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Accurate estimation of the terrestrial latent heat flux (LE) for each plant functional type (PFT) at high spatial and
temporal scales remains a major challenge. We developed a satellite-based hybrid algorithm to determine the
Priestley–Taylor (PT) parameter for estimating global terrestrial LE across multiple biomes. The hybrid algorithm
combines a simple empirical equationwith physically based ecophysiological constraints to obtain the sumof the
weighted ecophysiological constraints (f(e)) from satellite-based normalized difference vegetation index (NDVI)
and ground-measured air temperature (Ta), relative humidity (RH), vapor pressure deficit (VPD) and LE for 2000
to 2009 provided by 240 globally distributed FLUXNET eddy covariance (ECOR) tower sites. Cross-validation anal-
ysis indicated that the optimization at a PFT level performedwell with a RMSE of less than 0.15 and a R2 between
0.61 and 0.88 for estimatedmonthly f(e). Cross-validation analysis also revealed good performance of the hybrid-
based PTmethod in estimating seasonal variability with a RMSE of the monthly LE varying from 4.3 W/m2 (for 6
deciduous needleleaf forest sites) to 18.1 W/m2 (for 34 crop sites) and with a R2 of more than 0.67. The
algorithm's performance was also good for predicting among-site and inter-annual variability with a R2 of
more than 0.78 and 0.70, respectively. We implemented the global terrestrial LE estimation from 2003 to 2005
for a spatial resolution of 0.05°by recalibrating the coefficients of the hybrid algorithm using Modern Era Retro-
spective Analysis for Research and Applications (MERRA) meteorological data, Moderate Resolution Imaging
Spectroradiometer (MODIS) NDVI product and ground-measured LE. This simple but accurate hybrid algorithm
provides an alternativemethod formapping global terrestrial LE, with a performance generally improved as com-
pared to other satellite algorithms that are not calibratedwith tower. The calibrated f(e) differs for different PFTs,
and all driving forces of the algorithm can be acquired from satellite and meteorological observations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Terrestrial latent heat flux (LE), the flux of heat from the Earth's
surface to the atmosphere for the processes of water evaporation and
vegetation transpiration, is an important component of the Earth's
surface energy budget and a key process in land surface–atmosphere
interactions (Jung et al., 2010; Liang, Wang, Zhang, & Wild, 2010; Mu,
Zhao, & Running, 2011; Vinukollu, Meynadier, Sheffield, & Wood,

2011, Vinukollu, Wood, Ferguson, & Fisher, 2011; Wang & Dickinson,
2012; Wang, Dickinson, Wild, & Liang, 2010a, 2010b). Accurate detec-
tion of spatio-temporal variations of LEwith high accuracies at regional
or global scales is essential for understanding the globalwater cycle and
carbon uptake through photosynthesis. Since the 1990's, the eddy
covariance (ECOR) flux measurements provided by FLUXNET projects
have been considered to be a good micrometeorological method to
measure LE exchanges between the atmosphere and terrestrial ecosys-
tems (Baldocchi et al., 2001; Fisher, Tu, & Baldocchi, 2008; Liu, Xu, Zhu,
Jia, & Zhu, 2013, Liu et al., 2011; Twine et al., 2000; Yuan et al., 2010).
However, it is still difficult to estimate LE at a regional scale because
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the spatial representation of sparse point LE estimates is questionable
due to the complex heterogeneity of terrestrial ecosystems.

Satellite remote sensing has greatly improved global scale estimates
of land surface variables (Liang, Li, & Wang, 2012) (e.g., surface solar ra-
diation (Rs), net radiation (Rn), land surface temperature (Ts), leaf area
index (LAI), vegetation index (VI), albedo andbiome type) that are linked
to LE (Los et al., 2000;Mu, Heinsch, Zhao, & Running, 2007;Wang,Wang,
Li, & Sparrow, 2007). In general, satellite-based LE algorithms integrate
satellite andmeteorological observations to estimate regional LE for pro-
viding spatially distributed LE datasets. During the past few decades,
many satellite-based LE algorithmshave been characterized by the paral-
lel development of empirical/statistical algorithms that lack dynamics of
evapotranspiration (ET) process (Jackson, Reginato, & Idso, 1977; Jin,
Randerson, & Goulden, 2011; Jung et al., 2011; Wang & Liang, 2008;
Yang et al., 2006; Yao, Liang, Qin, Wang, & Zhao, 2011) and complicated
physical models that contain realistic mechanisms (Allen, Tasumi, &
Trezza, 2007; Anderson, Norman, Diak, Kustas, & Mecikalski, 1997;
Bastiaanssen, Menenti, Feddes, & Holtslag, 1998; Fisher et al., 2008;
Kustas & Norman, 1996; Miralles et al., 2011; Monteith, 1965; Mu
et al., 2011; Norman, Kustas, & Humes, 1995; Priestley & Taylor,
1972; Yao et al., 2013). Therefore, the developmental trend of LE algo-
rithms has tended to increased applicability, as opposed to complexity
(Federer, Vörösmarty, & Fekete, 1996; Fisher et al., 2008).

Satellite-based empirical/statistical LE algorithms have been scaled
up from site to regional scales by relating observed LE to satellite-
based vegetation parameters and other key meteorological variables
(Wang et al., 2007). Long-term ground measurements from the Atmo-
spheric Radiation Measurement (ARM) and FLUXNET projects have
provided an opportunity to develop a series of empirical/statistical LE
algorithms (Wang & Liang, 2008; Wang et al., 2007, 2010a, 2010b).
Other data-driven methods, such as model tree ensembles (MTE)
(Jung et al., 2010), support vector machine (SVM) (Yang et al., 2006)
and artificial neural network (ANN) (Lu & Zhuang, 2010), are also
used to build relationships between system inputs (Rn, LAI, VI and Ta)
and outputs (LE) using training datasets that are representative of all
the behaviors found in the systems (Chen et al., 2014). Although these
empirical algorithms have a comparable accuracywith othermore com-
plicated physical methods (Jiménez et al., 2011; Mueller et al., 2011),
they require further recalibration for different biomes due to their
limited training data at certain sites. Much effort has been dedicated

to proposing universal empirical LE algorithms that are suitable formul-
tiple biomes, as reviewed in the literature (Kalma, McVicar, & McCabe,
2008; Wang et al., 2007, 2010a, 2010b; Yuan et al., 2010; Zeng et al.,
2014). However, the evaporation fraction (EF), the ratio of LE/Rn, differs
greatly in different biomes due to physiological differences under simi-
lar environmental conditions (Betts, Desjardins, & Worth, 2007;
Margolis & Ryan, 1997). Therefore, there are large errors in the estimat-
ed LE from the universal empirical LE algorithms when land cover types
are ignored.

Satellite-based physical LE algorithms have been developed to esti-
mate LE based on the Monin–Obukhov Similarity Theory (MOST) and
the Penman–Monteith (PM) equation driven by satellite and meteoro-
logical observations (Wang & Dickinson, 2012). The traditional one-
and two-source models (Kustas & Daughtry, 1990; Shuttleworth &
Wallace, 1985), such as the Surface Energy Balance System (SEBS) (Su,
2002), the Surface Energy Balance Algorithm for Land (SEBAL) algorithm
(Bastiaanssen et al., 1998), the Satellite-Based Energy Balance for
Mapping Evapotranspiration with Internalized Calibration (METRIC)-
model (Allen et al., 2007) and the Two-Source LE model coupled with
Atmosphere-Land Exchange Inverse (ALEXI) model (Anderson et al.,
1997; Norman et al., 1995), use surface air temperature gradients
(Ts–Ta) or time series of satellite-retrieved Ts to obtain sensible heat
flux (H) and LE (Tang& Li, 2015). Yet, the use of Ts in the energy residual
equation to estimate regional or global terrestrial LEwill lead to greater
than 50% errors because advection ofH from the surrounding landscape
influences the calculation of H and LE at a given time and place (Gowda
et al., 2008; Stewart et al., 1994; Zhang, Kimball, Nemani, & Running,
2010, Zhang et al., 2010). To overcome this problem, Mu et al. (2011)
revised a beta version (Mu et al., 2007) developed from the Cleugh,
Leuning, Mu, and Running (2007) version of the PMmethod to estimate
global terrestrial LE. That algorithmconsidered the differences of surface
resistance for different biomes andwas updated to generate theModerate
Resolution Imaging Spectroradiometer (MODIS) LE product (MOD16)
driven byMODIS LAI, albedo and land cover, and the Modern-Era Retro-
spective Analysis for Research and Applications (MERRA) data provided
by the National Aeronautics and Space Administration (NASA) Global
Modeling and Assimilation Office (GMAO) (Mu et al., 2011). However,
the sensitivity of these PM algorithms to the parameterization of resis-
tances and error propagation through complicated calculations will lead
to lower accuracy compared with other LE algorithms using empirical

Fig. 1. The spatial distribution of 240 eddy covariance flux tower sites used in this study.
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formulation of the evaporative process (Ershadi, McCabe, Evans, Chaney,
& Wood, 2014; Fisher et al., 2009).

An alternative approach, the Priestley–Taylor (PT) algorithm, is a sim-
plified PM method that avoids parameterizations of aerodynamic and
surface resistance without decreasing the accuracy of the LE estimates
(Fisher et al., 2008; Jin et al., 2011; Priestley & Taylor, 1972; Yao et al.,
2013). The PT algorithm uses a coefficient multiplier (also named the
PT parameter, α) to replace the atmospheric demand and surface resis-
tance. In general, α can range from 0 (no water) to 1.26 (wet surface)
and varies with soil moisture and plant condition in different regions
(Brutsaert & Chen, 1995; Detto, Montaldo, Albertson, Mancini, & Katul,
2006; Sumner & Jacobs, 2005). Currently two types of algorithms have
been developed to determine α for regional LE estimation using remote
sensing and meteorological observations: (1) Ts-VI triangular methods
which use the spatial variation of Ts (or day-night Ts difference, ΔTs)
and normalized difference vegetation index (NDVI) to interpolate α
and EF for LE estimation (Jiang & Islam, 2001; Price, 1990; Tang, Li, &
Tang, 2010;Wang, Li, & Cribb, 2006), and (2) ecophysiological constraint
methods that use the α of the potential LE to multiply ecophysiological
constraints, such as LAI, Ta, soil moisture, and vegetation moisture, to
estimate actual LE (Fisher et al., 2008; Jin et al., 2011; Miralles et al.,
2011). Ts-VI triangular methods have been widely used to estimate
regional LE because they only require Ts and NDVI derived from remote
sensing data without any auxiliary data. Yet these methods do not fully
consider the impacts of Ts-VI on different land cover types that have
different aerodynamic resistance (Carlson, 2007), and thus lack robust-
ness at the global scale. Although the PT algorithms based on ecophysio-
logical constraints (i.e., Fisher et al., 2008) have higher performance
when compared to PM methods due to their excellent representation
of universal physical governing laws, aswell as partitioning of total evap-
oration, these approaches are applied uniformly across the globe, thus
ignoring the differences of ecosystem types to which further calibration
and optimization could result in even better estimates (Ershadi et al.,
2014; Fisher et al., 2008, 2009; Jin et al., 2011; Miralles et al., 2011; Yao
et al., 2013).

In this study, to reduce uncertainties in global LE estimation using
the universal empirical LE algorithms or the universal α parameteriza-
tion of PT algorithms, we developed an optimized hybrid algorithm to
determine the PT parameter for global terrestrial LE estimation across
multiple biomes by combining a simple empirical equation with physi-
cally based ecophysiological constraints (i.e., PT-JPL: Fisher et al.,
2008) calibrated to measurements from global eddy covariance, sat-
ellite and meteorological observations. The objectives of this study are
to (1) describe this satellite-based hybrid algorithm for parameteriza-
tion of the PT parameter to obtain the sum of the weighted ecophysio-
logical constraints (f(e)); (2) evaluate the hybrid-algorithm and the
corresponding PT method based on a series of cross-validations across
multiple biomes using global long-term FLUXNET measurements from
240 flux tower sites; and (3) revise the coefficients of the hybrid algo-
rithm usingMODIS data andMERRAmeteorological data for estimating
annual global terrestrial LE averaged over the period of 2003 to 2005
with a spatial resolution of 0.05° across multiple biomes.

2. Data

2.1. Data at eddy covariance flux tower sites

Ground-measurements of eddy covariance (ECOR) were used to
validate and evaluate algorithm performance. Data from 240 ECOR
flux tower sites, including those from LathuileFlux, AsiaFlux, AmeriFlux,
the Asian AutomaticWeather Station Network (ANN) Project supported
by the Global Energy and Water Cycle Experiment (GEWEX) Asian
Monsoon Experiment (GAME ANN), the Coordinated Enhanced Obser-
vation Network of China (CEOP) and some individual principal investi-
gators (PIs) of the FLUXNET project were used in this study. These sites
are mainly distributed in North America, Asia and Europe, with only 5

sites in Africa, 5 in Australia and 7 in South America (Amazon region)
(Fig. 1). These sites covered 9 major global terrestrial biomes: cropland
(CRO; 34 sites), savanna (SAW; 10 sites), shrubland (SHR; 14 sites),
evergreen needleleaf forest (ENF; 64 sites), evergreen broadleaf forest
(EBF; 16 sites), deciduous needleleaf forest (DNF; 6 sites), deciduous
broadleaf forest (DBF; 28 sites), mixed forest (MF; 12 sites) and grass
and other types (GRA; 56 sites). The data include half-hourly or hourly
incoming solar radiation (Rs), soil heat flux (G), Rn, Ta, vapor pressure
deficit (VPD), relative humidity (RH), H and LE. Gaps in the data were
filled using themethod described in Reichstein et al. (2005) that utilizes
both the co-variation of fluxes with meteorological variables and the
temporal autocorrelation of fluxes. The half-hourly or hourly LE, H and
meteorological variables were subsequently aggregated into daily and
monthly means. If missing data was more than 25% of the entire data
at a given day, the value of this daywas indicated asmissing. Otherwise
daily values were obtained by multiplying averaged hourly rate by 24
(hours). Similarly, monthly values were obtained by multiplying aver-
aged daily rate by 30 or 31 (days). When missing data was more than
25% of entire month data, the monthly values were also indicated as
missing. The data cover the period from 2000 through 2009, and each
flux tower has at least one year's worth of data.

Because the ECOR method suffers an energy imbalance problem,
where the measured available energy (Rn − G) is greater than the
sum of the measured LE and H (Foken, 2008; Jung et al., 2010; Wilson
et al., 2002), we corrected the measured LE based on the fixed Bowen
ratio method proposed by Twine et al. (2000):

LEc ¼
LEo
Rc

ð1Þ

Rc ¼
LEo þ Ho

Rn−G
ð2Þ

Fig. 2. An example of the time series of the 8-day f(e), Ta, f(sm) and f(vm) derived from
ground-measured data during January 2002–December 2006 at Au-How site. Here.
f(sm) = RHVPD, f(vm) = (k3NDVI − k4)VPD. Both k3 and k4 of Eq. (11) were calibrated
by using linear regression using the observed data collected from Au-How site.
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where LEc is the corrected latent heat flux, LEo andHo are the uncorrect-
ed latent heat flux and sensible heat flux, respectively. Rc is the energy
closure ratio.

2.2. Satellite and reanalysis datasets

Todevelop and revise this satellite-based hybrid algorithm for global
terrestrial LE estimation, in this study we used a MODIS global 16-day
NDVI product (MOD13A2) with a 1-km spatial resolution, which was
downloaded from the Oak Ridge National Laboratory Distributed Active
Center (ORNL DAAC) website (http://daac.ornl.gov/MODIS/). The daily
NDVI values were temporally interpolated from the 16-day averages
using linear interpolation. We only used the NDVI values of pixels that
covered the flux tower sites and used the quality control (QC) flags to
exclude the poor quality, cloud contaminated NDVI. We also used
MERRA reanalysis meteorological data (Rn, Ta, RH and VPD) with spatial
resolution of 1/2° × 2/3° provided by the NASA GMAO (Global Modeling
and Assimilation Office, 2004). Detailed information on the MERRA
dataset can be downloaded from the website (http://gmao.gsfc.nasa.
gov/research/merra). The MERRA data were spatially interpolated
to 1 km using the method described in Zhao, Heinsch, Nemani, and
Running (2005) that exploits a cosine function and the four GMAO-
MERRA cells to smooth sharp changes in a pixel.

To estimate global terrestrial LE at a spatial resolution of 0.05° from
2003 to 2005, we also used the method described in Zhao et al. (2005)
to interpolate the MERRA data to 0.05°. We also used the Collection 5
MODIS NDVI (MOD13C1: CMG, 0.05°) product (Huete et al., 2002) and
Collection 4 MODIS land cover (MOD12C1: CMG, 0.05°) product (Friedl

et al., 2002) to drive the hybrid algorithm for global LE estimation across
multiple biomes. We filled in the missing and unreliable NDVI at 0.05-
degree spatial resolution using the method described by Zhao et al.
(2005).

3. Methods

3.1. Hybrid algorithm-based Priestley–Taylor model logic

Wedeveloped an algorithm from the PTmodel of (Fisher et al., 2008;
Priestley & Taylor, 1972):

LE ¼ ϕ
Δ

Δþ γ
f eð Þ Rn−Gð Þ ð3Þ

where LE is the latent heat flux inW/m2, ϕ is the PT coefficient for a wet
surface condition (1.26) and represents the maximum value of α, Δ is
the slope of the saturated vapor pressure curve (kPa °C−1), γ is the psy-
chrometric constant (kPa °C−1), Rn and G are the surface net radiation
and soil heat flux in W/m2, respectively, and f(e) is the sum of the
weighted ecophysiological constraints to determine the PT parameter
by multiplying ϕ, which can be calculated using atmospheric moisture
and vegetation indices (Fisher et al., 2008; Yao et al., 2013). The value
of f(e) varies from 0 to 1. Accurate parameterization of f(e) is a tough
problem because it is difficult to characterize the dynamics of the ET
process based on the limited data. Considering that energy, water and
temperature are the three key potential constraints that drive soil evapo-
ration and vegetation transpiration and that the PTmodel includes an en-
ergy term (Rn − G), we introduce a simple empirical linear combination

Fig. 3. Scatter plots of the observed monthly f(e) versus f(sm) at the site scale for each PFT. f(e) is inverted from Eq. (3) using ground-measured Rn, LE, Ta and G collected from flux tower
sites. f(sm) is calculated using RH and VPD collected from flux tower sites.
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of air temperature and physical-based water parameters to estimate
f(e).

f eð Þ ¼ a0 þ a1 f Tað Þ þ a2 f mð Þ ð4Þ

f mð Þ ¼ b0 þ b1 f emð Þ þ b2 f tmð Þ þ b3 f wsð Þ þ b4 f imð Þ ð5Þ

where ai (i=0,…,2) and bi (i=0,…,4) are the empirical coefficients,
f(Ta) is the temperature constraint, and f(m) is the moisture con-
straint, which can be considered to be a linear equation of unsaturat-
ed soil moisture constraint f(em), vegetation transpiration moisture
constraint f(tm), saturated soil moisture constraint f(ws) and canopy
interception moisture constraint f(im). In our PT algorithm, both
f(ws) and f(im) represent themaximum LEwith sufficient water con-
ditions, namely,

f wsð Þ ¼ 1 ð6Þ

f imð Þ ¼ 1 ð7Þ

f(Ta) for both surface soil and vegetation follows the empirical equa-
tion detailed by Wang et al. (2007):

f Tað Þ ¼ c0 þ c1Ta ð8Þ

where ci (i = 0,1) is the empirical coefficient. f(em) is mainly con-
trolled by soil moisture. In our algorithm, we chose RHVPD as intro-
duced by Fisher et al. (2008) to parameterize f(em) based on the
complementary hypothesis that surface moisture status is linked to

the evaporative demand (ED) of the atmosphere, indicating that
soil moisture is characterized by the adjacent atmospheric moisture
(Bouchet, 1963; Fisher et al., 2008). Thus, f(em) can be expressed as:

f emð Þ ¼ d0 þ d1RHVPD ð9Þ

where di (i=0, 1) is the empirical coefficient. f(tm) is closely related
to vegetation canopy conductance (gs). According to previous stud-
ies, gs mainly depends on photosynthetic leaf area, plant moisture,
Ta and VPD (Jarvis, 1976; Mu et al., 2007, 2011; Wang & Dickinson,

Fig. 4. Scatter plots of the observed monthly f(e) versus f(vm) at the site scale for each PFT. f(e) is inverted from Eq. (3) using ground-measured Rn, LE, Ta and G collected from flux tower
sites. f(vm)= (k3NDVI− k4)VPD, which is calculated usingMODIS NDVI and VPD collected from flux tower sites. Both k3 and k4 of Eq. (11) were calibrated by using linear regression using
the observed data collected flux tower sites.

Table 1
Coefficients derived from global plant functional type-based optimization of Eq. (11) using
MODIS NDVI and tower-specific meteorology. DBF: deciduous broadleaf forest; DNF: decidu-
ous needleleaf forest; EBF: evergreen broadleaf forest; ENF: evergreen needleleaf forest; MF:
mixed forest; SAW: savannas and woody savannas; SHR: open shrubland and closed shrub-
land; CRO: cropland; GRA: grassland, urban and built-up, barren or sparsely vegetated.

Plant functional types Coefficients for different PFTs

k0 k1 k2 k3 k4

CRO 0.2093 0.0024 0.5558 0.1651 0.4860
GRA 0.2734 0.0070 0.4556 0.2329 0.4399
SAW 0.1749 0.0022 0.4972 0.1573 0.4279
SHR 0.2101 0.0061 0.3729 0.1595 0.3102
DNF −0.2442 0.0119 0.7722 0.1474 0.5500
DBF −0.0456 0.0114 0.5417 0.1510 0.4118
MF 0.4968 0.0110 0.0724 0.7139 0.7495
EBF 0.2740 0.0047 0.3820 0.1170 0.2190
ENF 0.1730 0.0091 0.3680 0.0656 0.0765
Average 0.1691 0.0073 0.4464 0.2122 0.4079
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2012). In our algorithm, we used satellite-based NDVI and VPD to
parameterize f(tm), because NDVI, which has no model-related
errors, is sensitive to LAI, and (e1NDVI − e2)VPD is used to reduce
the maximum gs when VPD is high enough to inhibit photosynthesis
(Leuning, 1995; Misson, Panek, & Goldstein, 2004; Mu et al., 2007;
Wang et al., 2010a, 2010b; Xu & Baldocchi, 2003), such that:

f tmð Þ ¼ e0 þ e1NDVI−e2ð ÞVPD ð10Þ

where ei (i = 0,…,2) is the empirical coefficient. Eq. (10) shows that
f(tm) is diagnosed by the NDVI and VPD terms, and the temperature
terms are directly included in f(e). Combining Eqs. (3)–(10), we sim-
plify these empirical coefficients and obtain the hybrid algorithm-
based PT equation:

LE ¼ ϕ
Δ

Δþ γ
Rn−Gð Þ k0 þ k1Ta þ k2RHVPD þ k3NDVI−k4ð ÞVPD

h i
ð11Þ

ki (i=0,…,4) is the empirical coefficient. For simplicity, we assumed
that f(sm) = RHVPD and f(vm) = (k3NDVI− k4)VPD. We also estimat-
ed G based on a simple statistical method driven by fractional vege-
tation cover (fc) and Rn (Halliwell & Rouse, 1987; Rouse, 1984; Yao
et al., 2013; Zhang et al., 2009):

G ¼ ag 1− f cð ÞRn ð12Þ

f c ¼
NDVI−NDVImin

NDVImax−NDVImin
ð13Þ

where ag is a constant (0.18).NDVImax and NDVImin are themaximum
and minimum NDVI during the study period and are set as invariant
constants: 0.95 and 0.05, respectively (Tucker, 1979; Zhang et al.,
2009). fc will be replaced by one of the satellite products that are
based on more sophisticated estimation algorithms (Jia et al., 2015;
Liang et al., 2012).

Advantages offered by the hybrid algorithm-based PT method over
other complicated physical LE models are that 1) it is easy to operate
for routine, long-term mapping of LE because it only requires Rn, Ta,
NDVI, RH and VPD and avoids wind speed (WS) and soil moisture. Reli-
able soil moisture and WSmeasurements that are required to parame-
terize LE in many algorithms are unavailable at large scales (Gao &
Dirmeyer, 2006;McVicar et al., 2012;Wagner et al., 2003); 2) it reduces
the errors in the required forcing data by avoiding the use of the
temperature or humidity differences and by overcoming use of the
computational complexities of aerodynamic and surface resistance
(Wang & Dickinson, 2012); and 3) it considers the differences in the
coefficients of the Eq. (11) for different PFTs to improve the accuracy
of LE estimation.

3.2. Cross validation

The parameters of the Eq. (11) were calibrated by linear regression
using the observed data (EC ground-measured data and MODIS NDVI
product) collected from a sufficient number of representative flux
towers. To validate the estimated f(e) and LE accuracy, we evaluated
the performance of the satellite-based hybrid algorithm and the corre-
sponding PT model using a five-fold cross validations method, which
randomly stratified the dataset into five groups with approximately
equal numbers of samples (Jung et al., 2011). We independently vali-
dated the estimated LE for each of the five groups based on the calibrat-
ed coefficients of Eq. (11), using data from the remaining four groups.
We performed the optimizations for the parameters in Eq. (11) for
each PFT. The optimization is based on the least square method to min-
imize the difference between the estimated f(e) using satellite and me-
teorological forcing data and the observed f(e) inverted from Eq. (3)
using ground-observed LE, Ta, Rn and G from flux tower sites. We also
summarized the squared correlation coefficients (R2), root mean square

error (RMSE), bias and p values of the estimated f(e) and LE and those
derived from the flux tower data to demonstrate the relative predictive
errors.

To evaluate the ability of our method to predict the spatio-temporal
variations in LE, we used the observed and estimated data to test three
categories of LE variability: (1) seasonal variation, (2) among-site varia-
tion, and (3) annual anomalies. We first performed a series of cross-
validations of LE seasonal cycle by comparing the daily (monthly) esti-
mated LE and the observed LE. To test the among-site variation, we val-
idated the average values of the measured and predicted LE at each site
over the entire period. To assess howwell themodel predicts long-term
variations in LE, we averaged themeasured andpredicted LE into annual
values at each site and removed the multiyear average from the annual
values to acquire annual LE anomaly for each site. We chose flux tower
sites that had at least three years' worth of data.

For comparisonwith LE estimates based on the other algorithms, we
used a simple holdout method that randomly divided the dataset into
two groups with approximately equal numbers of samples (Yao, Liang,
Li, et al., 2014). We validated daily LE using data from the first group

Fig. 5. Sensitivity of f(e) to variations in the amounts of a) Ta (RH=0.7,NDVI=0.7), b)RH
(Ta=25 °C,NDVI=0.7) and c)NDVI (Ta=25 °C, RH=0.7). Other input variables are set
as constants when one variable changes.
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based on the calibrated coefficients of Eq. (11) using data from the
second group andwe then validated daily LEusing data from the second
group based on the calibrated coefficients of Eq. (11) using data from
the first group.

3.3. Comparison with other LE algorithms

3.3.1. MOD16 LE algorithm
AMOD16global LE retrieval algorithm is based on thewell-established

Penman–Monteith logic (Monteith, 1965) with modifications to account
for parameters not readily available from space (Cleugh et al., 2007).
TheMOD16 algorithm accounts for both surface energy partitioning and
environmental constraints on ET, and includes canopy interception evap-
oration, evaporation from wet/moist soil surfaces, and transpiration
through vegetation pores (stomata). Atmospheric relative humidity
(RH) is used to quantify the proportion of wet soil and wet canopy com-
ponents (Fisher et al., 2008). Proportional vegetation cover is derived
from MODIS fractional absorbed photosynthetically active radiation
(FPAR) (Los et al., 2000), and used to partition net radiation (Rn) between
vegetation and soil surfaces. Leaf level stomatal conductance is deter-
mined by the mean daytime surface air vapor pressure deficit (VPD)
and daily minimum air temperature (Tmin), and further up-scaled to the
non-wet canopy level using the MODIS leaf area index (LAI) product
(MOD15A2). Using the complementary relationship hypothesis (Fisher
et al., 2008), soil evaporation is estimated as the potential evaporation
rate for wet soil surfaces scaled down by RH and VPD formoist soil condi-
tions. The daily LE calculation represents the 24 h sumof LE from the day-
time and nighttime (largely minimal) calculations. MOD16 LE algorithm
was validated at 46flux tower sites and agreedwith the LEmeasurements

well (Mu et al., 2011). Considering that most LE occurs during daytime,
our proposed PT algorithm in this study only estimated daytime LE and
neglected nighttime LE. Therefore, we only used MOD16 algorithm to
estimate daytime LE.

3.3.2. PT-JPL LE algorithm
A Priestley–Taylor-based (PT-JPL) LE algorithm was introduced by

Fisher et al. (2008), based on the PT equation to downscale potential
LE to actual LE by adding both atmospheric (RH and VPD) and ecophys-
iological constraints (FPAR and LAI). PT-JPL estimates LE by calculating
the sum of the soil evaporation, the canopy transpiration and the cano-
py interception evaporation. The validation at the 39 global flux tower
sites illustrates that the averaged RMSE of the estimated and observed
LE is 15.2 W/m2 with an R2 of 0.9 (Fisher et al., 2008, 2009). PT-JPL has
been independently demonstrated as the highest performing physically
based global remote sensing LE algorithm in multi-algorithm intercom-
parisons (Chen et al., 2014; Ershadi et al., 2014; Vinukollu, Meynadier,
et al., 2011; Vinukollu, Wood, et al., 2011).

4. Results

4.1. Optimization of the PT parameter

To parameterize the PT parameter, we used f(e) to replace the orig-
inal PT parameter because f(e) is a suitable ecophysiological index for
the temporal scaling. To determine the factors that drive the variation
of f(e), we analyzed the variations of the combined variables from
ground-measured Ta, RH, VPD and MODIS NDVI from all of the flux
tower sites. Fig. 2 gives an example of the temporal variation of the

Fig. 6. Cross-validation of the estimated monthly f(e) using the hybrid algorithm driven by tower-specific meteorology versus ground-measured f(e) for each PFT.
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8-day f(e) estimated directly from observations during January
2002–December 2006 at the Au-How site using Eq. (3) together
with Ta, f(sm) and f(vm). Both f(sm) and f(vm) have an obvious sea-
sonal pattern in this savanna that was similar to f(e) and have high
correlations with f(e) at all of the flux tower sites. Although the
variation of Ta also follows that of Ta, Ta has a relatively lower corre-
lation with f(e) at all of the flux tower sites because Δ/(Δ + γ)

directly included Ta. Therefore, soil moisture and vegetation moisture
were the largest contributors to the variations in f(e).

Figs. 3 and 4 show the correlations of monthly observed f(e) directly
inverted from observations using Eq. (3) with monthly f(sm) and f(vm)
for different biomes, respectively. Generally speaking, variations in
monthly f(sm) explained 25% to 82% of the variance in monthly f(e) at
all sites. The correlation coefficients between f(e) and f(sm) vary from
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Fig. 7. The estimated LE (y axis, unit:W/m2) using our PT algorithm driven by tower-specificmeteorology versus ground-measured LE (x axis, unit:W/m2) for cross validation for daily LE,
monthly LE, among-sites variability and annual LE anomalies.
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0.56 (p b 0.01) at all MF sites to 0.87 (p b 0.01) at all SAW sites. The
correlations between f(e) and f(sm) in both all GRA and SAW sites are
higher than 0.78 (p b 0.01), yet f(sm) was not always the best predictor
of f(e) in the CRO and forest (excluding EBF) ecosystems. Therefore,
f(sm) captures the variations in surface soil evaporation for different
PFTs because surface soil moisture can sustain the transpiration of
sparse vegetation (e.g., grass and savanna) and cannot provide supply
water for the transpiration of dense vegetation (e.g., forests). As expect-
ed, f(vm) also explains much of the variance of f(e) in most obvious

seasonal biomes, and f(vm) is highly correlated with f(e) for deciduous
forests, shrub, crop and grass sites. For instance, the correlation coefficient
between f(vm) and f(e) is 0.89 (p b 0.01) at all DNF sites and 0.78
(pb 0.01) at all SHR sites. Thus, f(vm) characterizes the vegetation transpi-
ration across multiple biomes by a combination of NDVI and VPD because
NDVI is used to monitor the seasonal variation of vegetation growth and
VPD reflects the negative effects of vegetation photosynthesis.

Table 1 shows the parameters of Eq. (11) for nine different biomes by
linear regression based on the satellite-based NDVI, ground-measured Ta,
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Fig. 7 (continued).

Table 2
A summary of the statistics (bias, the root mean square error, RMSE, and the square of the correlation coefficients, R2) of the comparison between the ground-measured and the estimated
average daily LE using the three LE algorithms driven by tower-specific meteorology of the first group. The second group was used as training data to calibrate the coefficients of our PT
algorithm. The bias and RMSE are in units of W/m2. PT-hybrid stands for our PT algorithm.

PFTs Bias RMSE R2

MOD16 PT-JPL PT-hybrid MOD16 PT-JPL PT-hybrid MOD16 PT-JPL PT-hybrid

DBF −10.2 9.8 5.4 28.7 27.1 21.6 0.61 0.73 0.79
DNF −9.1 5.4 3.3 21.2 19.2 12.9 0.42 0.65 0.81
EBF −6.3 18.7 2.8 27.6 34.3 23.4 0.57 0.58 0.69
ENF −5.5 13.1 2.1 30.5 31.2 22.8 0.42 0.64 0.66
MF −6.7 5.8 3.4 27.4 28.1 20.4 0.48 0.72 0.80
SAW −8.2 11.3 5.2 25.9 22.3 19.7 0.47 0.53 0.71
SHR −1.8 8.6 4.6 26.1 22.8 16.8 0.41 0.59 0.63
CRO −12.6 −2.3 6.5 32.3 25.3 21.1 0.52 0.68 0.77
GRA −9.2 1.8 4.3 26.9 19.8 18.7 0.50 0.70 0.76
Average −7.7 8.0 4.2 27.4 25.6 19.7 0.50 0.64 0.74
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RH, VPD and f(e). Our proposed hybrid algorithm yields different values of
f(e) for each PFT. For example, in July, GRA and CRO had the largest esti-
mated f(e) (approximately 0.85), followed by DNF, DBF, SAW, EBF, SHR,
while ENF andMF had the minimum f(e). f(vm) by integrating NDVI and
VPD is highly correlated to LE in all biomes and f(e) increased as a function
of f(vm) with vegetation growth. f(sm) affected f(e) significantly for non-
forests, and LE for forests was not dependent on surface moisture.

The sensitivity experiments used to determine the dependence of
f(e) on Ta, RH and NDVI are shown in Fig. 5. The f(e) at different biomes
vary by less than 0.3 with the increasing Ta from 5 to 30 °C when other
input variables are set as constants (RH=0.7; NDVI=0.7). In response
to the same changes in Ta, the estimated f(e) at the DNF sites varies the
most comparedwith those at other biome sites. Similarly, the estimated
f(e) varies by less than 0.5 for a 0.8 change in RH and NDVI at most PFT
sites. However, at MF sites, f(e) increase by more than 0.5 for a 0.8 in-
crease in RH and NDVI. Therefore, both RH and NDVI have a significant
influence on f(e), and f(e) is less sensitive to the error in Ta but cannot
be neglected.

4.2. Algorithm evaluation

4.2.1. Algorithm performance based on cross validation
We performed a series of cross validations to evaluate the perfor-

mance of our satellite-based algorithm for monthly f(e) at different
PFTs. Fig. 6 shows the comparison of estimated and observed monthly
f(e) at nine biomes. It is clear that the performance varies with the
biomes and criteria (bias, RMSE and R2). The RMSE between estimated
f(e) and observed f(e) are all less than 0.15, and the R2 ranges from
0.61 to 0.88 (99% confidence). The hybrid algorithmhas the highest per-
formance, with an RMSE of 0.07 and an R2 of 0.86 (p b 0.01) at the DNF
sites, followed by at SAW, SHR, GRA, DBF, EBF,MF and CRO sites. Howev-
er, the worst performances, with an R2 of 0.55 (p b 0.01), occur at the
ENF sites. In general, the few samples at the DNF sites led to the relative
higher accuracy of f(e) estimation. Perhaps when there are equal num-
bers of samples at the different biomes, the algorithm will have lower
accuracy of f(e) at dense forest sites due to the saturation effect of
NDVI. We consider that the overall performance of our algorithm at
different PFTs is satisfying for estimating the PT parameter.

Estimated LE based on our PTmodel driven by tower-specific mete-
orology and MODIS NDVI product was also cross-validated. A compari-
son of the measured and estimated daily (monthly) LE at the site scale
for each PFT demonstrates that our PT algorithm accurately estimates
seasonal LE (Fig. 7). At the PFT level, the RMSE of the estimated monthly
(daily) LE varies from 4.3 (11.5) W/m2 for all DNF sites to 18.1 (20.9)
W/m2 for all CRO sites and the R2 (99% confidence) varies from 0.80
(0.68) for all SHR sites to 0.96 (0.87) for all DNF sites. The seasonal varia-
tion of LE is the most robust feature using both daily and monthly ECOR
data. In Fig. 7 we can also observe a good ability of our PT algorithm to
estimate the among-site variability, where the R2 of the site-averaged
estimated versus observed LE ranges from 0.78 (p b 0.01) for all GRA
sites to 0.96 (p b 0.01) for all DNF sites and the RMSE varies from
2.1 W/m2 for all SHR sites to 9.5 W/m2 for all SAW sites. Overall, the
estimated LE based on our algorithm displays a high accuracy according
to the validation of seasonal and spatial variation in LE. Clearly, our algo-
rithm is also satisfactory in reproducing the inter-annual variability at
the site scale for each PFT with at least 3 years of data (Fig. 7). The R2

between themeasured and estimated annual LE anomaly is significantly
below the confidence level of p b 0.05 and is between 0.71 for all ENF
sites and 0.94 for all DNF sites. The lowest RMSE is 2.1 W/m2 at all DNF
sites due to the few samples, while the largest RMSE is 5.8 W/m2 at all
EBF sites due to the missing observed LE data caused by bad weather
conditions in tropical ecosystems (Falge et al., 2001).

4.2.2. Comparison with other LE algorithms
Because point-based validation with ground observation is typically a

good method to evaluate algorithm performance (Vinukollu, Meynadier,

et al., 2011; Vinukollu, Wood, et al., 2011), the estimated daily LE at site
scale using our PT algorithm was compared with those for the MOD16
algorithm and the PT-JPL algorithm for each PFT. Table 2 shows the results
of comparisons between the estimated LE using the three algorithms
versus daily ground-observations from the first group using the second
group data to calibrate the coefficients of our PT algorithm. For CRO and
GRA sites, the average RMSE of the estimated LE using our algorithm is
less than 22 W/m2, and the average R2 is more than 0.75 (p b 0.01),
which show better performance than the MOD16 algorithm and the PT-
JPL algorithm. For all forests sites, the average RMSE of the estimated LE

Fig. 8. Example of a time series for the 8 day LE average as measured and estimated using
three tower-driven algorithms for different PFTs. y axis represents LE, unit: W/m2; x axis
represents time series of year. PT-hybrid stands for our PT algorithm.
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using our PT algorithm is less than 24 W/m2 and is lower than for the
MOD16 algorithm and the PT-JPL algorithm together with slightly higher
R2 at the 99% level of confidence. For the SHR and SAW sites, the average
RMSE of the estimated LE using our PT algorithm is much lower and the
average R2 is more than 0.62 (95% confidence) when compared with
the other two algorithms. Overall, the average RMSE for our PT algorithm
decreased by approximately 5 W/m2 for forests and SHR sites, and ap-
proximately 3 W/m2 for CRO and SAW sites, and approximately 2 W/m2

for GRA sites. The average R2 increases by approximately 0.1 (p b 0.05)
at SAW and CRO sites and, by approximately 0.06 (p b 0.05) atmost forest,
SHR and GRA sites. This improvement overMOD16 and PT-JPL is expected
givenour calibration to ECORdata,withwhichwe also used for validation.

Fig. 8 shows a time series for 8-day average LE measurements and
tower-driven predictions for PFTs. In comparison to the MOD16 algo-
rithm and the PT-JPL algorithm, in this study our PT algorithm yielded
seasonal LE variations that are closest to the ground-measured values.
Table 3 presents the statistics of the comparisons of the three LE algo-
rithms from the second group, using the first group data to calibrate
the coefficients of our algorithm, and we draw the similar conclusion
that our proposed LE algorithm presents better performance for quanti-
fying the turbulent heat fluxes than that of the MOD16 algorithm
and the PT-JPL algorithm. Therefore, our PT algorithm is among those
algorithms that provide a better fit to flux tower observations.

4.3. Global implementation of the terrestrial LE estimation based onMERRA
data

Based on Eq. (11) parameterized by the coefficients listed in Table 1,
we estimated global terrestrial LE during 2000–2009 with a spatial
resolution of 0.05° using MERRA meteorological data and MODIS prod-
ucts. Unfortunately, we found that our PT algorithm tends to underesti-
mate LE usingMERRA data when compared to ground-measured LE due
to the underestimated Rn from MERRA data (Fig. 9). To improve the

accuracy of the estimated LE driven by MERRA data, we recalibrated
the coefficients of Eq. (11) using the MERRA meteorological data,
MODIS products and ground-measured LE collected at global-
distributed flux tower sites. Table 4 lists the parameters of Eq. (11) for
nine different biomes by linear regression based on the MODIS-
derived NDVI, ground-measured f(e), MERRA-derived Ta, RH and VPD.
Cross-validations show that when using MERRA data as a substitute
for tower-specific meteorology, our revised PT algorithm driven by
MERRA data produced higher predictive errors at most flux towers
due to the large errors of MERRA meteorological data. The average
RMSE of the daily LE increased from 18.2 W/m2 using the original algo-
rithm driven by specific-tower meteorology to 20.6 W/m2 using the
revised algorithm driven by MERRA data (Fig. 10). The coefficient of
determination (R2) between the daily LE estimates and observations
decreased from 0.84 using the original algorithm to 0.70 using the
revised version. Predicted relative errors of LE for MERRA-based revised
algorithm compared to the original version also slightly increased by 4%
for validating among-sites variability and annual LE anomalies. Wang
et al. (2010a) suggested that the relative error of the required LE simula-
tion for analyzing spatiotemporal variation is typically less than 14% and
the accuracy of our revised algorithm driven by MERRA data meets this
requirement.

We evaluated the global spatial patterns of f(e) and LE averaged from
2003 through 2005 usingmonthlyMERRA gridded data. Tropical rainfall
forests in the Amazon regions of South America, Congo basins of Africa
and the Southeast Asia and European monsoonal temperate regions
had the highest annual f(e). Arid regions and the Arctic had the lowest
annual f(e) due to the contribution of low soil moisture and vegetation
cover to decreasing LE. Global annual f(e) varies from 0.22 in barren
lands, 0.42 in SHR, 0.51 in GRA, 0.65 in CRO, 0.66 in DBF, to 0.73 in EBF
(Fig. 11).

Global annual LE is 41.7 W/m2 over vegetated regions. The highest
annual LE is found in the equatorial tropics and monsoonal subtropical

Table 3
A summary of the statistics (bias, the root mean square error, RMSE, and the square of the correlation coefficients, R2) of the comparison between the ground-measured and the estimated
average daily LE using the three LE algorithms driven by tower-specific meteorology of the second group. The first group was used as training data to calibrate the coefficients of our PT
algorithm. The bias and RMSE are in units of W/m2. PT-hybrid stands for our PT algorithm.

PFTs Bias RMSE R2

MOD16 PT-JPL PT-hybrid MOD16 PT-JPL PT-hybrid MOD16 PT-JPL PT-hybrid

DBF −12.6 6.2 4.7 33.2 30.3 24.3 0.57 0.62 0.78
DNF −7.5 9.2 7.2 26.3 27.8 19.4 0.45 0.49 0.59
EBF −12.6 14.8 1.2 37.2 39.8 31.8 0.41 0.42 0.62
ENF −5.3 7.4 2.8 28.1 23.8 20.7 0.45 0.59 0.79
MF −1.7 10.2 4.6 27.3 27.1 21.9 0.51 0.65 0.81
SAW −18.9 6.1 1.1 30.7 27.5 20.6 0.41 0.51 0.61
SHR −2.2 9.3 1.2 26.6 23.8 18.1 0.41 0.52 0.59
CRO −14.3 −1.8 3.8 34.8 30.8 29.5 0.42 0.51 0.63
GRA −7.3 5.2 3.9 28.8 26.6 23.4 0.41 0.52 0.60
Average −9.1 7.4 3.4 30.3 28.6 23.3 0.45 0.54 0.67

Fig. 9.Anexample of a) comparison of daily LEobservations atUS-Wcr site and the corresponding estimated LEbased on Eq. (11)with the coefficients listed in Table 1 drivenby theMERRA
dataset. b) Comparison of daily Rn observations at US-Wcr site and the corresponding Rn derived from MERRA dataset.
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regions due to the sufficient soil moisture and higher vegetation cover.
Small LE occurs in cold and dry environments due to the lower temper-
ature and precipitation. EBF has the largest average LE (90.9 W/m2),
followed by SAW (70.3 W/m2), DBF (61.2 W/m2), CRO (46.2 W/m2), MF
(37.3 W/m2), GRA (31.9 W/m2), ENF (27.5 W/m2), SHR (19.6 W/m2)
and DNF (18.8 W/m2) (Fig. 12).

5. Discussion

5.1. Ecophysiological hypothesis for optimization of the PT parameter

The basis of PT models is the hypothesis that the energy terms
coupled with the ecophysiological constraints are the main controller
of LE and determine the partition of the sensible and latent heat flux
(Jarvis & Mcnaughton, 1986; Priestley & Taylor, 1972). In the satellite-
based PT algorithms, ecophysiological constraints are recognized as
the core regulators for downscaling potential LE to actual LE. For unsat-
urated soil and vegetation surfaces where there is limited supply of soil
moisture, ecophysiological constraints and LE are affected significantly
by available water and canopy structures (Baldocchi & Xu, 2007;
Davies & Allen, 1973; Jin et al., 2011; Komatsu, 2003). f(e) used in this
study includes the variables (f(sm) and f(vm)) for characterizing avail-
ablewater and vegetation information, all ofwhich can be fully acquired
from satellite data.

Several studies have suggested using satellite-derived soil moisture
with a high spatial heterogeneity to parameterize the soil moisture
constraint for estimating soil evaporation (Gokmen et al., 2012; Jin
et al., 2011; Miralles et al., 2011). However, satellite-derived soil mois-
ture only considers surface soil moisture from approximately the top
2–5 cm of the soil profile and neglects the moisture deeper within the
soil profile (Anderson, Norman, Mecikalski, Otkin, & Kustas, 2007;
Jarvis, 1976). In general, soil evaporation stems from the contributions
of soil moisture from all of the different layers of the soil profile. In
theory, by combining RH and VPD, f(sm) used in this study couples the
entire atmosphere boundary layer and soil evaporation to characterize
the atmospheric evaporative demand and hydrological effects on soil
moisture diffusion through different soil layers, even though f(sm)
may not explicitly represent the soil water deficit on daily scales when
convection is frequent and strong due to strong vertical mixing (Fisher
et al., 2008; Salvucci & Gentine, 2013). Previous studies have used
f(sm) to calculate soil water deficit and neglected their differences in
different biomes (Fisher et al., 2008; Mu et al., 2011). However,
our algorithm accounts for their differences using f(sm) multiplied
with different coefficients. VPD-based algorithm maintains a physi-
cally realistic representation of soil evaporation and is operational to
replace soil moisture-based methods, especially when soil moisture is
not available.

In this study, the nonlinear algorithmof f(vm), defined as a function of
NDVI and VPD, represents an improvement for optimizing PT parameter
because it expresses the canopy-level transpiration rate by coupling

vegetation water supply with atmospheric evaporative demand. The
decrease of NDVI and LAI respond to the rise in vegetation water stress
and stomatal closure by altering their leaf density to adapt to the changing
environment (Field, Randerson, & Malmstrom, 1995; Gokmen et al.,
2012). NDVI was chosen to substitute LAI because LAI will overestimate
vegetation canopy conductance when LAI is higher than 3 (Glenn,
Huete, Nagler, Hirschboeck, & Brown, 2007; Suyker & Verma, 2008). The
(e1NDVI− e2)VPD term considers the effect of causing f(e) for different
biomes to level off in tropic regions with low VPD and highly saturat-
ed NDVI values. Although f(e) or EF are more linearly related to NDVI
(Choudhury, Ahmed, Idso, Reginato, & Daughtry, 1994; Wang et al.,
2007), our satellite-based hybrid algorithm to determine the PT
parameter yields comparable results.

5.2. Algorithm performance analysis

Algorithm calibration and validation at 240 globally distributed
ECOR flux tower sites illustrates that the satellite-based hybrid algo-
rithm for estimating f(e) and LEwas reliable and robust across multiple
biomes and different climate regions. Figs. 6 and 7 demonstrate that the
satellite-based hybrid algorithm yielded small errors of f(e) and LE
across multiple biomes based on the cross-validations. However, the
hybrid algorithm still has relatively low R2 and large RMSEs for the esti-
mated f(e) and LE compared to ground-measured data at some irrigated
crop sites. This suggests that irrigation and fertilization practices, and in
general differences among crop types,may bemore critical than canopy
structure in determining PT model performance (Zhang et al., 2012).
When excluding the observations of these irrigated crop sites, the
hybrid algorithm performance greatly improved.

Under the samemeteorological and ecological conditions, the hybrid
algorithm and PTmodel had large inter-biome differences for predictive
f(e) and LE. For instance, the hybrid algorithm yielded the high f(e)
values (more than 0.75 under ideal conditions) and explained more
than 80% of the f(e) variability for GRA, non-irrigated crop, DNF and
DBF sites (Fig. 13). Many studies have demonstrated that these PFTs
present strong seasonal changes in vegetation leaf, chlorophyll content
and red reflectance (Mu et al., 2007; Yan et al., 2012; Yao, Liang, Li, et al.,
2014; Yao, Liang, Xie, et al., 2014, Yebra, Van Dijk, Leuning, Huete, &
Guerschman, 2013). Satellite-based NDVI responds strongly to varia-
tions in red reflectance, chlorophyll and LAI variations as vegetation
leaf dries in many vegetation species. Our hybrid algorithm captures
this seasonal cycle of vegetation to improve the accuracy of estimating
f(e) and LE by using NDVI to parameterize f(vm). In contrast, the hybrid
algorithm yielded the poor performances for f(e) (RMSE ≥ 0.09,
R2 b 0.65) and LE (RMSE ≥ 17.5 W/m2 and R2 b 0.80) estimates for
site-specific meteorology inputs for ENF and EBF sites. For tall ENF and
EBF regions, vegetation seasonal variations are less evident, and NDVI
saturates and is contaminated by clouds, which reduces the ability of
f(e) to reliably capture satellite signals of vegetation transpiration
(Huete et al., 2002). This hypothesis is supported by the previous
study of Eugster et al. (2000), which reported that evergreen conifer
forests have a canopy conductance that is half that of deciduous forests,
which is consistentwith our finding that our hybridmethod yielded the
lowest f(e) for evergreen forests under the same meteorological and
eco-physiological conditions (Fig. 13). Direct evidence of this interpre-
tation is that the availability of f(sm) to resolve changes in f(e) and LE
in this land functional type is limited, with an R2 of 0.34 (p b 0.05) due
to the lower bare soil exposure ratio caused by greater overlapping of
leaves of different species competing for sunlight (Eugster et al., 2000).

A typical difference between our PT algorithm and other two algo-
rithms (PT-JPL and MOD16) is that our algorithm combines ground-
observations and physically based ecophysiological constraints to
parameterize f(e) for each PFT. Although our algorithm uses a relatively
simple and largely empirical equation of the LE process, it has lower
uncertainties in the required forcing data and illustrates the improved
performance compared to other two algorithms. Moreover, a resistance-

Table 4
Coefficients derived from global plant functional type-based optimization of Eq. (11) using
MODIS NDVI andMERRAmeteorological data.

PFTs Coefficients for different PFTs

k0 k1 k2 k3 k4

CRO 0.6695 0.0001 0.0676 0.2626 0.4966
GRA 0.2489 0.0039 0.3861 0.2310 0.6695
SAW 0.0263 0.0063 0.5900 0.1525 0.5625
SHR 0.1475 0.0063 0.4038 0.2400 0.6788
DNF 0.3941 0.0033 0.0001 0.3019 0.6172
DBF 0.5499 0.0078 0.0078 0.5473 0.8164
MF 0.5951 0.0081 0.0001 0.4246 0.4721
EBF 0.4698 0.0081 0.1053 0.1694 0.1891
ENF 0.4663 0.0080 0.1072 0.1642 0.2428
Average 0.3964 0.0058 0.1853 0.2771 0.5272
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based PM algorithm is not accurate to calculate canopy resistance in
diverse vegetation, and the structure of the PT-JPL algorithm by design
ignores classifications among PFTs (Ershadi et al., 2014; Fisher et al.,
2009).

The accuracy of our algorithm is highly dependent on the accuracy of
the ECOR LE ground-measurements, algorithm input errors (including PFT
classification map), spatial scale mismatches among different datasets
and algorithm inherent limitations. Although ECOR measurements are

relatively accurate, they have an error of approximately 5–20% (Foken,
2008; Glenn et al., 2008) and the gap filling from days to months also
leads to 5% errors for annual values of LE (Hui et al., 2004). Addition-
ally, ECOR measurements have an energy imbalance problem, with
H+ LE b Rn− G (Wilson et al., 2002), and the annualmean energy bal-
ance closure at more than 200 FLUXNET sites was approximately 0.8
(Beer et al., 2010). Although several reasons for this energy closure
problem have been documented by a substantial body of literature
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Fig. 10. The estimated LE (y axis, unit:W/m2) using our PT algorithmdriven byMERRAmeteorological data versus ground-measured LE (x axis, unit:W/m2) for cross validation for daily LE,
monthly LE, among-sites variability and annual LE anomalies.
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Fig. 10 (continued).

Fig. 11. Spatial distribution of annual global terrestrial f(e) averaged for 2003–2005 at spatial resolution of 0.05° according to the satellite-based hybrid algorithm driven byMODIS NDVI
and MERRA meteorology.
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(Foken, 2008; Twine et al., 2000; Wang & Dickinson, 2012) and we
corrected it in this study, the errors produced by the correction and
measurements are still unclear (Shuttleworth, 2007). Moreover, the
biases of other ground-measured meteorological variables (e.g., Ta,
RH) also introduced point-based f(e) and LE estimation errors. When
global terrestrial LE was calculated, driven by the MERRA reanalysis
dataset, the biases of the MERRA data influenced the accuracy of our
algorithm, even though we performed a recalibrated measurement
using Eq. (11). Recent studies have revealed substantial errors for
MERRA data when compared to ground measurements (Rienecker et al.,
2011; Zhao, Running, & Nemani, 2006). In this study, we also found that
MERRA data usually underestimated Rn at high values compared to the
ground-measurements (Fig. 9). Our algorithm shows significant differ-
ences in LE estimation if the classification shifts or iswrong. Previous stud-
ies revealed that the accuracy of the IGBP layer of theMODIS Collection 5
Land Cover Type product (MCD12Q1) is estimated to be 74.8% globally
(Bartholome & Belward, 2005; Friedl et al., 2002; Hansen, Defries,
Townshend, & Sohlberg, 2000). Thus, misclassification of the MODIS
land cover product will also lead to the use of incorrect parameters in
Eq. (11), resulting in less accurate LE estimates.

Typically, the footprints of the ECORmeasurements are approximately
several hundred meters (Baldocchi, 2008), and the resolutions of both
MODIS NDVI (1 km and 0.05°) and MERRA gridded data (1/2 ∗ 2/3°) are
greater than the footprints of the ECOR measurements (Rienecker et al.,
2011). The MODIS NDVI and MERRA gridded meteorological data may
not adequately capture vegetation and eco-physiological signals at the
flux tower sites (Mu et al., 2011; Zhang et al., 2010). Inaccurate represen-
tations of the field measurement footprint may result in algorithm errors

for many flux tower sites. The structure of our algorithmwill also reduce
the accuracy of LE estimates because it ignores the effects of CO2 andWS.
High-CO2-induced partial stomatal closure causes an underestimation of
daily LE when NDVI tends to increase (Idso & Brazel, 1984; Yao et al.,
2013). Our algorithm excludesWS becauseWS is not globally observable.
By quantifying the sensitivity of wind speed to evaporative demand, a
recent study revealed thatWS contributed substantially to declining evap-
oration rates (McVicar et al., 2012). For less than twodecades, the effect of
WS on LEmay be negligible, but for several decades, this effect should be
considered.

5.3. Global terrestrial LE estimation

Despite the existing errors, our proposed algorithm demonstrated
its reliability for calculating annual LE, which was compared with
other reanalysis, satellite and hydrological datasets. We estimated that
the annual global terrestrial LE (excluding Greenland and Antarctica)
was 41.7 W/m2 during 2003–2005, which is slightly larger than the
value of independent global estimates: 35.3 W/m2 from a MODIS prod-
uct (Mu et al., 2011), 34.2W/m2 fromGSWP data (Dirmeyer et al., 2006)
and 40.2 W/m2 based on the Atmospheric Water Balance (AWB) meth-
od (Mueller et al., 2011). However, recent studies have demonstrated
that the global average LE derived from multiple algorithms varies
from 34.1 W/m2 to 42.7 W/m2, with an average of 36.9 W/m2 (Wang

Fig. 12. Spatial distribution of annual global terrestrial LE averaged for 2003–2005 at spatial resolution of 0.05° according to our PT algorithm driven by MODIS NDVI and MERRA
meteorology.

Fig. 13. Variability of f(e) at multiple biomes using the same inputs (Ta = 25 °C, RH= 0.7
and NDVI = 0.7).

Fig. 14. Comparison of our LE estimates and MODIS-LE product at the various ecosystem
types. PT-hybrid stands for our PT algorithm.
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& Dickinson, 2012). Our estimated annual LE falls within the above
range.

The global magnitude of LE for each PFT agreed, in general, with
results documented in the literature (Giambelluca et al., 2009; Mu
et al., 2011; Zhang et al., 2010; Zhang et al., 2009). We found that EBF,
SAW, DBF and CRO have the largest annual average LE, greater than
45 W/m2, and both SHR and DNF have the lowest annual average LE,
less than 20 W/m2, which are in good agreement in its representation
of AVHRR-LE (Zhang, Kimball, et al., 2010; Zhang et al., 2010) and
MODIS-LE (Mu et al., 2011). Fig. 14 shows the MODIS LE product and
our estimates aggregated for vegetation types. In addition, Frank and
Inouye (1994) estimated annual LE at 94 sites covering 11 biomes
based on approximately 20 years of meteorological records and found
that the value of annual LE was approximately 15.7 W/m2 for tundra,
29.6 W/m2 for taiga, 45.7 W/m2 for broadleaf forests, 68.8 W/m2 for
savannas and 106.1 W/m2 for wet tropical forests. Giambelluca et al.
(2009) used ECOR observations to document that the annual averaged
LE is 64.1 W/m2 and 53.6 W/m2 for two tropical savanna sites in
Brazil. These comparable results demonstrate the applicability of our
algorithm to accurately estimate global terrestrial LE.

6. Conclusions

We developed a satellite-based hybrid algorithm to calibrate ECOR
measurements to determine the PT parameter for global terrestrial LE
estimation across multiple biomes by combining a simple empirical
equation with physically based ecophysiological constraints to obtain
the sum of the weighted ecophysiological constraints (f(e)) from global
eddy covariance, satellite and meteorological observations. f(e) con-
siders the differences in coefficients among PFTs and it includes VPD-
based soil moisture and NDVI-based vegetation factors. The parameters
of the hybrid algorithm for nine different biomes are acquired by linear
regression based on the satellite-based NDVI, ground-measured LE, Ta,
RH, and VPD. It has a low sensitivity to errors in the input data.

A series of cross-validations based on 240 global ECOR observations
show that the optimization at a PFT level performed well. The satellite-
based hybrid algorithm had the highest performance, with an RMSE of
0.07 and an R2 of 0.86 (p b 0.01) at DNF sites, and the worst perfor-
mances, with an R2 of 0.55 (p b 0.01), occurred at ENF sites. Cross-
validationswere also performed to evaluate the ability of our PTmethod
to yield LE seasonal, spatial, and inter-annual variability. On average, the
RMSE of the estimated monthly (daily) LE varies from 4.3 (11.5) W/m2

for all DNF sites to 18.1 (20.9) W/m2 for all CRO sites, and the R2 (99%
confidence) varies from 0.80 (0.68) for all SHR sites to 0.96 (0.87) for
all DNF sites. Performance was also good for predicting among-site
variability, with an R2 of more than 0.78. The validation of inter-
annual variability at the site scale shows that the R2 between the mea-
sured and estimated annual LE anomaly is between 0.71 for all ENF
sites and 0.94 for all DNF sites. When compared with the MOD16 and
PT-JPL algorithms, which are not calibrated to sitemeasurements unlike
our algorithm, our LE algorithm performed better than them at the site
scale.

We implemented the terrestrial LE estimation based onMERRA data
by recalibrating the coefficients of the satellite-based hybrid algorithm
using the MERRA meteorological data, MODIS products and ground-
measured LE. The estimated seasonal, spatial, and inter-annual variabil-
ity of LE agreed well with the tower measurements. Although the
predicted relative errors of LE for the MERRA-based revised algorithm
compared to the original version increased slightly by 4% for validating
among-site variability and annual LE anomalies, the accuracy of our
revised algorithm still met the requirement for analyzing global terres-
trial LE changes. The annual average global terrestrial LE for 2003–2005
as estimated by our algorithmdriven byMERRA datawas approximately
41.7 W/m2, which is in good agreement with other studies. Our
estimates provide information for comparing and calibrating climate
and hydrologicalmodels in terms of their sensitivity to energy partition.
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