mercier et al., 
2020). 

In the context of climate change, shifted crop phenology, such as the 
advanced planting dates and delayed harvesting dates, has been widely 
reported (Piao et al., 2006; Oteros et al., 2015; Sacks and Kucharik, 
2011). Generally, crop phenology information was mainly obtained 
from field observations (Tao et al., 2006), remote sensing imagery (Xu 
et al., 2017), phenology modeling (Liu et al., 2013), and survey data 
(Portmann et al., 2010). However, limited site-level observations and 
district-based surveys (Sakamoto, et al., 2005) cannot fully capture 
highly variable patterns in crop phenological stages over large areas 
(Piao et al., 2019; Zhang et al., 2020). Moreover, phenology algorithms/ 
models are usually fed by climate data such as temperature and soil 
moisture, without or with relatively much fewer considerations about 
land management and practices (Tveito et al., 2005; Wu et al., 2010). 
These limitations potentially bring large uncertainties to associated 
climate impacts and carbon balance assessments at broad scales. 

With rapid development in remote sensing over past decades, satel-
lite imagery with worldwide coverage and rapid re-visit times has made 
it possible to examine and monitor phenological variations over large 
areas (Pan et al., 2015; White et al., 2014; Zeng et al., 2016; Zhang et al., 
2020). However, most crop phenology studies either constrained to a 
few specific crop types such as wheat, corn, soybean, and rice (Xin et al., 
2002; Lu et al., 2013) or targeted on limited crop growing stages (e.g., 
the start or end of the season) (Liu et al., 2017a,b). Moreover, crop 
phenological stages (e.g., silking, denting, or maturity dates) in multiple 
cropping systems with a rotation of one or two crops per year have not 
been well addressed (Gumma et al., 2014). These knowledge gaps have 
hindered our ability to understand the role of crop phenology in food 
production, surface energy balance, and terrestrial biogeochemical 
cycles. 

Over the recent decades, many methods have been developed to 
detect vegetation phenological events using vegetation indices (VI) time 
series (Liu et al., 2016b; Zhu et al., 2012; White et al., 2009). One of the 
essential processes of the satellite-based approach is to construct the VI 
time series using various filtering algorithms such as the Fourier filter 
(Roerink et al., 2000), the Savitzky-Golay filter (White et al., 2009), the 
asymmetric Gaussian function (Cong et al., 2012), double logistic 
function (Zhang et al., 2003), and the Whittaker smoother (Atkinson 
et al., 2012). Those functions can smooth out noise and fluctuations of 
the raw time series data, thus uncover the temporal patterns of crop 
phenological stages (Diao, 2020). Based on the constructed time series, 
crop phenological stages can be detected using various retrieval algo-
rithms (e.g., inflection or transition point, changing rate, and threshold- 
defined methods) (Zhang et al., 2003; Wang et al., 2017). 

The selection of the appropriate retrieval algorithms has substantial 
influences on estimated crop phenological stages (Gao et al., 2017; Diao, 
2020). Of the numerous methods, threshold-based methods are often 
used because they generally keep dates within a specific reasonable 
range based on the threshold conditions and achieve relatively higher 
accuracy. For example, You et al. (2013) developed a threshold-based 
approach for identifying the start and end of the growing seasons for 
43 different agricultural zones in China using the AVHRR satellite data 
and observed crop phenology at agro-meteorological stations. Although 
the threshold of each agricultural zone can be determined to produce 
reasonable estimates of crop phenological timing, it is very challenging 
to apply them directly over extended geographical regions, particularly 
for those without enough detailed ground observations. Combined with 
ground observations, Huang et al. (2019) demonstrated the importance 
of optimal thresholds for detecting crop phenological stages at the site- 
level by evaluating the retrieval accuracy of crop start and end seasons 
using different dynamic thresholds of VI time series. However, the site- 

level thresholds, to a large extent, cannot capture the regional or global 
crop seasonal patterns, which calls for a more systematic approach 
combining the advantages of the threshold-based method and charac-
teristics of VI time series. This systematic approach should be able to fit 
seasonal and annual fluctuations of multiple phenological stages for 
major crop types at broader scales. 

In this study, we used an EVI-curve-based approach for detecting 
spatiotemporal variations in the cropping intensity and five major crop 
phenological stages (i.e., the dates of planting, jointing, heading, 
maturity, and harvesting) of seven crop types over North America dur-
ing 2000–2016. Our overarching scientific objectives are to (1) improve 
an EVI-curve-based approach for detecting changes in cropping intensity 
and dates of the five primary phenological stages at large scales; (2) 
generate spatially explicit crop rotation and phenology datasets over 
North America during 2000–2016; (3) characterize spatiotemporal 
variations of crop phenology and associated climatic driving factors; and 
(4) identify uncertainties and future research needs. 

2. Materials and methods 

2.1. Study area 

The spatial domain in this study covers North America (includes 
Canada, the United States, and Mexico). Fertile soils, plentiful fresh-
water, and diverse climate all contribute to the agriculture development 
of North America, making it one of the most important crop production 
areas in the world. Its cultivated area occupies about 12.76% of the 
world’s total acreage of cropland in 2016 (FAO, 2016) and covers more 
than 17% of the non-water, non-snow/ice areas of the entire continent 
(Reed, 2013). The U.S. alone produces 46% of the world’s corn and 33% 
of the world’s soybean, representing the largest corn and soybean pro-
ducer (Taylor and Won, 2015). North America spans a range of latitudes 
and embraces diverse climates. Most of the continent has temperate 
climates favorable to agriculture. In this study, North American crop-
lands (including annual crops, woody crops, and perennial crops and 
grasses) cover an area of 2,950,106 km2. 

2.2. Datasets 

2.2.1. MODIS data 
MODIS data have been widely used to monitor crop phenological 

changes (Thompson and Paull, 2017). In this study, crop phenological 
stages were retrieved for the continent of North America using MODIS 
EVI (Enhanced Vegetation Index) time series from February 2000 to 
December 2016. EVI was calculated using the valid NIR (Near Infrared 
Reflectance), red and blue band reflectance values from the land surface 
reflectance product MOD09A1 (version 6, ftp://ltdr.nascom.nasa.gov/ 
allData). MOD09A1 provides 500-m and 8-day composite surface 
reflectance with seven bands in a Sinusoidal projection system, available 
from February 2000 through the present. 

2.2.2. Cropland distribution data 
The cropland distribution across North America was extracted from 

the 2005 and 2010 Land Cover Database of North America at a spatial 
resolution of 250 m (https://landcover.usgs.gov). This database was 
produced by the North American Land Change Monitoring System 
(NALCMS), a trilateral effort among the Canada Centre for Remote 
Sensing (CCRS), the United States Geological Survey (USGS), and three 
Mexican organizations, including the National Institute of Statistics and 
Geography, National Commission for the Knowledge and Use of the 
Biodiversity and the National Forestry Commission of Mexico. Cropland 
areas dominated by intensively managed crops include areas used to 
produce annual crops, such as corn, soybeans, wheat, vegetables, to-
bacco, and cotton; perennial grasses for grazing or forage; and woody 
crops like fruit trees and grapevines. Because the continuous annual land 
cover dataset is not available for the entire study area, we applied the 
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2005 land cover data for the period of 2000–2007 and the 2010 land 
cover data for the period of 2008–2016. 

2.2.3. Crop classification maps 
The crop classification maps were collected for validating the esti-

mated crop phenology of different crop types. For the United States, we 
used the Cropland Data Layers (CDL), a high-resolution geo-referenced 
map made available by the U.S. Department of Agriculture (USDA). The 
CDL combines remotely sensed data with the ground truth survey and 
provides multi-year crop classification maps at a 30 m resolution for the 
conterminous United States (https://nassgeodata.gmu.edu/CropSca 
pe/). The historical CDL goes back as early as 1997 for North Dakota, 
and the national maps are available from 2008 to the present (http 
s://www.nass.usda.gov/Research_and_Science/Cropland/metadata 
/meta.php). For Canada, we used the Agriculture and Agri-Food Canada 
(AAFC) data, which was developed using a range of high-resolution 
remotely sensed imagery (https://open.canada.ca/data/en/dataset). 
AAFC dataset provides the annual crop inventory product at 30 m res-
olution (56 m for the period of 2009–2010) across major agricultural 
regions in Canada during 2009–2017. The USDA CDL and AAFC crop 
distribution maps were used for extracting sites across the U.S. and 
Canada agrarian regions. For Mexico, there are no high-resolution crop 
classification time series maps available for the validation purpose. 
Instead, the Mexico crop map was derived from the International Food 
Policy Research Institute (IFPRI)’s Spatial Production Allocation Model 
(SPAM) Version 3.2, which represents a global fractional distribution of 
major crop types at a 5-arc-minute resolution for the period of 
2004–2006 (You et al., 2014). 

2.2.4. Climate data 
Previous studies have indicated a strong relationship between the 

climate factors (e.g., average maximum/minimum daily air tempera-
ture) and crop phenology (He et al., 2015; Tao et al., 2006). In this study, 
we used daily spatially-interpolated air temperature from Daymet 
(Thornton et al., 2017) to examine the relationships between climate 
changes and crop phenological stages (planting dates and harvesting 
dates). The Daymet products provide estimates of daily weather pa-
rameters at 1 km resolution for North America during 1980–2017. These 
products have been widely used for biogeochemical modeling and 
climate change analysis at regional to continental scales (Liu et al., 
2016a). 

All the spatial datasets we collected were reprojected to the Albers 
equal-area projection and aggregated or downscaled to a 500 m reso-
lution using the nearest neighbor algorithm in ArcGIS 10.3 to match the 
MODIS data. 

2.3. Inventories of crop phenology 

For the evaluation purpose, we collected ground data for the crop 
developmental stages from the crop progress reports for the U.S., crop 
reports for Canada, and statistics data for Mexico distributed by the 
USDA National Agricultural Statistics Service (NASS), Canada provincial 
ministries (Alberta, Manitoba, Ontario, and Saskatchewan), and USDA 
Foreign Agricultural Service (FAS), respectively. These data sets report 
typical crop growth dates categorized by crop types at the state-level in 
the U.S., provincial level in Canada, and country-level in Mexico, 
respectively. The USDA crop reports were updated weekly and averaged 
every five years and covered the period of 2005–2016, with phenolog-
ical stages for each crop type clearly defined (https://www.nass.usda. 
gov/Publications/National_Crop_Progress/terms_definitions). These re-
ports provided the percentages of major crops reaching a specific crop 
development stage (e.g., maize planted or soybean harvested) over the 
entire area of a particular state. They had the advantages of high reli-
ability at the regional level. The dates of 80% progress of each recorded 
stage for corn, soybean, spring wheat, and cotton were extracted from 
the crop progress and condition graphs in USDA crop reports using the 

Web Plot Digitizer (https://automeris.io/WebPlotDigitizer). For Can-
ada, the crop reports only include the planting dates and harvesting 
dates for four provinces, i.e., Alberta, Manitoba, Ontario, and Sas-
katchewan. Provincial crop reports provide tables showing crop prog-
ress ranging from 20% to 100% at various stages of barley, canola, 
soybean, spring wheat, and corn. All crop reports illustrated that the 
timing of each crop phenological stage varied greatly depending on crop 
types and regions. For Mexico, we used FAS statistics about crop 
planting and harvesting dates of corn and sorghum (https://ipad.fas.us 
da.gov/rssiws/al/crop_calendar/ca.aspx) for evaluating those derived 
from this study. Our collected data used for calibration and evaluation 
includes seven main crop types covering the period of 2005 – 2016. 

For the U.S. and Canada, we used five-year averaged crop phenology 
records from the USDA/NASS to determine phenological thresholds and 
calibrate our improved approach. Accordingly, the weekly records were 
extracted from crop reports for evaluating our estimated crop pheno-
logical stages. For Mexico, the reported crop calendars in 2012 and 2017 
were used for threshold settings and results evaluation, respectively. 

Besides, the cropping intensity information in the U.S. was extracted 
from the USDA CDL datasets for validating the estimated crop rotation in 
this study. The satellite- and ground-based datasets used in this study 
were summarized in Table 1. 

2.4. Methods 

2.4.1. Deriving crop phenology descriptor 
The MODIS data process software (MODIS Reprojection Tool, MRT) 

available from http://edcdaac.usgs.gov/datatools.asp was used to 
generate MOD09A1 products mosaics for North America for each 8-day 
composite image, respectively (Ren et al., 2008). MODIS products were 
re-projected from the sinusoidal projection to an Albers Equal-Area 
Conic projection, using the nearest neighbor resampling method, and 
to a 500 m resolution using MRT (Huete et al., 2002). 

The EVI was calculated from the reflectances of the RED, BLUE, and 
NIR bands as follows (Huete et al., 1994). 

EVI = 2.5 ×
ρNIR − ρRED

ρNIR + 6.0 × ρRED − 7.5 × ρBLUE + 1.0
(1)  

whereρRED, ρNIR, and ρBLUE are band 1 (0.620–0.670 μm), band 2 
(0.841–0.876 μm), and band 3 (0.459–0.479 μm) reflectance from the 
MODIS products, respectively. 

We first generated a cropland mask by aggregating the 250 m land 
cover dataset of North America (see Section 2.2.2) into 500 m and 
retained pixels with cropland percentages larger than 50%, which could 
reduce the influences of mixed pixels on crop phenology detection. All 
EVI processing and analyses were only conducted for cropland pixels for 
increasing computation efficiency. The EVI time series were smoothed 
with HANTS_IDL (Harmonic Analysis of NDVI Time Series). HANTS al-
gorithm can smooth and reconstruct cloud-free remotely sensed vege-
tation datasets, such as NDVI, EVI, and Leaf Area Index (LAI) time series, 
and reduce the influence of clouds at the pixel level (Menenti et al., 
1993; Zhang et al., 2015). Besides, it allows greater flexibility in the 
frequency choices and time series length than the Fast Fourier Transform 
(FFT) algorithm. HANTS is much more reliable than the straightforward 
FFT algorithm on removing the obvious outliers of the time series 
datasets (Zhou et al., 2015). 

The smoothing process needs two input files, i.e., the original EVI 
time series and a cropland mask layer; only pixels with a value of 1 in the 
cropland mask layer were processed. Then the EVI time series in crop-
lands were smoothed, and other land cover types were masked out 
(Roerink et al., 2000). Following these processes, the first and the sec-
ond derivatives of the EVI curve were defined as follows. 

f (xi)’ =
f (xi) − f (xi− 1)

8
(2) 
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f (xi)’’ =
f (xi)’ − f (xi− 1)’

8
(3) 

where i is the sequence number of values in the time series (2, 3 … 
46), the EVI curve has an 

8-day time step, f and f’ are smoothed and the first-order derivative 
of EVI time series, respectively. Accordingly, the first and second de-
rivatives have 45 and 44 time series values from 2th to 46th image 
(DOY, Day of Year from 9 to 365) and 3th to 46th image (DOY from 17 to 
365), respectively. 

From Eqs. (2) and (3), the lengths of the first and second derivatives 
were shortened compared with the EVI time series. In this study, we did 
not make up the shortened periods because all phenological stages of 
seven major crop types were not observed during the shortened periods 
(DOY from 1 to 16) in North America (Appendix Table S1). 

2.4.2. Cropping intensity and crop phenology extraction algorithms 
In this study, the definitions of various crop phenological stages were 

from the USDA crop reports (https://www.nass.usda.gov/Publications 
/National_Crop_Progress/terms_definitions, Table 2). It has been 
widely accepted that EVI values could reflect the plant canopy devel-
opment (Huete et al., 1999; Jiang et al., 2008). The transition dates of VI 
time series curves could characterize the seasonal dynamics of some 
crop growth stages, which have been used for identifying typical crop 
phenological stages (Xin et al., 2002; Liu et al., 2017a,b). Specifically, 
EVI can reduce sensitivity to the soil, non-photosynthetically active 
vegetation, and atmospheric effects, but remains sensitive to changes in 
canopy structure and density in cases where NDVI loses sensitivity 
(Zhang et al., 2019). 

In this study, we improved the EVI-curve-based approach through 
(1) using transition dates of the EVI time series, first/second derivatives 
of the EVI time series to identify crop phenological stages; (2) setting 
flexible thresholds for five crop phenological stages according to the 

ground survey data; (3) expanding to detect five main crop phenological 
stages for seven crop types.  

– Extracting cropland and cropping intensity 

Previous studies have verified that maximum NDVI occurs around 
the heading dates (Sakamoto et al., 2005; Xin et al., 2002). In this study, 
we took the EVI peaks as the heading date for each crop type (See the 
details in the section of Extracting five crop phenological stages). We set 
a maximum EVI threshold of 0.35 (Li et al., 2014; Liu et al., 2016a; 
Zhang et al., 2015) to exclude the non-croplands areas, i.e., the pixels 
with the maximum EVI values less than 0.35 were not included in the 
computation. Furthermore, we analyzed the ground data from crop re-
ports and found that the intervals of two crop-heading dates in the 
double-cropping system were more than 80 days across North America. 
This interval represents a useful parameter for determining a multi- 
cropping system (Sakamoto et al., 2006). Therefore, we set a 
threshold of 80-day for further identifying the double cropping system, i. 
e., if the interval between two EVI peaks is larger than 80 days, the pixel 
will be identified as the double cropping system. 

In addition, we also set a threshold for confining the time range of 
crop heading dates. The ground-based crop phenological information 
suggested that the heading dates of most crops occurred between the 
DOY (Day of Year) 150 and 260 in the U.S. (Appendix Table S1). Also, 
Sakamoto (2018) analyzed the EVI time series and detected the crop 
planting dates and harvesting dates as 60 days before the estimated 
heading dates and 30 days after the heading dates, respectively. 
Therefore, we set a more flexible time range (DOY, 73–297) as the 
threshold of heading dates for the entire North America. The peaks of the 
EVI curve falling outside this range were excluded. The criteria 
mentioned above can be described by the following conditions to 
identify cropping intensity: 

Table 1 
Summary of the datasets used in this study.  

Datasets Spatial 
resolution 

Timestep Period Data type Data content Purpose Data source/description 

MOD09A1 500 m 8-day 2000–2016 Raster Reflectance Building EVI time series LP DAAC 
Land cover (NA) 250 m 5-year 2005–2010 Raster Cropland Masking off non-cropland area North American Land 

Change Monitoring System 
Crop classification maps 30 m/56 m Annual 2000–2016 Raster Crop types Providing individual map for 

evaluation of each crop type (U.S./ 
Canada) 

CDL of U.S./Agriculture 
Agri-Food Canada/Mexico 

Meteorological data (NA) 1000 m Daily 2000–2016 Raster Climate 
factors 

Providing temporal climatic 
factors 

Daymet 

Global fractional distribution of 
major crop types (SPAM) 

5-min – 2004–2006 Raster Crop types Providing individual map for 
evaluation of each crop type 
(Mexico) 

IFPRI 

Crop reports (the U.S. and 
Canada) 

State/ 
Province 

5-year 
average 

2005–2016 Document Crop 
phenology 

Using for setting thresholds USDA NASS 

Crop reports (the U.S. and 
Canada) 

State/ 
Province 

Weekly 2005–2016 Document Crop 
phenology 

Evaluating estimation accuracy USDA NASS 

Crop calendar maps (Mexico) Country Average – Document Crop 
phenology 

Setting thresholds (2012) and 
evaluating estimation accuracy 
(2017) 

FAS 

Global Agro-ecological Zones 
(GAEZ v3.0) 

5-min – 2012 Vector Ecological 
zones 

Analyzing temporal trend of crop 
phenology in each ecological zone 

GAEZ Module  

Table 2 
Phenology definition of different crop types.  

Phenological stages Crop types 

Barley Canola Corn Cotton Soybean Spring wheat Sorghum 

Planting Planting Planting Planting Planting Planting Planting Planting 
Jointing – – – Squaring – Jointing – 
Heading Headed – Silking Setting Bolls Blooming Headed Headed 
Maturity – – Mature – Dropping leave Mature Mature 
Harvesting Harvesting Harvesting Harvesting Harvesting Harvesting Harvesting Harvesting  
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎧
⎨

⎩

f (xi)’ > 0
f (xi+1)

’
< 0

f (xi+1) ≥ 0.35
73 < T < 297

ΔT = Ti − Tj > 80, When n ≥ 2

(4) 

WHERE f’ is the first-order derivative of EVI curve; f is smoothed EVI 
curve; i/jmeans the ith/jth of EVI/EVI’ values in the time series (1, 2, 3… 
46), T is the DOY of EVI peak, ΔT is the time interval of two peaks of the 
EVI curve. We, therefore, obtained cropping intensity n (Single-cropping 
system: n = 1 and double-cropping system: n = 2).  

– Extracting five crop phenological stages 
Heading dates 

The heading dates are reached when transforming from the vegeta-
tive stage to the reproductive stage, after which leaves begin to turn 
yellow and wither (Sakamoto et al., 2005). In this study, we identified 
the heading date (Theading1 for the single-cropping system and Theading1, 
and Theading2 for the double-cropping system) as the date that the 
maximum MODIS EVI occurs in the time profiles (Xin et al., 2002; Xu 
et al., 2017; Yan et al., 2019). Based on the summarized ground data 
from crop reports (see Section 2.3), we found that the crop growing 
season is typically less than 220 days for major crop types (Appendix 
Table S1). We thereby confined the crop growing season within the 
range of 110 days before and after the estimated heading date (Fig. 1; 
Appendix Fig. S1; Table 3). The identification of the temporal thresholds 
for constraining predicted values can reduce the interferences caused by 
data noise. 

Planting dates 

In general, agricultural lands are plowed or cultivated before crop 
planting. At the planting dates, photosynthetic activity does not start, 

and crop leaves begin to grow after the planting dates. The EVI curve 
shows lower values during this period and then starts increasing after 
crop planting. It is reasonable to assume that the planting date is located 
at the lowest point of the EVI profile during the early growth stage. This 
lowest point corresponds to the peak of the second-order derivative of 
the EVI curve (before the heading date), after which the EVI value begins 
to increase (Fig. 1B and D). We then identified the crop planting dates by 
detecting when the second-order derivative of the EVI curve reaches the 
first peak before the heading dates. Based on the ground data, the 
planting dates were constrained to occur within the time range of 
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Fig. 1. Crop phenological stages extracted using the first and second derivatives of the EVI curve for the single-cropping system (A, B) and double-cropping system 
(C, D). 

Table 3 
Transition dates and thresholds from time series curves for identifying pheno-
logical stages.  

Phenological 
stages 

Descriptions Range with thresholds (Day of 
Year, DOY) 

Heading: Theading1 The first peak of EVI time 
series  

Planting: Tplanting1 The peak of the 2nd 
derivative 

[Theading1 − 110, Theading1 −

40] 
Jointing: Tjointing1 The peak of the 1st 

derivative 
[Theading1 − 90, Theading1 − 20] 

Maturity: Tmaturity1 The trough of the 1st 
derivative 

[Theading1 + 20, Theading1 + 90] 

Harvesting: 
Tharvesting1 

The peak of the 2nd 
derivative 

[Theading1 + 30, Theading1 +

110] 
Heading: Theading2 The second peak of EVI 

time series  
Planting: Tplanting2 The peak of the 2nd 

derivative 
[Theading2 − 110, Theading2 − 40] 

Jointing: Tjointing2 The peak of the 1st 
derivative 

[Theading2 − 90, Theading2 − 20] 

Maturity: Tmaturity2 The trough of the 1st 
derivative 

[Theading2 + 20, Theading2 + 90] 

Harvesting: 
Tharvesting2 

The peak of 2nd derivative [Theading2 + 30, Theading2 +

110]  
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40–110 days before the estimated heading dates (Table 3). 

Jointing dates 

The jointing dates occur after the planting dates and before the 
heading dates. At this stage, the crop canopy expands rapidly to meet the 
active photosynthetic activity. Accordingly, EVI value increases with a 
higher rate than other stages (Fig. 1A and 1C). In this study, we iden-
tified the jointing date by detecting the peak of the first-order derivative 
of the EVI curve (before the heading date), i.e., the fastest growing point 
of EVI values. To reduce the impact of outliers, we set a threshold of 
20–90 days before the heading dates by referring to the crop reports. 

Maturity dates 

The maturity dates take place during the period plant leaf begins to 
lose activity or change color after the heading dates and before the 
harvesting dates. During this period, photosynthetic activity and green 
leaf area decrease rapidly. The trough of the first-order derivative of the 
EVI curve (after the heading date) represents the fastest declining point 
of EVI values. We then defined the point in the EVI time series curve with 
a maximum reduction rate as the crop maturity dates (Fig. 1A and C). 
Similar to other phenological stages, we also set an appropriate 
threshold with a range of 20–90 days after the heading dates for the 
maturity dates (Table 3). 

Harvesting dates 

In the harvesting season, leaves of crop plants continue to wither and 
die after the maturity stage. Crop canopies are generally harvested in 
this stage. Correspondingly, EVI values continue to decrease and go to 
the lowest point when the crop harvested from fields. The peak of the 
second-order derivative of the EVI curve after the heading date corre-
sponds to the lowest value of EVI during the crop growth period (Fig. 1B 
and D). Here we used this key point to detect the harvesting date. 
Similarly, based on the ground data, the harvesting dates were con-
strained to occur within the time range of 30–110 days after the esti-
mated heading dates. 

All thresholds we used for identified five phenological stages 
(Table 3) were based on the ground information recorded in crop reports 
(Appendix Table S1). These thresholds represent the relative time 
ranges, which depend on the dynamic pattern of the EVI curves. 

Wheat-soybean is the most popular double cropping system in the 
study area (Kelley and Sweeney, 2005; Borchers et al., 2014; Marra and 

Carlson, 1986). Winter varieties were usually planted each fall directly 
following soybean harvest in early October (Heggenstaller et al., 2008). 
USDA report (Marra and Carlson, 1986) suggested that the winter wheat 
is generally harvested in the morning and soybeans planted in the af-
ternoon of the same day in the same field, especially when conservation 
tillage is applied. In some cases, the growing season for the second 
cropping system could be shortened because of the overlap in harvesting 
the first crop and planting the second (Marra and Carlson, 1986). 
Therefore, in this study, we detected the harvesting date of the first 
season as the planting date of the second season. 

Fig. 2 shows a study flowchart summarizing the systematic processes 
of identifying crop phenological stages. 

2.5. Accuracy evaluation 

2.5.1. Evaluation of the satellite-based cropping intensity 
For evaluating the cropping intensity results, we randomly chose a 

total of 1006 sites, including the single-cropping system and the double- 
cropping system distributed across twelve regions in the United States 
based on the 2016 CDL data (Appendix Table S2). Each site consists of a 
polygon delineated on CDL maps via manual interpretation, ensuring 
that the verification datasets are widely distributed geographically. The 
size of the evaluation sites ranged from 1 pixel (~0.25 km2) to 79 pixels 
(~19.75 km2), and these sites covered 6000 MODIS pixels. 

The confusion matrix was applied to evaluate the estimated cropping 
intensity. It includes the overall accuracy (OA), Kappa coefficient 
(Kappa), producer’s accuracy (PA), and user’s accuracy (UA) (Fitzgerald 
and Lees, 1994; Næsset, 1996). The overall accuracy represents the 
percentage of estimated samples that are correctly identified (Hubert- 
Moy et al., 2001). The Kappa coefficient measures the agreement be-
tween observations and prediction results. Kappa coefficient value of 1 
represents a perfect agreement, while a value of 0 means no agreement. 
The producer’s accuracy is a measure of the omission error, defined as 
the number of correctly classified pixels relative to the total number of 
pixels used in the assessment for a specific class. The user’s accuracy is a 
measure of the commission error associated with a class, which is 
derived from the number of pixels correctly allocated to a class relative 
to the total number of pixels predicted to belong to that class (Foody, 
et al., 2006). Overall accuracy and the Kappa coefficient were computed 
as follows (Congalton, 1991): 

Overall Accuracy =
Total number of correct estimaitons

Total number of dataset
(5)  

Fig. 2. Study flow chart.  

Y. Yang et al.                                                                                                                                                                                                                                    



ISPRS Journal of Photogrammetry and Remote Sensing 170 (2020) 156–173

162

Kappa =
N
∑r

i=1xii −
∑r

i=1(xi+ × x+i)

N2 −
∑r

i=1(xi+ × x+i)
(6)  

where r is the number of rows in the matrix, xiiis the number of obser-
vations in rowiand columni, xi+ and x+i are the marginal totals of row i 
and column i, respectively, and N is the total number of observations. 

2.5.2. Evaluation of the satellite-based crop phenology 
We evaluated our estimated crop phenology results against ground 

information recorded in crop progress reports from USDA, NASS, Can-
ada provinces, and FAS (Table 4). Crop classification maps included CDL 
for the U.S., AAFC for Canada, and crop map derived from SPAM for 
Mexico. We summarized crop phenology of six main crop types (corn, 
soybean, spring wheat, barley, sorghum, and cotton) for the U.S. from 
USDA NASS crop progress reports, five major crop types (barley, canola, 
soybean, spring wheat, and corn) for Canada from the crop reports of 
five provinces, and two crop types (corn and sorghum) for Mexico from 
the FAS reports (Table 4). These seven crop types comprise more than 
65% of the total crop area in North America (USDA NASS Census of 
Agriculture in 2017). For each crop type, we selected major producing 
states or provinces to evaluate estimated phenological stages (Table 4). 
In these states or provinces, we chose pixels that the targeted crop types 
accounted for more than 80% to compare against satellite-derived crop 
phenology. Limited by the data availability, we separately evaluated 

corn and soybean by randomly selecting 75 sites to assess the accuracy 
of satellite-based crop phenology in Mexico from 2004 to 2016. Pixels in 
the center of larger patches were selected to reduce the influence of 
mixed pixels during this process. 

We used the coefficient of determination (R2), root mean square 
error (RMSE), and mean absolute error (MAE) to evaluate the estimated 
crop phenological stages. In general, a higher R2, a lower RMSE, and a 
lower MAE mean higher accuracies of the estimation: 

R2 =

∑n
i=1(xi − x)2

(yi − y)2

∑n
i=1(xi − x)2∑n

i=1(yi − y)2 (7)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − xi)2

√

(8)  

MAE =
1
n

∑n

i=1
|yi − xi| (9)  

where n represents the number of comparisons; yi and xi are estimated 
phenological dates in this study and those derived from ground infor-
mation, respectively. 

2.6. Mann–Kendall test and Sen’s slope estimator 

In this study, we used the Mann–Kendall test (Gilbert, 1987; 
Chmielewski et al., 2004; Li et al., 2014) and the Sen’s slope estimator 
(Sen, 1968) to identify statistically significant monotonic trends in 
estimated planting dates, harvesting dates, and length of the crop 
growing season. We analyzed the temporal trends of crop planting and 
harvesting dates (the single cropping system and the first season of the 
double cropping system) using the Mann-Kendall test and the Sen’s 
slope. Further, we also tested the interannual variation of cropping 
systems in North America during the study period. The statistical anal-
ysis was implemented using the R computing environment (R Devel-
opment Core Team, 2011). 

We followed Sen (1968) to calculate the slope or the time series as: 

Qj,k =
xj − xk
j − k

(10)  

where k < j, k = 1, 2, …, n − 11, and j = k + 1, k + 2, …,n; xj and xk are 
the crop phenological stage for year j and k, respectively; n is the length 
of the time series. 

Therefore, a total of n(n − 1)/2 elements of Qj,k and their median is 
the slope, or trend, of the temporal phenological stages series. 

The significance of the slope was tested using the Mann–Kendall 
statistic (Gilbert, 1987), in which we first calculated the parameter S as: 

S =
∑n− 1

k=1

∑n

j=k+1
sign(xj − xk) (11) 

where sign(xj − xk) is − 1, 0, or +1 if (xj − xk) is <0, =0, or >0, 
respectively. Then we calculated parameter V as: 

V =
1
18

[n(n − 1)(2n − 5) −
∑g

p=1
tp(tp − 1)(2tp + 5)] (12) 

where g is the number of tied groups. A tied group is a set of sample 
data that have the same value and tp is the number of years in the pth tied 
group. If there are no tied groups, this summation process can be ignored 
(Kisi and Ay, 2014). At last, the test statistic Z was calculated as: 

Z =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S − 1
̅̅̅̅
V

√ , if S > 0

0, if S = 0
S+ 1

̅̅̅̅
V

√ , if S < 0

(13) 

Table 4 
Data used for estimated phenological stages evaluation.  

ID Crop 
types 

Years Phenological 
stages 

Countries States/Provinces 

1 Corn 2004–2016 Planting 
Heading 
Maturity 
Harvesting 

The U.S. 
Canada 
Mexico 

Colorado; Ohio; 
Illinois; Indiana; 
Iowa; Kansas; 
Kentucky; 
Michigan; 
Minnesota; 
Missouri; 
Nebraska; North 
Dakota; South 
Dakota; Ontario 

2 Soybean 2005–2016 Planting 
Heading 
Maturity 
Harvesting 

The U.S. 
Canada 

Arkansas; Illinois; 
Indiana; Iowa; 
Kansas; Kentucky; 
Louisiana; 
Michigan; 
Minnesota; 
Mississippi; 
Ontario; Manitoba 

3 Cotton 2006–2016 Planting 
Jointing 
Heading 
Harvesting 

The U.S. Alabama; Arizona; 
Arkansas; 
California; 
Georgia 

4 Spring 
wheat 

2005–2016 Planting 
Jointing 
Heading 
Maturity 
Harvesting 

The U.S. 
Canada 

Idaho; Minnesota; 
Montana; North 
Dakota; South 
Dakota; Alberta; 
Saskatchewan; 
Manitoba 

5 Barley 2009–2016 Planting 
Heading 
Harvesting 

The U.S. 
Canada 

Colorado; 
Montana; Oregon; 
Utah; Washington; 
Wyoming; 
Alberta; 
Saskatchewan; 
Manitoba 

6 Canola 2009–2016 Planting 
Harvesting 

Canada Alberta; 
Manitoba; 
Saskatchewan; 
Ontario 

7 Sorghum 2004–2006 Planting 
Heading 
Maturity 
Harvesting 

The U.S. 
Mexico 

Colorado; Kansas; 
Oklahoma; South 
Dakota; Texas  
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Positive values of Z indicate increasing trends, while negative Z 
values show decreasing trends. Testing trends was performed at the 
specific α significance level. If Z > Z0.90 = 1.65, Z > Z0.95 = 1.96, or Z >

Z0.99 = 2.58, the slope estimated by Qj,k is significant at 90%, 95%, and 
99% confidence level, respectively. 

2.7. Climate datasets 

To examine climate change impacts, we correlated our estimated 
crop phenology to daily air temperatures over North America during 
2000–2016. Average daily minimum/maximum temperatures during 
crop planting season (April to June) and harvesting season (August to 
October) were calculated based on the Daymet climate datasets 
(Thornton et al., 2017). 

3. Results 

3.1. Evaluation of the satellite-based cropping intensity 

Based on the CDL datasets, we mapped the spatial distribution of the 
single- and double- cropping systems using the feature extraction tool in 
ArcGIS 10.3. Accuracies of the estimated cropping intensity were eval-
uated against the CDL-based maps for twelve USDA-defined sub-regions 
in the U.S. for the year 2016 (Table 5). Our results showed that user’s 
accuracies were higher than 60% in ten regions, which varied from 60% 
to 93.67%. The producer’s accuracies in seven regions reached 60% 
except for the double-cropping system in Mountain, Pacific, and 
Southern Plains. Seven regions had overall accuracies over 80%. 
Particularly, accuracies in three major agricultural regions (Heartland, 
Upper Midwest, and Great Lakes) were higher than 85%. Relatively low 
accuracies (<75%) were found in the Mountain, Northwest, and Pacific 
regions where agricultural areas are generally more fragmented. For 
kappa coefficients, values ranged from 0.29 to 0.73, with 7/10 regions 
being over 0.55. 

3.2. Evaluation of the satellite-derived crop phenology 

Based on our estimated phenological stages, we calculated the dates 
of 80% (the U.S.) and 20–100% (Canada) progress of crops and 
compared them against those from the crop reports (Table 6 in the U.S. 
and Table 7 in Canada). Generally, the R2 values were higher than 0.60, 
the RMSEs were lower than ten days, and the MAEs were lower than 
eight days for all predicted phenological stages, except for soybean in 
Canada (R2 = 0.35). Our results demonstrated a relatively high accuracy 
for predicting the major crop phenological stages. In the U.S., evaluation 
results showed that more than half of the values of R2 (13/24) were 
higher than 0.80. For sorghum in the U.S., all R2 values were higher than 

0.90, RMSEs were lower than five days, and MAEs were lower than four 
days. For Canada, only three of ten R2 values were lower than 0.70, all 
RMSEs were lower than eight days, and MAEs were lower than seven 
days. Relatively higher accuracies were found for corn (R2 = 0.99) and 
soybean (R2 = 0.90) harvesting dates in Canada compared to those in the 
U.S. The relatively larger errors for soybean (planting dates) in Canada 
might be attributed to the small sample sizes and different ground data 
acquisition methods. 

Previous studies have reported differences between the remote 
sensing-based crop planting estimations and those reported by ground 
observations. For example, Hmimina et al. (2013) found the differences 
were 10.5 and 24.2 days between the crop phenological dates derived 
from the MODIS daily and 16-day products, respectively. Ortiz-Mon-
asterio and Lobell (2007) reported that approximately one-week dif-
ference was found between the observed and estimated crop planting 
dates. In this study, our results showed that the differences were lower 
than seven days between the estimated planting dates and crop reports 
for all crop types, except the corn in the U.S. (7.62 days). It illustrated 
that the key points used for detecting crop planting dates could capture 
the event well. 

For each phenological stage of seven major crops, we plotted the 
time ranges of the satellite-based crop phenological dates and ground 
recorded data (Appendix Fig. S2 A–E: The U.S., F, and G: Canada, H and 
I: Mexico). For the U.S., some crop phenological stages were not 
included in the comparisons because no records are available in the crop 
reports. Similarly, for Canada and Mexico, we only analyzed planting 
and harvesting dates due to limited data availability. Our evaluation 
results suggested that the satellite-based major crop phenological dates 
closely matched those from the ground observation in the U.S. and 
Canada (Appendix Fig. S2 A–G). For Mexico, the validation of planting 
dates and harvesting dates for corn and sorghum also exhibited a high 
agreement with FAS recorded datasets. Over 80% of the predicted 
phenological dates were within the recorded range of crop calendar 
datasets from FAS, except for the harvesting dates of corn (Appendix 
Fig. S2 H and I). 

3.3. Comparison with existing datasets and studies 

We evaluated our results against crop planting and harvesting dates 
from two previous studies. The Crop Calendar Dataset provides in situ 
observations of crop planting and harvesting dates derived from FAO 
and USDA census in 2007 and 2008 (Sacks et al., 2010). The SACRA (the 
SAtellite-derived CRop calendar for Agricultural simulations) dataset 
represents the estimated global sowing and harvesting dates based on 
the time series of averaged VEGETATION/SPOT NDVI during 
2004–2006 (Kotsuki and Tanaka, 2015). 

Our comparisons (Tables 8 and 9) suggested that our estimated 

Table 5 
Accuracies (%) of satellite-estimated cropping intensity in the U.S. for the year 2016.  

Regions Heartland Mountain Northern Plain Northwest** Pacific Upper Midwest** 

Single crop PA* 96.83 82.63 77.35 - 87.10 –  
UA* 89.25 68.32 77.81 - 74.81 – 

Double crop PA 67.59 44.69 77.27 – 39.76 –  
UA 88.48 64.05 76.81 – 60.00 – 

OA* 89.09 67.11 77.31 71.97 71.60 88.05 
Kappa 0.70 0.29 0.55 – 0.29 –  

Regions Delta Eastern Mountain Great Lakes Northeastern Southern Southern Plains 

Single crop PA 85.36 88.59 89.50 61.05 89.74 91.69 
UA 93.35 78.98 87.30 77.21 70.85 74.95 

Double crop PA 81.95 83.64 82.78 90.72 80.43 50.63 
UA 65.37 91.35 85.63 81.89 93.67 79.09 

OA 84.50 85.67 86.60 80.63 83.66 75.96 
Kappa 0.62 0.71 0.73 0.55 0.66 0.45  

* PA, UA, and OA represent the producer’s accuracy, user’s accuracy, and overall accuracy, respectively. 
** These two regions only have single cropping systems. 
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planting dates were slightly later than the Crop Calendar Dataset in 19 of 
the total 23 states considered in the comparison, while the harvesting 
dates were relatively earlier in 12 states. In most states, discrepancies 
between our estimated planting dates or harvesting dates and those from 
the Crop Calendar Dataset were less than 15 days (Table 8). Crop Cal-
endar Dataset was digitized from ground observations derived from 
several different resources, most of which were specified for an entire 
country or a sizeable sub-national unit (e.g., a single state in the US). 
Lacking valuable spatial information of crop phenology could limit the 
application of the dataset at the regional or landscape scales. Moreover, 
the dataset does not capture any phenological changes in time, which 
only refers to planting and harvesting dates for the 1990s or early 2000s. 
The comparison between our estimates with the SACRA suggested large 
discrepancies in both planting dates/harvesting dates; in particular, 
three crop types except for spring wheat displayed large differences in 
planting dates in North Dakota (Table 9). This could be partly attributed 
to the fact that the SACRA dataset only selected one dominant crop in 
each administrative unit. Moreover, it was produced using the time se-
ries of the NDVI averaged from three consecutive years (2004–2006) at a 
resolution of 5 arcmin. We further compared our estimated planting and 
harvest dates with those from the SACRA at the state level using the 

USDA crop reports for the period 2004–2006 (Appendix Table S3). The 
results showed that our estimates (RMSEs and MAEs lower than 15 days) 
had a better performance than the SACRA (RMSEs and MAEs were larger 
than 22 and 12 days, respectively). 

Besides, to verify the robustness of our improved approach, we also 
compared our results with the phenological stages derived from the 
same key points but without setting thresholds. Higher accuracies were 
found for the estimations of all crop types detected from the improved 
EVI-curve-based approach (Appendix Table S4). 

3.4. Spatial and temporal patterns in cropping intensity 

The satellite-based cropping intensity maps showed evident spatial 
patterns in North America (Fig. 3). The agriculture in North America was 
dominated by the single-cropping system during the study period, which 
mainly occurred in Canada and the northern U.S. The double cropping 
system was primarily distributed in Mexico, the southern U.S., and parts 
of the southeastern U.S. Single-cropping system dominated in Canada 
and was relatively stable during 2000–2016. There were no noticeable 
spatial transitions of cropping intensity in Mexico during the study 
period. 

Only two years of the results are presented, but the general patterns 
of cropping intensity remained roughly constant throughout the study 
period, although an expansion of double-cropping areas was found in 
the lower Great Plains. 

Table 10 showed the results of the Mann-Kendall test and Sen’s slope 
of cropping intensity in North America. A significant increasing trend 
was detected in the single cropping system with a rate of 5,489,000 acres 
per year at the 1% significance level. However, no significant trend was 
found for the double-cropping system. 

3.5. Spatial and temporal patterns in crop planting and harvesting dates 

The spatial patterns of planting and harvesting dates in the single- 
cropping system and the first season of the double-cropping system for 
the year 2016 were shown in Fig. 4. Spatially, the crop planting dates in 
the northern areas of North America (e.g., Canadian Prairies, the north 
of the US Midwest and Great Plain) were generally later than those in 
most of the southern regions. The planting dates showed a slightly 
increasing trend with latitudinal gradients between 20◦N and 70◦N 

Table 6 
Evaluation of the satellite-estimated phenological stages in the U.S.  

Stages Statistics Corn Soybean Spring wheat Cotton Barley Sorghum 

Planting RMSE (days) 9.13 6.84 5.63 9.71 4.11 4.54 
MAE (days) 7.62 5.56 4.12 6.10 2.71 3.62 
R2 0.65** 0.76** 0.87** 0.81** 0.85** 0.94**  

N 98 84 43 42 34 45  

Jointing RMSE (days) – – 5.6 6.19 – – 
MAE (days) – – 5.33 4.58 – – 
R2 – – 0.96** 0.60** – – 
N – – 6 43 – –  

Heading RMSE (days) 5.42 8.50 5.58 8.29 3.03 4.95 
MAE (days) 4.42 7.41 4.42 6.26 2.32 3.73 
R2 0.77** 0.65** 0.80** 0.63** 0.93** 0.96** 

N 110 79 45 43 34 45  

Maturity RMSE (days) 6.26 4.70 6.10 – – 5.03 
MAE (days) 5.18 3.98 4.75 – – 3.56 
R2 0.81** 0.71** 0.63 – – 0.97** 

N 111 83 4 – – 45  

Harvesting RMSE (days) 6.48 8.11 7.56 3.75 9.52 4.42 
MAE (days) 4.91 6.50 6.37 3.04 8.26 3.42 
R2 0.77** 0.66** 0.80** 0.88** 0.79** 0.96** 

N 110 83 38 45 27 45 

Note. N represents the number of states or provinces used for evaluation. 
** Represents a 1% significance level. 

Table 7 
Evaluation of the satellite-estimated phenological stages in Canada.  

Stages Statistics Corn Soybean Spring 
wheat 

Barley Canola 

Planting RMSE 
(days) 

6.94 7.71 4.68 5.58 6.03 

MAE (days) 6.20 6.70 3.75 4.56 5.18 
R2 0.72 

* 
0.35* 0.77** 0.77** 0.63** 

N 10 10 12 18 22  

Harvesting RMSE 
(days) 

4.42 6.36 3.45 7.88 6.22 

MAE (days) 3.50 4.50 3.00 6.5 5.15 
R2 0.99 

* 
0.90* 0.75** 0.62** 0.84** 

N 4 6 11 16 20 

Note. N represents the number of states or provinces used for evaluation. 
* Represents a 5% significance level. 
** Represents a 1% significance level. 
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latitude (Fig. 4A). The estimated results for crop harvesting dates 
showed a similar spatial trend to that of the planting dates, which later 
harvesting dates occurred in the Canadian Prairies, much of the US 
Midwest and parts of the northern Great Plain (Fig. 4B). This pheno-
logical trend in planting and harvesting dates characterized the spatial 
variability in geographic patterns and might be explained by climatic 
temperature and distributions of different crop types. In most croplands 
of Mexico, the crop planting dates generally began from 140 to 180 
(Julian Day), and harvesting dates mainly fell into the range of 280–320 
(Julian Day). 

We further performed a temporal trend analysis for crop planting/ 
harvesting dates (Fig. 5) and summarized in Fig. 6. Sen’s slope repre-
sents the changing trends during the study period in Fig. 5. For the 

planting dates, approximately half of the evaluated pixels showed 
negative trends, less than a quarter showed positive trends, and the rest 
of the areas showed no significant trends. The pixels with advanced 
planting dates were sparsely distributed across North America. For 
harvesting dates, the areas with delayed trends were mainly clustered in 
the mid and high latitudes of North America. In particular, croplands in 
Canadian Prairies and the north of the Mississippi River in the U.S. 
showed delayed harvesting dates. However, only approximately 10% (p 
< 0.1) of the evaluated areas over North America witnessed significant 
changes in both planting and harvesting dates during the period 
2000–2016. 

To investigate the crop phenology trends at the continental scale, we 
first separately computed the spatial averages of planting and harvesting 

Table 8 
Comparison of the estimated planting and harvesting dates versus Sacks et al. (2010) at the state level.  

States Crop 
types 

Planting date (DOY) Difference (days) Harvesting date (DOY) Difference (days) 

Results 
(2007–2008) 

Sacks et al. 
(2010) 

Results (2007–2008) – Sacks 
et al.(2010) 

Results 
(2007–2008) 

Sacks et al. 
(2010) 

Results(2007–2008) – Sacks 
et al.(2010) 

IL Corn 151 130 21 295 295 0 
MN Corn 149 136 13 296 302 − 6 
NE Corn 149 131 18 291 299 − 8 
MI Corn 136 136 0 285 306 − 21 
CO Corn 145 128 17 287 304 − 17 
AR Corn 123 119 4 263 256 7 
IN Corn 148 138 10 292 303 − 11 
KS Corn 130 122 8 274 281 − 7 
MO Corn 139 128 11 282 289 − 7 
ND Corn 146 139 7 291 292 − 1 
OH Corn 146 137 9 293 298 − 5 
SD Corn 145 141 4 290 300 − 10 
NC Corn 111 115 − 4 241 271 ¡30 
TX Corn 93 97 − 4 232 251 − 19 
IA Soybean 165 146 19 304 282 22 
MI Soybean 169 147 22 305 292 13 
IL Soybean 149 147 2 297 286 11 
IN Soybean 161 148 13 297 289 8 
OH Soybean 165 150 15 305 289 16 
MN Soybean 165 150 15 301 286 15 
WI Soybean 157 153 4 301 294 7 
NE Soybean 161 158 3 305 291 14 
MO Soybean 169 158 11 309 298 11  

MAE 
(days)    

10.17   11.57 

RMSE 
(days)    

12.00   13.46 

Note. The comparison focused on 2007–2008, consistent with the study period in Sacks et al. (2010). 

Table 9 
Comparison of the estimated planting and harvesting dates versus SACRA at the state level.  

States Crop types Planting date (DOY) Difference (days) Harvesting date (DOY) Difference (days) 

Results (2004–2006) SACRA Results (2004–2006) –SACRA Results (2004–2006) SACRA Results (2004–2006) – SACRA 

IL Corn 140 82 58 284 249 35 
MN Corn 149 98 51 296 259 37 
NE Corn 146 95 51 291 243 48 
MI Corn 136 108 28 285 264 21 
AR Soybean 139 80 59 280 264 16 
IN Soybean 146 99 47 287 262 25 
MO Soybean 136 92 44 283 253 30 
OH Soybean 148 118 30 290 257 33 
SD Soybean 146 110 36 292 263 29 
NC Soybean 131 91 40 277 299 − 22 
SC Soybean 125 93 32 273 307 − 34 
MS Soybean 126 87 39 271 299 − 28 
LA Soybean 123 83 40 265 293 − 28 
ND Spring wheat 127 144 17 267 234 33 
GA Cotton 138 79 59 299 329 30 
MAE (days)    42.07   29.93 
RMSE (days)    39.92   28.13 

Note. The comparison focused on 2004–2006, consistent with the study period in Kotsuki and Tanaka (2015). 
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dates and then fitted their changing patterns during the study period 
(Fig. 6). For the areas with significant changes, we found that the 
planting dates of the first growing season advanced by 0.60 days/year (p 
< 0.01), or about 10.20 days over the entire study period. For the har-
vesting dates in areas with significant trends, our results suggested a 
delaying trend at a rate of 0.78 days/year (p < 0.01), i.e., 13.26 days 
over the entire study period. We further divided entire North America 
into 14 sub-regions, including Canada, Mexico, and twelve regions of the 
U.S. (Appendix Table S2). Of the 14 sub-regions, 11 experienced an 
advancement in the planting dates during the study period, which 
accounted for 72.5% of the total areas with statistically significant 
changes; 9 sub-regions postponed in harvesting dates, accounting for 
75.5% of the total areas with statistically significant changes (Appendix 
Fig. S4). Regionally, the northern and eastern parts of North America 

were found to have experienced the most significant delays in crop 
harvesting dates. 

3.6. Climate change impacts on crop phenology 

3.6.1. Temporal trend analysis of crop growing season length based on 
thermal zones 

Fig. 7 displays the spatial distribution of the changing trends of crop 
growing season length as calculated from the planting and harvesting 
dates during the study period. Positive values (blue) and negative values 
(red) represent the prolonged growing season and shortened growing 
seasons, respectively. During the study period, the averaged crop 
growing seasons have extended at a rate of 0.33 days/year (P < 0.01) 
over North America. The extension of crop growing seasons is mainly 
concentrated in the U.S. and Canada (>30◦N) with higher significance 
(Fig. 7). In contrast, most areas of Mexico (<30◦N) indicated shortened 
crop growing seasons. In addition, areas with extended growing seasons 
(slope > 0) displayed a gradual increase along with increasing latitude 
in North America (Fig. 7A). 

Based on the Global Agro-ecological Zones (GAEZ v3.0, http://www. 
fao.org/nr/gaez/en/) (Appendix Fig. S5), we further performed a trend 
analysis to characterize the temporal variations in the length of the crop 
growing season. North America is classified into 12 zones in the GAEZ 

Fig. 3. Distribution of the single and double-cropping systems across North America in 2000 (A) and 2016 (B).  

Table 10 
Temporal trends of cropping intensity using Mann-Kendall test and Sen’s slope.  

Crop rotation Test 

Mann-Kendall test (Z) Sen’s slope (*1000 acres) 

Single crop 2.68 5489* 
Double crop − 0.29 − 1432  

* Represents a 1% significance level. 

Fig. 4. Estimated planting dates (A) and harvesting dates (B) of the first growing season across North America in 2016.  
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v3.0, and the cropland areas fall within six of them. In this study, we 
regrouped two tropics into the region a, four subtropics into the region 
b, three temperate zones into the region c (Appendix Fig. S6). We 
excluded the year 2000 in the trend analysis because of the incomplete 
MODIS EVI time series. The analysis showed various temporal patterns 
in the crop growing season length among eco-regions in North America 
during the study period. Shortened crop growing seasons were mainly 
found in tropics (slope = − 0.146, P < 0.01), while significantly 
extended crop growing seasons occurred over the subtropics (0.48 days/ 
year) and temperate zones (0.65 days/year). 

3.6.2. Correlations between crop phenology and climatic factors 
Our climate analysis suggested that, at the continental scale, planting 

dates had a negative correlation with the average daily minimum/ 
maximum temperatures during the crop sowing season (minimum 
temperature: r = − 0.50, p < 0.01; maximum temperature: r = − 0.62, p 
< 0.01). An increase of 1 ◦C in average daily minimum/maximum 
temperatures from April to June resulted in an advancement of 4.26/ 
4.48 days in crop planting dates (Figs. 8 and 9). For the harvesting dates, 
our results suggested that an increase of 1 ◦C in minimum temperature 
during August through October resulted in a delay of 0.66 days (r =
0.10, P < 0.01); while an increase of 1 ◦C in maximum temperature 
during the same period resulted in an advancement of 2.22 days (r =
− 0.40, P < 0.01). Correlation analysis for the other three phenological 

stages (jointing, heading, and maturity dates) and climatic temperature 
can be found in Appendix Figs. S7 and S8. Over the study period, sig-
nificant negative correlations were found between three crop stages 
(jointing, heading, and maturity dates) and average daily maximum 
temperature. Two of three stages (jointing and heading dates) showed 
advanced trends with the increasing average daily minimum 
temperature. 

4. Discussion 

4.1. Satellite-based crop phenology approach 

Satellite imagery has been widely used for crop phenology moni-
toring over the past decades (Boschetti et al., 2009; Chmielewski et al., 
2004; Hmimina et al., 2013). The NDVI is one of the vegetation indexes 
for extracting crop phenology. For example, You et al. (2013) used a 
threshold-based method and the AVHRR NDVI time series for identi-
fying the start and end of the growing seasons for 43 different agricul-
tural zones in China. Zheng et al. (2016a,b) produced a synthetic NDVI 
time series fused from SPOT 5 and MODIS to extract crop phenology 
over areas with high fragmented farmlands. However, the NDVI appli-
cation is limited by its tendency to saturate at high canopy density and 
coverage (Bausch, 1993). When the crops reach canopy closure, the 
NDVI also tends to saturate (Rouse et al., 1974) and produce inaccurate 

Fig. 5. Mean-Kendal trend tests for the planting (A: Slope, B: P values) and harvesting dates (C: Slope, D: P values) of the first growing season across North America 
(Slope: change rate of crop phenological dates; P values: the confidence of trend analysis; The slope values lying outside the 95% confidence intervals were not 
included in the statistics; pixels with less than 12 years being identified as cropland, which were not included in the Mann-Kendall statistical test). 
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estimates of crop phenology, especially for crop heading date detection 
(Son et al., 2014). Also, the NDVI is very sensitive to soil background 
effects at incomplete vegetative cover conditions, which may bring more 
uncertainties in the early stage of crop growth when the LAI is still low 
(Huete, 1988). In contrast, EVI is constructed by decoupling the canopy 
background signal and reducing atmospheric influences, which can 
overcome the saturation and soil noise problems of NDVI (Huete et al., 
1997). Using the smoothed EVI time series, Sakamoto et al. (2005) 
proposed the wavelet transform-based method to retrieve the rice 
planting, heading, and harvesting dates in Japan successfully. But the 
mother wavelet and the threshold used for determining each pheno-
logical stage vary with regions and crop species, limiting the method’s 

application for other crops and over large areas. 
Generally, remote-sensing-based approaches to detect plant 

phenology can be classified into two general categories, i.e., threshold- 
based methods and VI change detection methods (Zeng et al., 2020). 
Threshold-based methods use identical thresholds to determine crop 
phenological stages in all cropping systems. For example, Delbart et al. 
(2005) adopted 20% of the NDVI amplitude to estimate senescence dates 
of both croplands and natural vegetation types. White et al. (1997) used 
50% of the NDVI amplitude to determine the start and end of the season. 
Threshold-based methods may generally describe changing patterns of 
crop phenology, but cannot catch discrepancies among various crops 
and different cropping systems (Huang et al., 2019). VI change detection 
methods retrieve the crop phenological dates through detecting the 
changing characteristics of the VI time series curve, such as some key 
points in the VI and the first derivative of VI or the changing rates of 
curvature (Zeng et al., 2020). VI change detection method was consid-
ered an effective way to extract the phenological metrics for general 
vegetation types. For example, Sakamoto et al. (2010) used a Two-step 
Filtering method to analyze the changing characteristics of VI curves and 
detect the specific phenological dates of corn and soybean in eastern 
Nebraska. However, changing characteristics derived from VI profile 
might be sensitive to non-vegetation-related variations such as noise 
components caused by aerosols and bidirectional reflectance distribu-
tion or other climatic factors, resulting in significant uncertainties in the 
phenology timing estimates. Besides, complicated crop planting pat-
terns, such as double or multiple cropping systems, make the crop 
phenology detection more difficult over the large area (Ogle et al., 
2005). 

In this study, we combined the advantages of both threshold-based 
and VI change detection methods by using specific key points of EVI 
cures and its first/second derivatives, along with the dynamic thresholds 
to confine the ranges of each stage. We expanded to quantify five main 
crop phenological phases (i.e., the dates of planting, jointing, heading, 
maturity, and harvesting) of seven major crop types over North America 
during 2000–2016. Compared with the VI change detection method 
without setting thresholds, our improved approach showed better per-
formances (Appendix Table S4). The estimated crop phenological stages 
also demonstrate a more favorable agreement with ground information 
than previous studies (Section 3.3). 

Fig. 6. Changing trend of averaged planting dates (A) and harvesting dates (B) 
in North America (p < 0.05) (pixels that were identified as cropland for less 
than 12 years were not included in the Mann-Kendall statistical test). 

Fig. 7. Mean-Kendal trend tests for the crop growing season (A: Slope, B: P values) across North America (pixels identified as cropland for less than 12 years were not 
included in the Mann-Kendall statistical test). 
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4.2. Changing trends in crop phenology 

The temporal and spatial variations in crop phenology have been 
widely investigated in previous studies. Spatially, many studies indi-
cated a latitude-dependent changing pattern in crop phenology, partic-
ularly in mid and high Northern Hemispheres (Chmielewski et al., 2004; 
Liu et al., 2017a,b; Luo et al., 2020; Yu et al., 2012). Our spatially 
explicit results confirmed these findings by showing a slightly increasing 
trend in planting and harvesting dates with latitudinal gradients from 
20◦ to 70◦N in North America (Fig. 4). Crop phenology in Mexico did not 
exhibit a latitudinally changing pattern. It might be partially attributed 
to the non-obvious latitudinal gradient of temperature in the tropical 

region (Ogle et al., 2005), different cropping systems (Hansen et al., 
2016), and other factors related to management practices (Martin et al., 
2005). 

As for temporal variations, many studies have reported that some 
crop phenological stages, such as planting and harvest dates, had either 
delayed or advanced over recent decades. For example, an analysis of 
observations from phenological network stations showed earlier corn 
planting dates (0.17 days/year) in Germany from 1961 to 2000 
(Chmielewski et al., 2004). Using long-term VI time series, Wang et al. 
(2017) observed an advance in spring green-up date for winter wheat 
(0.18 days/year) in North China Plain over the period 1982–2013. Sacks 
and Kucharik (2011) reported advanced planting trends (0.40 days/year 
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Fig. 8. Interannual changes in estimated planting and harvesting dates and average daily minimum temperatures for planting (A, B: April to June) and harvesting 
seasons (C, D: August to October) in North America during 2000–2016. 
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for corn and 0.50 days/year for soybean) in the U.S. during 1981–2005. 
Zhu et al. (2012) observed the delayed dormancy (0.55 days/year) 
during 1982–2006, with mean rates averaged by natural vegetation and 
crops in North America. These studies are limited to either specific crop 
types or phenological stages, with few at large scales and over long time 
series. In this study, we derived spatially explicit five crop phenological 
stages of seven crop types at the North America continental scale. Our 
estimated changes in planting and harvesting dates fall within the 
reasonable range compared to previous studies, despite slightly more 
apparent changing rates (Section 3.5, Fig. 6) due to different data 
sources and study periods. Our spatially explicit estimates of multiple 
phenological stages for seven major crops provide more detailed infor-
mation for crop yield prediction and climate change assessments at large 
scales. 

The length of growing season may have significant effects on sea-
sonal variations in carbon, water, and nutrient processes, as well as land 
surface energy balance, therefore have implications for crop security 
and terrestrial biogeochemical cycles. Several studies have suggested 
the extended or shortened period for various crop types in different 
regions. For example, Chen et al. (2012) found that the growth durations 
of rice, corn, and soybean in Northeast China have prolonged by 14 
days, 7.0 days, and 2.7 days since the 1950s, respectively. Sacks and 
Kucharik (2011) presented that the crop growth period in the U.S. has 
been longer by 0.50 days/year for corn and 0.31 days/year for soybean 
from 1981 to 2005. Our study also reported a prolonged crop growing 
season length, especially in the temperate and subtropical areas (Section 
3.6.1, Fig. 7 and Appendix Fig. S6). Our extended crop growing period is 
well supported by some previous studies based on the intensive ground 
observations (Tao et al., 2014; Zhang et al., 2014) and regional esti-
mations (Peltonen-Sainio et al., 2009). The concurrent of advanced 
planting and delayed harvesting contributes to the prolonged crop 
growing seasons in North America. The crop variety shift aiming to 
improve crop production may also extend the growing season (Tao et al., 
2012; Wang et al., 2013, 2018). In addition, irrigation, intensive man-
agement practices such as reduced or zero-till, cover crop, and fertilizer 
use have been significantly improved during the last several decades, 
which may have positively affected crop phenology development (He 
et al., 2015). 

4.3. Crop phenology in correlation with climate factors 

Previous studies have indicated that climate changes have promoted 
variations in vegetation phenology (Oteros et al., 2015; Sacks et al., 
2010; Sparks et al., 2005; Wang et al., 2016). Temperatures have been 
regarded as the primary control of vegetation phenological progress 
(Badeck et al., 2004; Piao et al., 2019). The distinct responses of crop 
phenology to temperatures in the spring or autumn season were re-
ported in many studies (e.g., He et al., 2015; Kucharik, 2006; Tao et al., 
2014; Zhang et al., 2019). Some studies found that temperature changes 
had led to appreciable responses in crop phenology in many parts of the 
Northern Hemisphere. For example, Tao et al. (2006) analyzed obser-
vations on agro-meteorological stations and found that the planting 
dates of corn were significantly related to the spring temperatures 
during 1981–2000, with an advance of 2.12 days and 2.28 days for each 
1 ◦C rise in minimum and maximum temperatures, respectively. 
Chmielewski et al. (2004) showed that an increase of 1 ◦C in average 
temperatures between February and April led to an advanced beginning 
of the growing season of fruit trees and crops by 4.7 days in Germany 
from 1961 to 2000. Our study confirmed these findings and suggested 
that an increase of 1 ◦C in average daily minimum/maximum temper-
atures from April to June might have resulted in an advancement of 
4.26–4.48 days in crop planting dates. Accordingly, an increase of 1 ◦C 
in average daily minimum/maximum temperature from August to 
October might have resulted in a delay of 0.66 days or advancement of 
2.22 days in crop harvesting dates in North America during the study 
period. 

Vegetation growth in the North Hemisphere mid-high latitudes is 
particularly sensitive to temperature changes in spring (Nemani et al., 
2003; Slayback et al., 2003; Piao et al., 2019; Schwartz et al., 2006). This 
is consistent with our results, showing more evident changes in the 
planting dates than the harvesting dates in response to temperature 
changes. When investigating spatial patterns, our results displayed both 
advances and delays occurring across the crop areas (Fig. 5) in response 
to highly diverse climatic conditions. This finding agrees with Schwartz 
et al. (2006), which also found spatially heterogeneous of the start of 
season across North America. 

4.4. Uncertainties and future needs 

Our study involved mutiple datasets and a range of statistical ap-
proaches, which potentially introduced uncertainties to the estimated 
results. First, we only used the 2005 and 2010 land use and cover 
datasets because annual land cover maps were not available for entire 
North America; this might bring some uncertainties to identifying crop 
phenological stages. Second, the winter wheat is generally planted in 
late autumn and enters the dormant period before the next year; its EVI 
curves tend to show two peaks due to the over-wintering stages, which 
may result in biased identification of the planting dates. Third, we 
detected the harvesting date of the first season as the planting date of the 
second season. We acknowledge this scheme may not work for all situ-
ations and could be improved when more detailed phenology informa-
tion for the double cropping system is available. Forth, the perennial 
grasses were included in the classification of cropland in this study; in 
this case, most parts of the forage grass with two harvest seasons were 
identified as double cropping systems, which might result in over- 
estimation of the distribution of double crops. Moreover, the esti-
mated crop phenological stages might have relatively higher un-
certainties over areas with more fragmented croplands due to the effects 
of mixed and perimeter pixels at a 500 m spatial scale. In addition, the 
prolonged crop growing season might be overestimated because pasture 
or forage grass was difficult to separate from cropland in phenology 
identification at coarse spatial scales. In the next step, phenological 
dates of winter wheat crop should be included as more crop-specific 
distribution maps are available. Data fusion of high-resolution satellite 
imagery is needed for reducing uncertainties in fragmented areas where 
mixed cropland pixels are dominant. More ground observations and 
long-term time series crop-specific maps will booster the accuracy of 
crop phenology identification. 

5. Conclusions 

This study quantified spatiotemporal patterns in five phenological 
stages of seven crop types across North America from 2000 to 2016 
based on the MODIS EVI time series data. The estimated cropping in-
tensity and phenological stages agree favorably with those observed 
from field surveys, satellite-based maps, and results from other studies. 
Our results demonstrated that the improved approach is capable of 
realistically capturing changing patterns in crop phenology at large 
scales. This approach overcomes the overfitting flaws of the polynomial 
function at the start and end of the growing season. It can be applied to 
other regions where no substantial site-level field observations for 
parameterization and validation available. To the best of our knowl-
edge, this study offers the first attempt to provide spatially-explicit time 
series information of five major crop phenological dates with a moderate 
spatial resolution at the continental scale. Our study sheds light on how 
the crop phenology spatially responded to climate change. The derived 
crop phenological datasets can be used to drive process-based crop or 
ecosystem models for large-scale crop yield prediction and biogeo-
chemical dynamics assessment, and help to formulate climate-resilient 
development strategies. 
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