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Abstract A simple and robust satellite-based method for estimating agricultural field to regional surface
energy fluxes at a high spatial resolution is important for many applications. We developed a simple
temperature domain two-source energy balance (TD-TSEB) model within a hybrid two-source model scheme
by coupling “layer” and “patch” models to estimate surface heat fluxes from Landsat thematic
mapper/Enhanced Thematic Mapper Plus (TM/ETM+) imagery. For estimating latent heat flux (LE) of full soil,
we proposed a temperature domain residual of the energy balance equation based on a simplified
framework of total aerodynamic resistances, which provides a key link between thermal satellite temperature
and subsurface moisture status. Additionally, we used a modified Priestley-Taylor model for estimating LE of
full vegetation. The proposed method was applied to TM/ETM+ imagery and was validated using the
ground-measured data at five crop eddy-covariance tower sites in China. The results show that TD-TSEB yielded
root-mean-square-error values between 24.9 (8.9) and 78.2 (21.4) W/m2 and squared correlation coefficient (R2)
values between 0.60 (0.51) and 0.97 (0.90), for the estimated instantaneous (daily) surface net radiation, soil,
latent, and sensible heat fluxes at all five sites. The TD-TSEB model shows good accuracy for partitioning LE into
soil (LEsoil) and canopy (LEcanopy) components with an average bias of 11.1% for the estimated LEsoil/LE ratio at
the Daman site. Importantly, the TD-TSEB model produced comparable accuracy but requires fewer forcing
data (i.e., no wind speed and roughness length are needed) when compared with two other widely used
surface energy balance models. Sensitivity analyses demonstrated that this accurate operational model
provides an alternative method for mapping field surface heat fluxes with satisfactory performance.

1. Introduction

Accurate estimation of agricultural surface energy fluxes at high spatial resolution is essential for monitoring
crop water stress, irrigation scheduling, and water resource management [Anderson et al., 1997; Liang et al.,
2010; McVicar and Jupp, 2002; Norman et al., 1995; Yang et al., 2013; Yao et al., 2015]. Although direct ground
measurements of surface energy fluxes from eddy-covariance (EC) flux tower observations can provide repre-
sentative values of latent heat flux (LE) and sensible heat flux (H) at scales of several decades and hundreds of
meters [Choi et al., 2009; Fisher et al., 2008; Jung et al., 2010; Liu et al., 2011; Tang et al., 2010], the spatial
isolation and high costs of these direct measurements restrict their application for characterizing spatiotem-
poral LE and H patterns over regional (i.e., >20,000 km2) agricultural zones. Therefore, there is an urgent
demand for an economically feasible means of accurately estimating and mapping regional-scale LE at
relatively high spatial resolution, acknowledging farmer management practices.

Land surface temperature (LST) derived from high spatial resolution thermal satellite data, such as the
Landsat thematic mapper/Enhanced Thematic Mapper Plus (TM/ETM+), has been widely used to drive agri-
cultural LE models for partitioning available energy in LE and H [Norman et al., 1995; Kustas and Norman, 1999;
Allen et al., 2007; Wang and Dickinson, 2012; McVicar and Jupp, 1999]. Satellite-based one-source energy
balance (OSEB) models generally use LST as a surrogate for aerodynamic temperature (Tao) to calculate H,
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and then LE is calculated as the residual of the surface energy budget [Bastiaanssen et al., 1998]. Examples of
widely used OSEB models include Surface Energy Balance Algorithm for Land algorithm [Bastiaanssen et al.,
1998], Surface Energy Balance System [Su, 2002], Three-Temperature (3T) model [Qiu et al., 2006], and
Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)
[Allen et al., 2007]; to reduce the errors in H and LE estimation by using spatial contextual information of
LST to replace the conventional gradients of surface temperature and air temperature (LST-Ta), these OSEB
models treat vegetation and soil as one “big leaf” with uniform temperature and aerodynamic resistance
for heat transfer at the same height. This approach yields significant biases when applied to partially vege-
tated landscapes [Kalma et al., 2008; Verhoef et al., 1997].

To deal with this problem in the OSEB models, satellite-based two-source energy balance (TSEB) models
partition the LE and H fluxes into soil evaporation and vegetation transpiration components and yield
more reliable flux estimates than do OSEB models over heterogeneous surfaces with sparse vegetation
cover [Norman et al., 1995; Sánchez et al., 2008; Song et al., 2016; C. Yang et al., 2015]. An original model
was proposed by Norman et al. [1995] with subsequent improvements developed by many scholars
[Kustas and Norman, 1997; Kustas et al., 1998; Anderson et al., 1997; Sánchez et al., 2008; Song et al.,
2016; Yang and Shang, 2013]. Similar to the OSEB models, TSEB models are still sensitive to their use of
the temperature differences to estimate H. To overcome this problem, two different modeling schemes:
(i) methods using the temporal variation of LST [Anderson et al., 1997, 2008; Nishida et al., 2003;
Norman et al., 2000, 2003] and (ii) methods using the spatial variation of LST [Long and Singh, 2012;
Yang and Shang, 2013; Zhang et al., 2005], have been developed and improved to reduce the flux estima-
tion errors. Overviews of these modeling schemes since the 1990s are summarized in Table 1, including
their main advantages and limitations. However, there are two problems when using these TSEB models
that have not yet been fully solved. First, a longstanding limitation associated with most TSEB models is
that aerodynamic resistances and excess resistances to heat exchange are usually calculated based on the
local data for surface roughness length and wind-profile measurements that cannot be readily retrieved
from satellite data [Kalma et al., 2008; Nishida et al., 2003; Seguin and Itier, 1983; Zhang et al., 2005].
Given that area averaging of both roughness length and wind speed (u) is highly nonlinear [Boegh
et al., 2002; Kalma et al., 2008], inaccurate point-based footprint representation at the pixel scale may una-
voidably lead to different results and uncertainties. Second, complex parameterization schemes and accu-
mulated errors from too many input variables also magnify biases in H and LE estimations [Dolman, 1993;
Ershadi et al., 2014; Long and Singh, 2012; Norman et al., 1995; Zhang et al., 2005]. Although some spatial
contextual models based on vegetation index (VI) and LST space minimize the influence of u, such spatial
contextual models are not operational if the area of interest does not include a full range of land surface
types and conditions [Nishida et al., 2003; Long and Singh, 2012; Yang and Shang, 2013].

To overcome these two problems, it is important to design an operational TSEB model based on a simplified
framework of total aerodynamic resistances to avoid using both roughness length and u as inputs. In this
study, a simple operational hybrid two-source model is developed to achieve this goal. This paper has three
main objectives: (i) to describe this hybrid temperature domain two-source model, which couples the
residual of the energy balance equation and amodified Priestley-Taylor (PT) model for estimating agricultural
field surface energy fluxes; (ii) to evaluate this simple two-source model using the EC tower and the corre-
sponding Landsat TM/ETM+ imagery collected from five cropland sites across northern China; and (iii) to
perform a case study of mapping agricultural field surface fluxes using Landsat TM/ETM+ imagery.

2. Methods
2.1. The Temperature Domain Two-Source Model

The temperature domain two-source energy balance (TD-TSEB) model developed in this study includes three
modules: (i) a hybrid two-source model framework that couples the TSEB layer and patch models, (ii) a
temperature domain model for LEs estimation, and (iii) a PT model for LE of full canopy (LEc) estimation.
These three modules are introduced in turn the following sections.
2.1.1. Hybrid Two-Source Model Framework
In our model, a TSEB layer model is used to partition net radiation (Rn) between the canopy and the soil
surface based on the Beer-Lambert law (Figure 1) [Ruimy et al., 1999]:
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Table 1. Summary of Relevant Two-Source Models Using Thermal Remote Sensing Data (the Current Paper Is Added for Completeness)

Study
Model
Name

Modeling
Scheme

Validation
Data

Model
Performance

Main
Advantages

Main
Disadvantages

1. Norman et al.
[1995]

Original two-
source model
(TSEB)

The Priestley-
Taylor iteration
approach

Monsoon
1990; FIFE

RMSE: 35–60
W/m2 for G, H,
and LE

Wide applicability
due to the uses of
the directional
brightness
temperatures

1. High sensitive to
errors of Ts and Ta;
2. Requires u to
calculate resistance
and u is not available
from satellite data

2. Kustas and
Norman [1997]

TSEB using Ts
at two view
angles

Use of Ts observations
at two different
angles

FIFE 25–40% errors
for LE

Does not require
fv and Priestley-
Taylor model

1. Requires Ts at two
view angles;
2. Requires u to
calculate resistance

3. Anderson et al.
[1997]

A two-source
time- integrated
model

Use of temporal
changes in Ts
rather than
absolute Ts

FIFE RMSE: less than
50 W/m2

for LE

1. Reduced sensitivity
to absolute Ts-Ta
Differences;
2. No observation
of Ta required

1. Requires early
morning sounding
for determining
inversion lapse rate;
2. Requires u to
calculate resistance

4. Kustas et al.
[1998]

A revised TSEB
model

Use of near-surface
moisture from a
passive microwave
sensor

Monsoon 1990 20–30%errorsfor
LE

1. Reduced the errors
in LE estimates using
soil moisture to
replace Ts;
2. Minor effect of Rs
on daytime LE

1. Requires soil moisture
from microwave
remote sensing data;
2. Requires u to
calculate resistance

5. Norman et al.
[2000]

TSEB model using
Dual-Temperature
Difference

Use of time rate of
change in Ts
and Ta

Monsoon 1990;
SGP97

Differences of
more than
50 W/m2

for LE

Requires minimal
ground-based data
and does not require
modeling boundary
layer development

Requires nonlocal
u to calculate
resistance

6. Norman et al.
[2003]

TSEB model
coupled to
Disaggregated
Atmosphere-Land
Exchange Inverse

Use of temporal
changes in
geostationary Ts

SGP97 RMSE: 40 W/m2

for LE
Useful to estimate
surface fluxes on
the 101–102 m scale

Requires low and
high-resolution
satellite data

7. Nishida et al.
[2003]

A linear two-
source model

The vegetation index
(VI)-surface
temperature
diagram

AmeriFlux Standard error:
24.01–85.91
W/m2 for
daytime LE

1. Low sensitivity to
errors of Ts; 2. It’s
easy to operate

1. Relationship between
LE and Ts complicated
with temperature
control on LE;
2. Requires u
to calculate resistance
for determining the
highest Ts

8. Zhang et al.
[2005]

Pixel component
arranging and
comparing
algorithm

The theoretical
boundary condition
is accurately
determined in the
fv-surface temperature
space

Yucheng;
Dongping
lake

Reasonable
accuracy for
LE estimation

1. Low sensitivity to
errors of Ts;
2. Requires few
meteorological
variables for LE
estimation

1. The area of interest
needs a full range of
land surface types and
conditions; 2. Requires
u to determine
temperatures the
theoretical boundary

9. Anderson et al.
[2008]

TSEB coupled to
the light-use
efficiency model

LUE model to replace
PT model for
estimating
vegetation
transpiration

SGP97 RMSE: 34 W/m2

for LE
Improve the accuracy
of LE estimates in
comparison to the
TSEB-PT model

Requires many input
parameters, such as,
u, the ambient
vapor pressure and
CO2 concentration

10. Sánchez et al.
[2008]

A simplified TSEB
model (STSEB)

The Ohm’s law-type
equation to
replace the
PT model

USDA-ARS:
corn

RMSE: 15–50
W/m2 for LE

It is a simplified version
of the TSEB model
and is easy to operate

1. Sensitive to errors of
Ts and Ta; 2. Requires
u to calculate
resistance
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Table 1. (continued)

Study
Model
Name

Modeling
Scheme

Validation
Data

Model
Performance

Main
Advantages

Main
Disadvantages

11. Long and Singh
[2012]

A two-source
trapezoid
model

The temperature
decomposition
method is
developed by
interpreting the
fv - surface
temperature
trapezoid space

SMACEX RMSE: 45.6 W/m2

for LE
estimation
using TM/ETM+
data

1. Reduces uncertainties
arising from the
specification of warm
and cold edges/pixels
involved in one-
source models;
2. It is unique in
applying a two-source
scheme to the
trapezoidal
framework of the
fv-surface
temperature space

1. The theoretical
boundary conditions
necessitates
homogeneous
meteorological
conditions; 2. Ignores
the effects of advection
on partitioning of
turbulent energy
fluxes; 3. Requires u to
calculate resistance
for determining the
theoretical boundary

12. Yang and Shang
[2013]

A hybrid dual-source
scheme and
trapezoid
framework–based
model (HTEM)

Combines the layer
approach and
patch approach
based on the VI-
surface temperature
trapezoidal space

SMACEX Errors in 6.4% for
LE estimation

1. The extreme
boundaries were
determined
theoretically in its
trapezoid Framework;
2. Allows the trapezoid
model to consider the
surface aerodynamic
characteristics

1. The most sensitive to
temperature variables;
2. Ignores the effects
of advection on
partitioning of
turbulent energy
fluxes; 3. Requires u
to calculate resistance

13. This study A simple temperature
domain two-source
model (TD-TSEB)

A temperature
domain residual
of the energy
balance equation

Haihe;
HiWATER-
MUSOEXE

RMSE: 24.9–77.3
W/m2 for Rn,
G, LE and H

1. Requires few inputs
and avoids requiring
u to estimate surface
fluxes; 2. Overcomes
the complicated
parameterization
of resistance

1. Moderate sensitive
to errors of Ts and Ta;
2. Ignores the effects
of advection on
partitioning of
turbulent energy
fluxes

b)a)

Figure 1. Schematic diagrams of (a) the traditional TSEB model [Sánchez et al., 2008; Yang and Shang, 2013] and (b) the
temperature domain TSEB model developed here. rah refers to the aerodynamic resistance to heat transfer between the
canopy and the reference height. The other symbols are defined in section 2.1.
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Rns ¼ Rn exp �knsLAIð Þand (1)

Rnc ¼ Rn � Rns; (2)

where Rns and Rnc are the total net surface radiation partitioned to the soil and canopy respectively, in
W/m2, and kns is an extinction coefficient (0.6; unitless) [Impens and Lemur, 1969]. The leaf area index
(LAI) is estimated using a simple statistical method driven by the fractional vegetation coverage (fv)
[Ross, 1976].

LAI ¼ � 1
kpar

ln 1� f vð Þand (3)

f v ¼ NDVI� NDVImin

NDVImax � NDVImin
; (4)

where kpar is an empirical coefficient (0.5; unitless) [Ross, 1976]. NDVImin and NDVImax are the minimum and
maximum normalized difference vegetation index (NDVI) during the study period, which are set as invariant
constants: 0.05 and 0.85, respectively [Carlson and Ripley, 1997]. The fv represents the variations in vegetation
state and canopy conductance response to changes in environmental factors such as the plant moisture
stress, vapor pressure deficit, fractional absorbed photosynthetically active radiation, and atmospheric CO2

concentration [Tucker, 1979; Donohue et al., 2013].

A TSEB patch model is then used to partition Rn into LE, H, and soil heat flux (G). The LE and H of each com-
ponent (soil or canopy) in W/m2 is estimated as the average value per unit of ground area weighted accord-
ing to the fractional coverage of each component [Yang and Shang, 2013]:

Rnc ¼ f v� LEc þ Hcð Þand (5)

Rns � G ¼ 1� f vð Þ� LEs þ Hsð Þ; (6)

where Hc and Hs are the sensible heat flux of the canopy and soil, respectively, in W/m2. G (W/m2) is calculated
using a semiempirical algorithm provided by Choudhury et al. [1987]:

G ¼ akRns; (7)

where ak is an empirical coefficient and is set as 0.31 herein [Anderson et al., 1997], though it varies from 0.12
to 0.5 acquired from measurements of above-canopy net radiation and soil heat flux at midday [Choudhury
et al., 1987; Kustas et al., 1998]. According to the theoretical basis of the patchmodel [Lhomme and Chehbouni,
1999], the total LE can be expressed as

LE ¼ f v�LEc þ 1� f vð Þ�LEs: (8)

2.1.2. Temperature Domain Model for LEs Estimation
A residual method based on the surface energy budget used to estimate LEs and Hs is calculated using the
following Ohm’s law-type equation:

Hs ¼ ρCp Ts � Tað Þ
ratot

; (9)

where ρ is the air density (kg/m3), Cp is the specific heat of air at constant pressure (J/kg/K), Ts is the soil sur-
face temperature (°C), Ta is the air temperature (°C), and ratot is the total aerodynamic resistance to vapor
transport at the soil surface (s/m).

The ratot (s/m) term is usually estimated using Thom [1975] driven by u, surface roughness length, and atmo-
spheric stability conditions. Stewart et al. [1994] and Kustas et al. [2003] computed ratot as the sum of raa (s/m)
and rex (s/m). where raa is the aerodynamic resistance to sensible heat transfer between the point Zom + d
(Zom: canopy roughness length for momentum (m), d: displacement height (m)) and the reference height,
and rex is the excess resistance, which characterizes the difference between themomentum and sensible heat
transfer. Similarly Sánchez et al. [2008] defined ratot as the sum of raa and the aerodynamic resistance (ras) to
heat flow in the boundary layer immediately above the soil surface (Figure 1a). Here ratot is parallel to both the
radiative heat transfer resistance (rr (s/m)) [Choudhury and DiGirolamo, 1998; Mu et al., 2007; Zhang et al.,
2010] and the convective heat transfer resistance (rv (s/m)) [Choudhury and Monteith, 1988; Kondo, 2000;
Sauer et al., 1995; Stewart et al., 1994], namely (Figure 1b):
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1
ratot

¼ 1
rr
þ 1
rv
; (10)

rr ¼ ρCp

4εsδ Ta þ 273:15ð Þ3 ; and (11)

rv ¼ kr
u
; (12)

where εs is the bare soil surface emissivity (0.96), δ is the Stefan-Boltzman constant (5.67 × 10�8Wm�2 K�4),
and kr is a unitless empirical coefficient. Previous studies have shown that temperature (namely, Ta and LST)
and u variability play opposing roles in flux estimation [Bertoldi et al., 2007] because temperature affects
atmospheric pressure, which in turn affects the u. Therefore, some scientists have replaced u with Ta to opti-
mize rv [Wallace and Holwill, 1997; Jones, 1992; Mu et al., 2007; Mu et al., 2011; Zhang et al., 2009]. We used a
simple positive proportional equation of temperature to parameterize rv because of the good correlation
between instantaneous temperature (Ta or Ts) and 1/u [Zhang et al., 2013], with an example shown in
Figure 2 (R2 > 0.55). Thus, equation (12) can be expressed as

rv ¼ kuaTa ¼ kusT s; (13)

where both kua and kus are unitless empirical coefficients. By combining equations (6), (9), (10), (11), and (13),
we obtain the following formula for LEs:

LEs ¼ Rns � G
1� f v

� 4εsδ Ta þ 273:15ð Þ3 Ts � Tað Þ � ρCp

kus � kua
: (14)

In practice, Ts is a synthetic thermodynamic factor of the complex radiative and convective interactions asso-
ciated with radiation, heat, and water exchange across the land surface [Liu et al., 2012]. Therefore, equa-
tion (14) is considered a continuous function of Ts because Ts is a key state variable of LEs, and LEs varies in
a given temperature domain. When Ts reaches equilibrium temperature (T0, T0 = Ta) [World Meteorological
Organization, 2008; Edinger et al., 1968], which is defined as the surface temperature of the evaporating sur-
face at which the net rate of heat exchange (by shortwave and longwave radiation, and conduction and eva-
poration) is zero, LEs will reach equilibrium evaporation (LEe). Thus, equation (14) can be expressed as

LEe ¼ Rns0 � G0

1� f v
� ρCp

kus � kua
; (15)

where Rns0 is the net radiation partitioned to the soil if Ts = T0 and G0 is the soil heat flux if Ts = T0. Based on the
definition of LEe, i.e., the evaporation under conditions of zero advection and no boundary layer growth when

Figure 2. An example of the scatterplot of the instantaneous temperature (Ta or Ts) and 1/u from five EC tower sites of
China.
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the air above a free water surface of a large spatial scale becomes saturated [Eichinger et al., 1996; Kim and
Entekhabi, 1997], LEe is calculated as

LEe ¼ Δ
Δþ γ

Rns0 � G0

1� f v
: (16)

By combining equations (14), (15), and (16) (Text S1 in the supporting information), we obtain

LEs ¼ Δ
Δþ γ

Rns � G
1� f v

� 4εsδ
γ

Δþ γ
1� akð Þ 1� f vð Þkns=kpar þ 1

� �
Ta þ 273:15ð Þ3 Ts � Tað Þ: (17)

2.1.3. Priestley-Taylor Model for LEc Estimation
Amodified Priestley-Taylor (PT) model is used to estimate LEc [Norman et al., 1995; Fisher et al., 2008; Yao et al.,
2013]. Based on the equation (5) and the PT equation, the model for vegetation transpiration is expressed as

LEc ¼ αf vf T
Δ

Δþ γ
Rnc
f v

¼ αf T
Δ

Δþ γ
Rnc and (18)

f T ¼ exp � Ta � Topt
Topt

� �2
" #

; (19)

where a is the PT coefficient (1.26) and fT is the temperature constraint, with an optimum air temperature
(Topt) set at 25°C [Potter et al., 1993; Fisher et al., 2008; Yao et al., 2013; Yuan et al., 2010]. Considering that
fv reflects the biophysical capacity for energy acquisition by the canopy and it decreases in response to plant
and soil moisture stress, we directly consider fv as a moisture constraint to avoid soil moisture as input though
there is a time lag between soil moisture and NDVI changes [Chen et al., 2016; Fisher et al., 2008; Norman et al.,
1995; Yao et al., 2013]. Inputs, intermediate variables, outputs, and computation procedures of TD-TSEB are
summarized in Figure 3.

2.2. Daily LE Computation

Because remotely sensed LE values are instantaneous observations that not representative of an entire day,
an extrapolation approach is required. A common method for extrapolating daily (24 h period) totals from
instantaneous satellite-based LE estimates is to assume a constant evaporative fraction (EF), which is the ratio
of LE to available energy (Rn-G) [Nishida et al., 2003; Sugita and Brutsaert, 1991]. In general, EF is nearly con-
stant during the midday hours for a given day, and a single observation at a given time of day can be used
to estimate the daily LE [Lhomme and Elguero, 1999]. However, previous studies have showed that midday EF
using the EC tower data to estimate daily total flux results in underestimating the observed totals by 5–10%
[Anderson et al., 2007; Brutsaert and Sugita, 1992; Van Niel et al., 2011]. We used this invariant EF method to
estimated daily LE and revised the calculation of daily EF as

EFdaily ¼ 1:1EFins ¼ 1:1
LEins

Rnins � Gins
and (20)

LEdaily ¼ EFdaily� Rndaily � Gdaily
� �

; (21)

where EFdaily (unitless) is the daytime evaporation fraction, EFins (unitless) is the instantaneous midday
evaporation fraction, and LEins (W/m2) is the instantaneous midday latent heat flux. Rnins (W/m2) and Gins

(W/m2) are the instantaneous midday net radiation and soil heat flux, respectively, and Rndaily (W/m2) and
Gdaily (W/m2) are the daily net radiation and soil heat flux, respectively.

2.3. Sensitivity Analysis Method

To examine the contributions of forcing variables to the TD-TSEB model output, sensitivity analysis of the
major variables of the TD-TSEB model was performed using a simple relative sensitivity method suggested
by Zhan et al. [1996]. In this method, sensitivity to each input variable (incident surface solar radiation, albedo,
NDVI, LST, and Ta) is calculated by comparing the estimated LE (LE0) using the reference inputs with LE values
estimated through varying the input variable v. The sensitivity coefficient (Sv) can be expressed as

Sv ¼ LEv± � LE0
LE0

�100%: (22)
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The variation ranges were set as ±20% for all input variables, incrementing by 5%. The sensitivity coefficient
was also conducted using the data from the Daman (DM) site on DOY (day of year) 176, which were represen-
tative of a wider range of surface soil moisture and vegetation fractional cover.

2.4. Comparison With Other LE Models
2.4.1. The Original Two-Source Energy Balance (N95-TSEB) Model
The original two-source energy balance (N95-TSEB) model, developed by Norman et al. [1995], estimates the
total LE as the sum of two components: transpiration and evaporation. The N95-TSEB model uses a layer net-
work formulation to simulate the value of the energy exchange between the soil and canopy. In the N95-
TSEB model, the PT equation is used to estimate of the canopy vegetation LE, but the PT parameter (a) is
adjusted to1.3. ThePT iterationmethod is adopted toderive the component temperatures (i.e., soil and canopy
temperatures) byproviding an initial estimateof the canopy LE [Norman et al., 1995;ZhuangandWu, 2015]. The
latent heat of soil evaporation is estimated using the residual of the surface energy balance (SEB) method.
Excess resistance is introduced into the N95-TSEBmodel to offset the effects of using radiometric temperature
in place of aerodynamic temperature [French et al., 2015; Sun and Mahrt, 1995].

Figure 3. Flowchart of TD-TSEB,where trapezoids represent input variables and rectangles represent intermediate variables.
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2.4.2. Satellite-Based Energy Balance for Mapping Evapotranspiration With Internalized
Calibration (METRIC)
METRIC estimates LE using the residual of the SEB method from an OSEB model and calculates H from
contextual image data [Allen et al., 2007]. In this method, the apparent difference (dT) between LST and
near-surface air temperature is resolved by assuming that the dT scales linearly with LST. The two coefficients
of the linear equation between dT and LST are calculated contextually based on vegetation cover endpoints
(hot and cold pixels) contained in the imagery, which is conducted through the examination of LST versus
NDVI scatterplots [Choi et al., 2009; Liaqat and Choi, 2015]. A major problem of METRIC is its method for select-
ing the extreme temperature values [Long and Singh, 2013]. Here reference LST values of the hot and cold
reference pixels were selected based on cluster means, and cluster selection was based on LST statistics over
the site and adjacent fields with cold and hot extremes chosen at 0.1% and 99.9% quantiles. H was then cal-
culated through an iterative process based on the Monin-Obukhov similarity theory to illustrate stability
effects on the aerodynamic resistance (rah) computed with an extrapolated u value for the top of the surface
layer, as has been described elsewhere [Allen et al., 2007; Choi et al., 2009; French et al., 2015].

3. Study Site and Data Processing
3.1. Study Site

This study was conducted at five agricultural cropping sites: Miyun (MY; 40.63°N, 117.32°E), Daxing (DX; 39.62°N,
116.43°E), Guantao (GT; 36.52°N, 115.13°E), Huailai (HL; 40.35°N, 115.79°E), and Daman (DM; 38.86°N, 100.37°E)
(see Figure 4). Figure 4 also shows an example from the Landsat TM imagery of a 2.7 km by 4.7 km region
(40.34°N–40.36°N and 115.78°E–115.84°E) that includes the HL site. The selected sites differ in crop types,
elevation, and climatological characteristics (Table 2). The first four sites are included in the multiscale surface
flux and meteorological elements observation data set for the Haihe River Basin of North China (Haihe-Flux)
[Liu et al., 2013; Jia et al., 2012; Y. Yang et al., 2015]. The DM site is included in the Multi-Scale Observation
Experiment on Evapotranspiration over heterogeneous land surface which was part of the Heihe Water
Allied Telemetry Experimental Research of Northwest China (HiWATER-MUSOEXE) [Li et al., 2013; Liu et al.,
2011; Song et al., 2016; Xu et al., 2013].

MY is located in the northern mountainous area of the Haihe River basin at an elevation of 350m abovemean
sea level. The source area of latent heat for MY is mainly contributed by orchard and maize, but it also mixes
with bare land and buildings. DX is located in the central region of the Haihe River basin, and its dominant
crops are winter wheat/maize and vegetables. GT is located in the North China Plain at an elevation of
30 m above mean sea level and GT’s source area of winter wheat is mixed by seasonal maize and cotton.
HL is in a semihumid and semidry area of the Haihe River basin that is entirely contributed by a pure signal
of maize. DM has the highest elevation of the studied sites (1556 m). Irrigated maize dominates the agricul-
tural ecosystem of this irrigation district of the Heihe River basin, but its source area of cropland is also mixed
by bare land and roads.

3.2. Flux Tower Measurements

Half-hourly turbulent surface heat fluxes (LE, Rn, H, and G) and other climate data (such as Ta, u, atmospheric
pressure, and relative humidity) were obtained from the four EC Haihe-Flux (http://westdc.westgis.ac.cn/
haihe/) sites and one HiWATER-MUSOEXE (http://westdc.westgis.ac.cn/hiwater/) site under the fair-use policy.
All of these sites are equipped with open path EC systems for monitoring water, energy, and carbon
exchanges of the crops, soil, and atmosphere. The EC system includes a 3D sonic anemometer (CSAT3,
Campbell Scientific Inc., USA) that measures three-dimensional velocity and temperature, as well as an
open-path infrared CO2/H2O gas analyzer (Li-7500, Li-Cor, USA) that measures CO2 and H2O density [Liu
et al., 2013; Xu et al., 2013]. The installation heights of the EC systems were 26.66, 3.0, 15.6, 5.0, and 4.5 m
at the MY, DX, GT, HL, and DM sites, respectively. Postprocessing of the raw data recorded by the EC systems
included sonic temperature, coordinate corrections, and gap filling using the EdiRe software (University of
Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe). More details about the measurements
and data postprocessing are given by Liu et al. [2011].

At the DM site, the isotopic composition of water vapor in surface air was determined based on water vapor
isotopes measured with cavity ring-down spectroscopy water vapor isotope (ModelL1102-I, Picarro Inc)
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[Huang and Wen, 2014; Wen et al., 2016]. Two intakes of the eight-way solenoid valve at heights of 0.5 and
1.5 m above the corn canopy, respectively, were used to measure an ambient air sample [Huang and Wen,
2014; Song et al., 2016]. The LE of soil evaporation (δE) was then determined using the Craig and Gordon’s
[1965] model, and the LE of vegetation transpiration (δT) was estimated based on the δD and δ18O of
water in xylem when the isotopic state was satisfied at midday in field conditions [Wen et al., 2016]. As
water vapor contains unique isotopic signals of soil evaporation and canopy transpiration, the
measured isotopic composition of the water could reasonably partition the measured LE (δET) into δE
and δT [Hu et al., 2014; Wen et al., 2012]. Although δET, δE, and δT are affected by the isotopic state,
irrigation, and strong advection, the measured data collected during the satellite overpass are reliable
for this study.

3.3. Satellite and Ancillary Data

There were 69 cloud-free high-resolution Landsat TM/ETM+ thermal and visible shortwave images
(resampled to 30 m resolution with a linear interpolation method) used herein. These data were downloaded
from the Global Visualization Viewer webpage of the USGS (United States Geological Survey) (http://glovis.
usgs.gov/). The at-satellite reflectance was converted to at-surface reflectance using atmospheric radiation
transfer simulation models (e.g., MODerate resolution atmospheric TRANsmission) combined with atmo-
spheric correction functions [Tasumi et al., 2008].

Ta is a key input of the TD-TSEB model. To maintain high accuracy in this study, Ta was obtained directly
from ground observations at the EC flux tower sites and was set to a fixed value to estimate Rn and LE
across each region. This is performed to represent relatively homogenous atmospheric conditions within
a small region. For terrain variables, such as elevation, slope, and aspect, which are used to estimate inci-
dent surface solar radiation (Rs), digital elevation models with 30 m spatial resolution were acquired from
the NASA Land Processes Distributed Active Archive Center website (http://www.dgem.aster.ersdac.or.jp/
index.jsp).

3.4. Variable Derivation

Surface broadband albedo with 30 m spatial resolution from five channels recorded in the Landsat TM/ETM+
data was retrieved using Liang’s algorithm [Liang, 2000]. Coincident satellite data, such as the NDVI, surface

Figure 4. Locations of the five crop flux towers across northern China and an example of a small region that includes the
Huailai site with a false-color composite from Landsat TM imagery acquired on 10 August (DOY 222) 2014.
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emissivity (ε), and LST, were used for this study. Based on equations (3) and (4), ε was calculated using an
empirical algorithm proposed by Tasumi [2003]. The accuracy of LAI retrieval depends on soil and crop
types, and equation (3) may require local calibration. However, the impact of error in the LAI on Rn
estimation was small in this study. LST was derived from the thermal infrared band (TIR, band 6) of Landsat
TM/ETM+ images using a monowindow algorithm [Qin et al., 2001] (Text S2). The satellite-derived LST is
related to the soil and vegetation component temperatures [Kustas and Anderson, 2009]: Ts is calculated
using the LST separation method proposed by Lhomme et al. [1994]:

LST≈ 1� f vð ÞTs þ f vTc; and (23)

Ts � Tc ¼ Ca LST� Tað Þm; (24)

where Tc is the vegetation canopy temperature (°C) and Ca andm are the unitless empirical coefficients given
by Lhomme et al. [1994]: Ca = 0.1 and m = 2.

Instantaneous Rn was calculated using instantaneous surface incident shortwave radiation (Rs), albedo, the
instantaneous downward (L↓), and upward (L↑) longwave radiation fluxes. Daily Rn is estimated using the
Slob function and extreme pixel LST [Allen et al., 2007; De Bruin and Stricker, 2000] (Text S3).

4. Results
4.1. Validation of the TD-TSEB Model
4.1.1. Validation of the Estimated Instantaneous Surface Fluxes
To evaluate the accuracy of the TD-TSEB model, we compared the estimated instantaneous energy balance
components (Rn, G, LE, and H) using the Landsat TM/ETM+ images with the tower-based flux measurements.
We averaged the estimated surface fluxes over the upwind source area/footprint (ranging from 30 m to
120 m depending on u) for each flux tower. Figure 5 shows the good agreement between the four estimated
instantaneous components of the energy balance equation versus the tower-based flux measurements. The
squared correlation coefficients (R2) for the comparison between the ground-measured and estimated
instantaneous Rn values across all five sites were as high as 0.97 (p < 0.01), whereas the bias and root-
mean-square-error (RMSE) values were 1.4 and 24.9 W/m2, respectively. For the individual sites, underestima-
tions of 2.6 and 11.7 W/m2were observed for instantaneous Rn at the MY and DX sites, respectively, whereas a
slight overestimation was found for all other sites (Table 3). The biases in Rn are caused by propagated errors
from EC ground-measured data, Rs, albedo, LST, ε, and differences in spatial resolution. The estimated instan-
taneous G derived from a fraction (0.31) of Rns compared with tower-based measurements yielded an R2 of
0.60 (p< 0.01), an RMSE of 26.7 W/m2, and a bias of 1.4 W/m2 across all five flux tower sites. Table 3 provides
the statistics of overestimations (GT, HL, and DM) and underestimations (MY and DX) of instantaneous G, with
an average RMSE of 25.7 W/m2 and a bias of 1.9 W/m2. Moreover, the accuracy of instantaneous G estimates

Table 2. Locations of the Five EC Flux Towers Used in This Studya

Site Name
(Abbreviation) Lat, Lon Crop Types

Elevation
(m)

Mean Annual Air
Temperature

(°C)

Average Annual
Precipitation
(mm/year)

Number of Landsat Images
With No Cloud Time Period

Miyun (MY) 40.63°N,
117.32°E

orchard and maize 350 10.9 615 29 1 Jan 2008 to 31
Dec 2010

Daxing (DX) 39.62°N,
116.43°E

winter wheat/maize
and vegetables

20 11.6 556 6 1 Jan 2008 to 31
Dec 2010

Guantao (GT) 36.52°N,
115.13°E

winter wheat/maize
and cotton

30 14.0 549 14 1 Jan 2008 to 31
Dec 2010

Huailai (HL) 40.35°N,
115.79°E

maize 480 10.1 370 15 1 Jan 2013 to 31
Dec 2014

Daman (DM) 38.86°N,
100.37°E

irrigated maize 1556 7.3 130 5 1 Jun 2012 to 30
Sep 2012

aAll sites are located in “semihumid and semiarid” climate zone, except for DM site, which is “arid and semiarid.”
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was lower for the DX and HL sites than for other three crop sites. This may be principally caused by the simple
fixed fraction used for G estimations that was not calibrated with ground observations because of a lack
of data.

The instantaneous LE estimated with the TD-TSEB model agrees well with the tower-based measurements
(Figure 5). In general, the R2 of the LE values across all five sites was 0.82 (99% confidence), the RMSE was
78.2 W/m2, and the bias was 6.9 W/m2. By site, the TD-TSEB model explained 83%, 95%, 80%, 90%, and
81% of the observed variations in instantaneous LE for the MY, DX, GT, HL, and DM sites, respectively
(Table 4). The highest RMSE of the estimated LE, with a value of 89.8 W/m2, occurred at the DM site
because of the presence of atmospheric advection and high soil moisture in this irrigated oasis region.
In contrast, for the DX site, the estimated instantaneous LE yielded the lowest RMSE, 57.3 W/m2, and a
negative bias of �36.4 W/m2, which may be principally attributed to the relatively few samples (only six
Landsat TM/ETM+ scenes) and the good performance of the TD-TSEB model for winter wheat/maize and
vegetables fields. In addition, the TD-TSEB model yields instantaneous LE for other crops reasonably well;
the RMSE for the orchards and maize fields of MY was 85.6 W/m2; for the winter wheat/maize and cotton
fields of GT, it was 64.7 W/m2; and for the maize fields of HL, it was 63.4 W/m2 (Table 4). These favorable
results may indicate the applicability of the TD-TSEB model to fields with higher vegetation fractions
associated with coupling the signal of the visible and near-infrared and thermal infrared (TIR) bands of
the Landsat TM/ETM+ images.

The calculated instantaneous H based on Rn and the TD-TSEB model has an R2 of 0.61 (p < 0.01), an RMSE of
55.6 W/m2, and a bias of �7.3 W/m2 across all five sites (Figure 5). As shown in Table 4, the largest RMSE
(61.6 W/m2) and the second largest RMSE (61.2 W/m2) occurred at the GT and MY sites, respectively, which
may be explained by uncertainty of the ECmeasurements caused by the heterogeneity of the underlying sur-
faces. For the other three sites, the estimated instantaneous H values showed good agreement with the
tower-based measurements, with RMSEs of 20.8, 49.5, and 32.1 W/m2 for the DX, HL, and DM sites,

Figure 5. Comparison of the estimated instantaneous Rn, G, LE, and H values from the TD-TSEB model using Landsat TM/
ETM+ images with corresponding ground measurements from all five sites.
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respectively. However, Hwas not directly estimated using the TD-TSEBmodel but calculated as the residual of
the energy balance equation. Therefore, erroneous results in the estimation of H are caused not only by the
biases in many parameters (e.g., Rs, albedo, LST, and Ta,) between the land surface and atmosphere but also
by the errors in EC flux measurements.
4.1.2. Validation of the Estimated Daily Surface Fluxes
Figure 6 and Tables 3 and 4 present statistical comparisons of the estimated daily surface fluxes (Rn, G, LE,
and H) with the corresponding flux-tower measurements that were scaled-up from the instantaneous
values. This comparison shows that the estimated daily Rn has an R2 of 0.90 (p < 0.01), an RMSE of
16.4 W/m2, and a bias of 2.1 W/m2 across all five sites. When compared with the estimated instantaneous
Rn values, there was slightly worse agreement between the estimated daily Rn versus the ground measure-
ments (Table 3). Given that only a single instantaneous Rn was used to scaled up for each daily values, the
relatively small errors identified in this study show that it is more feasible to apply the Slob function and
the extreme pixel LST method to estimate daily Rn. For different crop types, the bias of the estimated daily
G varies from 0.9 to 6.7 W/m2, the R2 (99% confidence) varies from 0.49 to 0.73, and the RMSE varies from
6.6 to 10.8 W/m2 (Table 3). Similar to the estimated instantaneous G, a local calibration coefficient for the
daily G algorithm may contribute to improving the performance of the simple algorithm used to calculate
daily G in this study.

The TD-TSEB model was able to account for 86% of the observed daily LE variation. The estimated daily LE
had a bias of 1.4 W/m2 and an RMSE of 21.4 W/m2 across all sites (Figure 6 and Table 4). However, the model
underestimated daily LE at the DM site with an RMSE higher than 39 W/m2, which was likely a result of the
underestimated instantaneous LE. At the other four sites, the TD-TSEB model gave accurate predictions with
RMSE values lower than 23 W/m2. Despite the good agreement between the estimated daily LE and ground
measurements, the TD-TSEB model shows a relatively low performance for daily H estimates: the overall R2

(99% confidence) of the estimated dailyH across all sites was 0.65, and the RMSEwas 18.2W/m2 (Figure 6 and
Table 4). The accumulated errors from the daily Rn, G, and LE may have resulted in these inaccurate daily H

Table 3. Summary Statistics Comparing Between the Ground-Measured and Estimated Rn and G in This Study: Bias, Root-
Mean-Square Error (RMSE), and the Square of the Correlation Coefficients (R2)a

Energy Component Site Name Mean Observed Values (W/m2) Bias (W/m2) RMSE (W/m2) R2

Instantaneous Components
Rn MY 505.3 �2.6 27.2 0.97

DX 469.1 �11.7 20.9 0.98
GT 429.4 16.3 29.1 0.96
HL 444.3 0.8 21.2 0.98
DM 624.1 0.3 5.6 0.92

Overall 482.1 1.4 24.9 0.97
G MY 65.9 �3.8 27.1 0.52

DX 96.1 �6.1 30.9 0.69
GT 82.7 3.5 22.3 0.67
HL 59.7 11.5 29.8 0.57
DM 36.4 4.6 18.4 0.77

Overall 68.4 1.4 26.7 0.60
Daily Components
Rn MY 138.1 0.3 13.4 0.95

DX 157.9 �3.3 15.1 0.89
GT 108.2 6.8 19.1 0.86
HL 119.2 4.6 20.8 0.81
DM 166.3 �1.3 8.6 0.98

Overall 129.4 2.1 16.4 0.90
G MY 21.9 0.9 8.7 0.49

DX 18.5 6.7 10.8 0.50
GT 17.5 4.6 7.6 0.60
HL 20.5 4.4 10.5 0.58
DM 12.4 2.5 6.6 0.73

Overall 19.7 3.0 8.9 0.51

aAll correlation coefficients are significant with 99% confidence.
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estimates. However, large differences between the estimated and observed daily H occurred in different crop
types. For example, the TD-TSEB model performed very well for estimating daily H in most mixed-crop
ecosystem, but it substantially underestimated the daily H for the orchards and maize fields. The model’s
performance was similar in estimating instantaneous H.
4.1.3. Validation of the Partition of LE Estimates Into Soil and Canopy
The TD-TSEB model provides estimates of the total LE partitioned to the soil (LEsoil, i.e., (1� fv) × LEs) and the
canopy (LEcanopy, i.e., fv× LEc). There have been very few studies to focus on validation of LEsoil and LEcanopy
using reliable component measurements [Song et al., 2016; Xiong et al., 2015]. Because the components of
daily EF for both soil evaporation and canopy transpiration were not distinguished, we could only validate
the partitioning of instantaneous LE estimates into soil and canopy components in this study. The stable
oxygen and hydrogen isotope method based on DOY 160, 176, 215, 224, and 240 was used to measure
the instantaneous ratios of LEsoil/LE and LEcanopy/LE to separate LEsoil and LEcanopy at the DM site. Figure 7
shows that the estimated instantaneous LEsoil based on the TD-TSEB model had an R2 of 0.44 (p = 0.05), an
RMSE of 16.5 W/m2, and a bias of�4.2 W/m2. Similarly, for instantaneous LEcanopy, the TD-TSEBmodel yielded
an R2 of 0.77 (p< 0.05), an RMSE of 91.3 W/m2, and a bias of�60.1 W/m2. Figure 8 illustrates that the TD-TSEB
model had good accuracy for the LEsoil/LE ratio, with an average bias of 11.1%, which is lower than the bias
reported in previous studies [Kang et al., 2005; Song et al., 2016].

The LEsoil/LE ratio estimated with the TD-TSEB model has similar seasonal variation and is in agreement with
the ground observations (Figure 8) for most days (excluding DOY 176). Because of the lack of sufficient aux-
iliary information, it is difficult to evaluate the possible causes of the relatively large discrepancies found for
DOY 176. It may be related to relatively high LST (LST = 29.28°C) retrieved at Landsat TM overpass time on this
day when compared with values retrieved on DOY 160 (LST = 23.35°C) and DOY 215(LST = 25.71°C). Although
some previous studies have documented that isotope approaches are often associated with lower values for

Table 4. Summary Statistics Comparing the Ground-Measured and Estimated LE and H Using TD-TSEB, N95-TSEB, and METRIC: Bias, Root-Mean-Square Error
(RMSE), and the Square of the Correlation Coefficients (R2)a

Energy Component Site Name
Mean Observed
Values (W/m2)

Td-TSEB N95-TSEB METRIC

Bias
(W/m2)

RMSE
(W/m2) R2

Bias
(W/m2)

RMSE
(W/m2) R2

Bias
(W/m2)

RMSE
(W/m2) R2

Instantaneous Components
LE MY 231.5 27.2 85.6 0.83 26.3 92.8 0.80 26.4 90.4 0.75

DX 249.5 �36.4 57.3 0.95 �6.6 39.3 0.93 19.2 41.3 0.90
GT 200.8 �17.2 64.7 0.80 �23.1 65.7 0.78 �18.3 65.6 0.81
HL 174.3 31.3 63.4 0.90 20.9 69.8 0.91 29.7 63.5 0.87
DM 503.4 �63.6 89.8 0.81 �58.8 82.3 0.78 �60.5 89.6 0.84

Overall 234.1 6.9 78.2 0.82 6.1 79.7 0.80 11.1 81.7 0.81
H MY 210.6 �27.5 61.2 0.61 �29.5 79.1 0.55 �21.9 62.4 0.52

DX 145.4 11.2 20.8 0.91 �25.8 37.4 0.91 �18.3 39.6 0.91
GT 154.8 31.6 61.6 0.61 21.4 60.8 0.60 15.4 61.2 0.59
HL 202.2 �23.8 49.5 0.63 12.2 64.7 0.63 �6.7 46.5 0.60
DM 74.1 28.3 32.1 0.73 25.6 32.3 0.66 33.2 39.7 0.74

Overall 181.9 �7.3 55.6 0.61 �5.8 58.2 0.57 �6.7 57.8 0.58
Daily Components
LE MY 68.1 8.5 17.6 0.94 10.8 22.5 0.90 8.3 21.6 0.85

DX 81.9 �16.6 22.5 0.90 �10.3 18.3 0.87 �11.8 19.2 0.84
GT 54.0 �1.1 18.4 0.82 �1.7 20.1 0.82 �1.3 20.1 0.82
HL 56.6 6.8 18.9 0.90 �0.8 21.4 0.91 4.7 20.3 0.92
DM 143.9 �27.4 39.9 0.62 �19.2 31.6 0.72 �20.5 32.7 0.72

Overall 69.4 1.4 21.4 0.86 1.7 21.9 0.85 1.7 22.5 0.84
H MY 59.8 �10.1 19.3 0.66 �9.6 21.6 0.66 �14.4 23.9 0.63

DX 36.3 �2.6 10.3 0.62 �2.9 11.7 0.58 �3.8 12.6 0.65
GT 42.8 �0.4 15.1 0.72 3.8 20.4 0.61 3.5 21.7 0.57
HL 51.5 �3.9 21.7 0.52 3.4 19.1 0.57 �2.9 20.2 0.51
DM 12.5 12.8 15.8 0.91 7.9 13.2 0.85 9.1 13.3 0.81

Overall 49.1 �4.5 18.2 0.65 �2.2 19.8 0.61 �5.6 20.3 0.60

aAll correlation coefficients are significant with 99% confidence.
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the LEsoil/LE ratio [Schlesinger and Jasechko, 2014], the strong validation results indicate that the TD-TSEB
model can be used to accurately partition LE into the latent heats of vegetation transpiration and soil
evaporation.

4.2. Sensitivity Analysis

The sensitivity of the TD-TSEB model to the Rs was determined to be the highest, and the Rs is positively cor-
related with LE (Figure 9 and Table 5). Because Rs is the main energy source for LE, LE increased relatively by
up to ±25% when Rs changed by ±20%. The second largest changes of LE were caused by the variation of
NDVI. In response to the changes in LE of ±20%, the NDVI varies accordingly by�22.3% to 16.7%. LST is nega-
tively correlated with LE, but Ta is positively correlated with LE. Increases in LST and Ta by 1 K were associated

Figure 6. Comparison of the estimated daily Rn, G, LE, and H values from the TD-TSEB model using Landsat TM/ETM+
images with corresponding ground measurements from all five sites.

Figure 7. Comparison of the estimated instantaneous LEsoil and LEcanopy values from the TD-TSEB model using Landsat
TM/ETM+ images with corresponding ground measurements from the DM site.
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with a 1.9% decrease and a 1.6% increase, respectively, in the estimated LE, whereas decreases in LST and Ta
by 1 K resulted in a 1% increase and a 3.4% decrease in LE estimates, respectively. The surface albedo is used
only in the calculation of Rn in the TD-TSEB model, and it has a negative effect on LE. Changes in LE were as
large as ±4.4% for albedo changes of ±20%. Overall, LE estimation by the TD-TSEB model showed a distinct
order of sensitivity as follows: Rs > NDVI > Ta > LST > albedo.

4.3. Comparison With Other LE Models

Given that the pointed-based ground observations are a suitable method for perform model validation and
comparison, the estimated LE and H at site scale based on the TD-TSEB model were compared with those
obtained using N95-TSEB and METRIC. The statistics for comparing these two additional models (N95-TSEB
and METRIC) with ground-measured instantaneous LE (H) are provided in Table 4. We noted that the RMSE
of the estimated instantaneous LE (H) values from N95-TSEB varies from 39.3 (32.3) to 92.8 (79.1) W/m2

and that R2 (p< 0.01) varies from 0.78 (0.55) to 0.93 (0.91). Similarly, METRIC yields instantaneous LE (H) values
with RMSEs that range from 41.3 (39.6) to 90.4 (62.4) W/m2 and with R2 values with 99% confidence that
range from 0.75 (0.52) to 0.90(0.91). Overall, these two models provide reasonable accuracy. Importantly,
graphical comparisons of instantaneous LE (H) estimated with the TD-TSEB model and the two additional
models illustrate that there is good agreement between the TD-TSEB model and other two models
(Figure 10), as well as similar statistical results when compared with the flux observations. The obvious differ-
ences among the models are that TD-TSEB tends to estimate slightly higher values of LE compared to METRIC
for high vegetation cover conditions, whereas it estimates slightly lower values of LE compared to N95-TSEB
for high vegetation cover conditions. The agreement among the different models and the flux observations
indicates that TD-TSEB performs well with a comparable accuracy as the more complex TSEB models and
simple OSEB models.

Figure 8. Comparison of TD-TSEB-based estimates and ground measurements of LEsoil/LE for the DM site.

Figure 9. Sensitivity analysis of the TD-TSEB model to the Rs, albedo, NDVI, Ta, and LST specified between�20% and 20%,
incrementing by 5%.
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Both Table 4 and Figure 11 present the daily LE and H results from the comparisons of the two models, and
we draw a similar conclusion that TD-TSEB has provided a comparable accuracy as other TIR-based LE models
for quantifying daily LE and H. Therefore, it is appropriate to apply TD-TSEB to estimate surface fluxes under
this set of environmental conditions.

4.4. A Case Study of Mapping Field LE With the TD-TSEB Model

Figure 12 shows an example of spatial patterns in instantaneous field LE, daily LE, LEs, and LEc, as well as
the corresponding NDVI, from the TD-TSEB model for 3 days over a small region that includes the HL site
described in section 3.1. On DOY 158, the estimated LEc and LEs had the smallest spatial variations across
the images which correspond to the narrowest spatial variations in the NDVI. These spatial variations
reached their largest on DOY 222 when the NDVI also reached its maximum value. Smaller spatial varia-
tions occurred in the maps of LEc and LEs on DOY 240 with a decreasing NDVI for most pixels. The spatial

Table 5. Relative Sensitivity Coefficient Sv (%) of LE Estimates From TD-TSEB to Each Input Variable at the DM Site on
DOY 176a

Variation (%) Rs Albedo NDVI Ta LST

�20 �25 4.4 �17.9 �17.7 5.7
�15 �18.7 3.3 �14.1 �12.5 5.5
�10 �12.5 2.1 �9.8 �7.8 4.7
�5 �6.2 1.1 �5.2 �3.6 2.3
5 5.9 �1.3 5.5 2.8 �2.6
10 12.2 �2.3 11.2 5.5 �5.4
15 18.5 �3.6 17.4 7.1 �8.3
20 24.7 �4.7 23.9 7.5 �11.4

aVariations of variables are in percentage (%).

Figure 10. Linear regressions between the instantaneous surface energy fluxes (LE and H) estimated with the TD-TSEB
model versus the results of two other models (the N95-TSEB model and METRIC) for all five sites. The black line is the 1:1
line, and the line-of-best-fit is the pink line which is given by the equation on each sub-plot.
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variations in instantaneous and daily LE are similar to the results for the corresponding LEc and LEs flux
components (Figure 12).

The maps of LEc are strongly positively correlated with the NDVI (R2 = 0.94) whereas LEs is strongly negatively
correlated with the NDVI (R2 = 0.81). This phenomenonmay be explained by the fact that LEc is higher and LEs
lower, where there is a higher vegetation fractional cover. Based on thermal remote sensing, the TD-TSEB
model detected few wet regions (e.g., pixel A) in which both the NDVI and LST are low in the top left part
of the domain in which LEs was high (Figure 13). These fields were covered with wet soil and a small amount
of crop on DOY 222, and the mixture of soil and crop in these regions may not be accurately reflected in the
NDVI, but would be captured by the LST in real time because of the effects of soil moisture, u, and Rns.
Therefore, LE algorithms that only use vegetation indices sensitive to vegetation fractional cover may not
identify small differences in field LE.

5. Discussion
5.1. Sensitivity Analysis of the TD-TSEB Model

In the TD-TSEB model developed here, the results were more highly dependent on the NDVI than was found
in the previous studies [Granier and Breda, 1996; Norman et al., 1995]. This difference is because the TD-TSEB
model includes the PT algorithm for estimating crop canopy transpiration, which is mainly determined by the
variation of the NDVI. Granier and Breda [1996] reported that canopy resistance would be a crucial factor for
crops and that seasonal variation of the LAI or the NDVI has great impact on crop canopy conductance and
LE. This indicates that unlike other hydrologic and meteorological variables, NDVI plays a major role in a dor-
mant season in the TD-TSEB model. Employment of NDVI with no model-related errors will reduce uncer-
tainty of the TD-TSEB model [Zhang et al., 2009].

The dependency of Rs in the TD-TSEBmodel is the highest than the NDVI, LST, Ta, and albedo because it drives
the processes of evapotranspiration [Hwang and Choi, 2013; Zhang et al., 2014]. The TD-TSEB model shows

Figure 11. Linear regressions between the daily surface energy fluxes (LE and H) estimated with the TD-TSEB model versus
the results of the other two models (the N95-TSEB model and METRIC) for all five sites. The black line is the 1:1 line, and the
line-of-best-fit is the pink line which is given by the equation on each sub-plot.
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less sensitivity to LST than other OSEB and TSEB models. Yang and Shang [2013] pointed out that increases in
LST and Ta by 2 K would lead to a 23.2% decrease and a 15.3% increase, respectively, in estimated LE based on
the hybrid dual-source scheme and trapezoid framework-based evapotranspiration model (HTEM). The
variations in albedo would result in slight changes in LE, which indicates that the sensitivity of the TD-TSEB
model to the albedo is lower than its sensitivity to other input variables.

5.2. Performance of the TD-TSEB Model

Model validation at five EC flux tower sites at crops across China has indicated that the TD-TSEB model for
estimating field surface fluxes was reliable and robust across different crop types. Tables 3 and 4 show that
the TD-TSEBmodel did not yield significant predictive errors for LE and H across most validation sites (exclud-
ing the DM site). One important reason for its predictively is that the TM/ETM+-based NDVI coupled with the
TD-TSEB model captures the seasonal cycle of the crops to produce considerably accurate LE values. Many
studies have indicated that most crops (e.g., winter wheat and maize) present strong seasonal changes in
the LAI, leaf chlorophyll content, and red reflectance, and the NDVI derived from red and visible reflectance
responds strongly to leaf chlorophyll, plant water potential, and CO2 concentration [Norman et al., 1995;
Tucker, 1979; Yan et al., 2012; Yebra et al., 2013; Zhang et al., 2009]. The variation in leaf chlorophyll concen-
tration is often linked to changes in the stomatal conductance of crops [Matsumoto et al., 2005] and accounts
for the good performance of the NDVI for estimating LEcanopy. Another key reason for the success of this
method is that Ts decomposed from TIR-derived LST provides valuable diagnostic information about

Figure 12. Example maps of the NDVI, LEc (W/m2), LEs (W/m2), instantaneous LE (W/m2), and daily LE (W/m2) produced
with the TD-TSEB model for a small region that includes the HL site for 3 days in 2014. The pink area demarcated in the
top left of the LEs panel for DOY 222 is expanded in Figure 13.
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subsurface moisture status to yield reliable LEsoil values. Recent studies have demonstrated that LST may be
used as a surrogate for in situ surface moisture observations because Ts effectively integrates the effects of
subsurface moisture by detecting the increase in Ts associated with the depletion of available surface
moisture [Anderson et al., 2008; Gillies and Carlson, 1995; Zhan and Kustas, 2001]. Zhan and Kustas [2001]
found that estimated surface fluxes based on LST provide better agreement with ground-measured fluxes
than those based directly on soil moisture directly. Although Ts derived through the empirical LST
separation method [Lhomme et al., 1994] may not be consistent with Ts values estimated using the
Priestley-Taylor iteration approach [Norman et al., 1995], it has nonetheless provided effective TIR
information about soil evaporation and has yielded satisfactory estimates of H and LE over the multiple
crop types studied herein.

Substantial underestimation of LE (a bias of �63.6 W/m2) was found for the DM irrigated crop site. This find-
ing illustrates that irrigation practice and strong advection would be more critical than maize canopy struc-
ture in determining TSEB model performance [Zhang et al., 2012; Song et al., 2016]. When considering the
contributions of irrigation water and the atmospheric advection to LE, the performance of the TD-TSEBmodel
may be significantly better in an advective humid environment. In contrast, the TD-TSEBmodel tends to over-
estimate LE slightly (bias of more than 25 W/m2) at two sites: MY and HL. For example, the estimated instan-
taneous LE was higher than the ground-measured LE at the MY site with a bias value of 27.2 W/m2 and an
RMSE value of 85.6 W/m2, respectively (Table 4). The PT coefficient (a) probably plays an important role in
quantifying LE at these sites. For the TD-TSEB model, we used the PT model with coefficient a of 1.26 to esti-
mated the LEc for both stressed and unstressed vegetation and crops [Priestley and Taylor, 1972; Fisher et al.,
2008; Yao et al., 2013]. However, the PT coefficient (a) built into the TD-TSEB model is not constant but varies
with vegetation status, vegetation type, and vapor pressure deficit [Priestley and Taylor, 1972; Long and Singh,
2012]. Consequently, the TD-TSEB model may tend to overestimate LE under certain agricultural and
natural settings.

The TD-TSEB model was found to be generally robust in the estimation of component flux; the estimated
LEsoil/LE ratio varies from 0.06 to 0.22 over DOY 160–240. The large variability in LEsoil/LE is evident in most
annual crops with the large seasonal variations in crop canopy cover fraction (i.e., from zero to full cover).

Figure 13. Expanded view of region demarcated by the pink square in Figure 12 (see specifically DOY 222 and the LEs
image) to highlight mixed regions (e.g., pixel A) with wet soil and a small amount of crops with a correspondingly low
NDVI and LST.
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Previous studies have shown that in LE partitioning in cotton fields, average LEsoil was found to account for
20–30% of the LE [Agam et al., 2012; Lascano, 2000]. The LEsoil/LE values for corn, wheat, and soybean fields
were slightly higher and highly variable, with averages between 30% and 40% [Denmead et al., 1996; Kool
et al., 2014; Singer et al., 2010; Zeggaf et al., 2008]. The TD-TSEB model yields results that are close to the
ranges reported by previous studies.

A general difference between the TD-TSEB model and the other two models we assessed (N95-TSEB and
METRIC) is that the TD-TSEB model combines the equilibrium evaporation and the variation in Ts based on
a simplified framework of total aerodynamic resistance to estimate the LEs. Although the TD-TSEB model uses
Ts and Ta to simplify the Ohm’s law-type equation, this method reduces the accumulated errors of input vari-
ables and yields comparable accuracy as the other two models. In fact, because different crop types have dif-
ferent aerodynamic resistances and the universal stability functions used to calculate aerodynamic resistance
may result in large errors [Sun et al., 1999; Wang and Dickinson, 2012].

The TD-TSEB algorithm uses Landsat TM/ETM+ data to provide spatially continuous field LE information,
which significantly strengthens the model performance across regional scales. However, inaccuracy in the
EC ground measurements, model input data errors, spatial scale mismatches between tower-specific and
TM/ETM+ data, and the structure of the TD-TSEB model all affect the accuracy of the model. The typical error
of the EC-measured LE is approximately 5–20% [Foken, 2008; Mahrt, 2010], and the temporal upscaling from
half hours to days also results in a 5–10% bias in daily LE values [Hui et al., 2004; Jia et al., 2012; Van Niel et al.,
2012]. Moreover, ECmeasurements do not conserve energy, and the averaged energy closure ratio across the
five EC sites is 0.85, which may be partially attributed to the fact that the EC method cannot capture large
eddies in the lower boundary layer but only measures small eddies [Dawson et al., 2007; Foken, 2008;
Wilson et al., 2002]. Although Twine et al. [2000] proposed twomethods to correct the energy balance closure,
namely, by calculating the LE as a residual of the energy balance (RE method), and by conserving the mea-
sured Bowen ratio (BR method), there is no consensus on how to resolve lack of energy balance closure with
eddy covariance [Finnigan et al., 2003]. We directly compared model estimations with ground observations
without closure and this undermeasured LE led to 5–15% bias for instantaneous LE estimation [Finnigan
et al., 2003]. Additionally, the errors in the ground measurement of other meteorological variables (e.g., Ta),
satellite-derived Rn, Ts, LAI, and fv, all introduce errors into the estimation of LE and H. For example, error in
satellite-based LST from TM/ETM+ imagery has been reported to be 1°C [Li et al., 2013; Qin et al., 2001], which
introduces error of more than 20% for instantaneous LE estimation.

The footprints of the EC measurements vary from several meters to tens of meters, because changes in mea-
suring height (usually 2–30 m) result in changes in horizontal scaling of the measurement of turbulent fluxes
[Schmid, 1997]. The tower measurement footprints are smaller than the resolution (about 30 m) of the bio-
physical parameters derived from TM/ETM+ imageries (e.g., NDVI, Rn, and resampled LST); consequently,
these satellite-derived biophysical parameters may not adequately capture subpixel surface signals at the
flux tower sites [Kustas and Norman, 1999; Mu et al., 2011]. Therefore, inaccurate representation of the
satellite-derived biophysical parameters of the tower footprint conditions may cause model error. Similarly,
errors that propagate through the LST resampling also contribute to uncertainty in LE estimation.
Additionally, the structure of the TD-TSEB model also influences the accuracy of LE estimation because it
ignores the differences in crop stomatal conductance (characterized by fv in this study) among different crop
types. Applying the same biophysical parameters, such as the NDVI for different crop types in the model, may
result in large uncertainties in LE estimates.

When the TD-TSEB model is applied for other applications, such as water resources assessment over more
complex and heterogeneous basins, two highly effective ways are recommended to reduce uncertainty in
LE estimation. First, the easiest approach is to use the LST variation (Ts-LST0) (LST0 refers to LST for water
bodies or regions of full vegetation cover) to replace the temperature difference (Ts-Ta) to calculate Hs and
LEs. This strategy circumvents the difficulty of calculating Ta from satellite data [Jiang and Islam, 2001;
Wang et al., 2006; Tang et al., 2010; Zhang et al., 2005; Zhuang and Wu, 2015] and reduces 10–15% errors
for instantaneous LEs estimation. Second, the approach is to calibrate and adjust PT coefficient (a), kns, kpar,
NDVImin, and NDVImax using the ground observations at different vegetation types and climatic zones, which
will reduce LE estimation errors by 5–25% [Anderson et al., 2008]. Our next step is produce daily LE product for
regional irrigation application using new data fusion techniques, such as the Spatial Temporal Adaptive

Journal of Geophysical Research: Atmospheres 10.1002/2016JD026370

YAO ET AL. SIMPLE ET METHOD 5231



Reflectance Fusion Model developed by Gao et al. [2006], which integrates daily LE information at moderate
resolution from Moderate Resolution Imaging Spectroradiometer with periodic high-resolution LE maps
from Landsat.

5.3. Model Advantages and Limitations

Compared to other complex OSEB and TSEB models, the TD-TSEB model has the four advantages. First, it
requires relatively fewer inputs (Rs, albedo, LST, Ta, and NDVI) and avoids requiring u to improve the operabil-
ity of mapping field surface fluxes. Reliable umeasurements, which are necessary for calculating aerodynamic
resistance, are not routinely available at large scales [Chen et al., 2014; McVicar et al., 2012; Roderick et al.,
2007]. Second, the model accounts for intercanopy soil evaporation and undercanopy soil evaporation simul-
taneously by combining the layer model and the patch model. Third, TD-TSEB is reliable and robust based on
the model sensitivity. The sensitivity of the model to the Rs is highest, followed by NDVI, Ta, LST, and albedo,
all of which are easily acquired with reasonable accuracy [Liaqat and Choi, 2015; Liu et al., 2012]. Finally and
fourth, this model circumvents the complex parameterization for aerodynamic and surface resistance
involved in OSEB and TSEB models and therefore reduces the accumulated errors from the required forcing
data, which produces comparable accuracy of LE estimation when compared with two other widely used sur-
face energy balance models.

Like other TSEB models, the TD-TSEB model also has distinct limitations. First, it is sensitive to its use of the
temperature difference (Ts-Ta) to estimate Hs, and the errors in both Ts and Ta reduce the accuracy of Hs

and LEs estimation. Development of the linear relationship between the temperature difference and LST
may be a viable method to overcome this limitation in the near future [Allen et al., 2007; Baik and Choi,
2015]. Second, TD-TSEB ignores the effects of advection on the partitioning of turbulent energy fluxes
because of its assumption of the residual of a surface energy budget that excludes the advection of surface
fluxes from the surrounding landscape [Gowda et al., 2008], which may cause large biases in H and LE esti-
mates under strongly advective environment. Our ongoing work will focus on development of the hybrid
models by combination of Penman-Monteith model and water balance equation to overcome this disadvan-
tage. Third, the LST separation method proposed by Lhomme et al. [1994] used in this study may not accu-
rately calculate surface component temperatures across diverse crop types because this method was
originally designed for sparse millet. The error in Tswhen this method is applied to other dense crops remains
unclear. Perhaps, the use of nonlinear LST separation method would be able to more accurately depict reality.
This will be discussed in the near future and is beyond the scope of this study. Finally, the theoretical assump-
tion of a simple inversely proportional relationship between Ts (Ta) and u based on statistical analysis applied
to simplify the aerodynamic resistance may be problematic. Considering that the formation of u results from
a pressure gradient and temperature difference, the complex functional relationship between temperature,
u, and pressure remains unclear [Kittaka and Miyazaki, 2014; Wooten, 2011]. Such simplification of aerody-
namic resistance may weaken the performance of the model. The physical and mathematical linkages
between the u and the corresponding temperature require further investigation. Addressing these issues
forms the foundation of our ongoing work.

6. Conclusion

We developed a simple temperature domain two-source (TD-TSEB) model by combining the residual of the
energy balance equation and a modified PT model. The residual of the energy balance equation is used to
estimate LEs using a temperature domain method based on a simplified framework of total aerodynamic
resistances, and a modified PT model is used to estimate LEc. This model simultaneously accounts for both
the intercanopy soil evaporation and undercanopy soil evaporation by combining the “layer” model and
the “patch”model. It simplifies the complex parameterization of aerodynamic and surface resistance involved
in OSEB and TSEB models to improve the accuracy of LE estimation.

A series of validations conducted at five EC flux tower sites in China and 69 scenes of Landsat TM/ETM+ data
indicate that the TD-TSEBmodel performed well. Sensitivity analysis suggests that the TD-TSEB model is most
sensitive to both Rs and NDVI, followed by the Ta, LST, and albedo, all of which are easily acquired with rea-
sonable accuracy. When compared with N95-TSEB and METRIC, the TD-TSEB model has comparable accuracy
with fewer inputs. The results of this study are of significant interest for application to other agricultural
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regions elsewhere in the world especially in better understanding crop water stress and irrigation, which is
important for guiding farmer management practices. This research provides a method to reduce the uncer-
tainty in aerodynamic resistance calculations in data-sparse regions by using appropriate spatial resolution
thermal remote sensing data for implementation and evaluation.
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