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A B S T R A C T

Terrestrial evapotranspiration (ET) for each plant functional type (PFT) is a key variable for linking the energy,
water and carbon cycles of the atmosphere, hydrosphere and biosphere. Process-based algorithms have been
widely used to estimate global terrestrial ET, yet each ET individual algorithm has exhibited large uncertainties.
In this study, the support vector machine (SVM) method was introduced to improve global terrestrial ET
estimation by integrating three process-based ET algorithms: MOD16, PT-JPL and SEMI-PM. At 200 FLUXNET
flux tower sites, we evaluated the performance of the SVM method and others, including the Bayesian model
averaging (BMA) method and the general regression neural networks (GRNNs) method together with three
process-based ET algorithms. We found that the SVM method was superior to all other methods we evaluated.
The validation results showed that compared with the individual algorithms, the SVM method driven by tower-
specific (Modern Era Retrospective Analysis for Research and Applications, MERRA) meteorological data
reduced the root mean square error (RMSE) by approximately 0.20 (0.15) mm/day for most forest sites and 0.30
(0.20) mm/day for most crop and grass sites and improved the squared correlation coefficient (R2) by
approximately 0.10 (0.08) (95% confidence) for most flux tower sites. The water balance of basins and the global
terrestrial ET calculation analysis also demonstrated that the regional and global estimates of the SVM-merged
ET were reliable. The SVM method provides a powerful tool for improving global ET estimation to characterize
the long-term spatiotemporal variations of the global terrestrial water budget.

1. Introduction

Evapotranspiration (ET), the sum of evaporation from the Earth’s
surface and transpiration from plants into the atmosphere, is an
important variable linking the global terrestrial water, carbon and

energy exchanges (Allen et al., 1998; Liang et al., 2010; Wang and
Dickinson, 2012). In general, ET returns approximately 60% of
precipitation onto the Earth’s surface back to the atmosphere
(Korzoun et al., 1978) and thereby conveys terrestrial water availability
at the global scale (Mu et al., 2011; Yao et al., 2015). An accurate
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estimation of terrestrial ET is crucial to understand the linkages
between the terrestrial water budget and climate change. However,
regional ET is inherently difficult to measure because of the hetero-
geneity in the landscape and the large number of complex controlling
biophysical processes, such as available energy, plant biophysics and
soil moisture (Friedl, 1996; Mu et al., 2007; National Research Council,
2007; Jiménez et al., 2011).

Remote sensing provides us broad spatial coverage and regular
temporal sampling of biophysical parameters (e.g. vegetation indices,
VIs, albedo, leaf area index, LAI, fraction of absorbed photosynthetically
active radiation, FPAR, land surface temperature, LST, and plant
functional types, PFTs) (Liang et al., 2013; Los et al., 2000; Yao et al.,
2013) for estimating regional ET. Over the past several years, many
satellite-based methods were designed and developed to estimate
regional ET, including (1) physically-based algorithms (Allen et al.,
2007; Bastiaanssen et al., 1998; Fisher et al., 2008; Kustas and
Daughtry, 1990; Mu et al., 2007; Norman et al., 1995; Priestley and
Taylor, 1972); (2) data assimilation (DA) methods (Pipunic et al., 2008;
Xu et al., 2011a,b) and (3) empirical/semi-empirical algorithms
(Jackson et al., 1977; Wang et al., 2007; Wang and Liang, 2008;
Wang et al., 2010a,b; Yao et al., 2015). Traditional physically-based
algorithms, such as Surface Energy Balance System (SEBS) (Su, 2002),
the Surface Energy Balance Algorithm for Land (SEBAL) algorithm
(Bastiaanssen et al., 1998), the Two-Source ET model coupled with
Atmosphere-Land Exchange Inverse (ALEXI) model (Anderson et al.,
1997), the Moderate Resolution Imaging Spectroradiometer (MODIS)
LAI-based Penman-Monteith (PM) equation (Mu et al., 2007; Mu et al.,
2011) and Priestley-Taylor (PT) algorithm (Priestley and Taylor, 1972;
Fisher et al., 2008), model the dynamics of ET process based on surface
energy balance (SEB) equation and the Monin-Obukhov Similarity
Theory (MOST) driven by satellite and meteorological observations
(Wang and Dickinson, 2012). However, their simulation results may
differ substantially due to the large errors from too many input
variables and uncertainty that exists in the structures of the models.
Although DA methods assimilate satellite-based parameters (e.g., LAI,
LST) into biophysical or land surface models (LSMs) to improve ET
estimation (Pipunic et al., 2008; Xu et al., 2011a,b), a longstanding
limitation associated with DA methods is that the ET simulation
accuracy has been mainly affected by the accuracy of satellite-based
input variables.

Empirical/semi-empirical algorithms have been developed by relat-
ing ground-measured ET to satellite-based vegetation parameters and
other key meteorological variables (Wang et al., 2007). As specific
empirical algorithms, data-driven methods, including artificial neural
network (ANN) (Lu and Zhuang, 2010), support vector machine (SVM)
(Shrestha and Shukla, 2015; Yang, 2006) and model tree ensembles
(MTE) (Jung et al., 2010) estimate ET by building relationships between
input variables and outputs (ET) using training datasets. These methods
are sound in theory and provide accurate estimates of ET as long as
enough training datasets are representative of all the behaviors found in
the systems. However, they still show substantial differences in
partitioning ET for different regions and biomes due to the limited
training data at certain sites. Moreover, large data requirements for
data-driven methods can reduce their computational efficiency for
generating satellite-based ET products.

Multi-model ensemble approaches have been successfully used to
improve global terrestrial ET estimation. Former studies have indicated
that a simple model averaging method (SMA) or Bayesian model
averaging (BMA) method is superior to single model for predicting
terrestrial latent heat flux (LE) and surface longwave radiation (Chen
et al., 2015; Wu et al., 2012; Yao et al., 2014). For example, Yao et al.
(2014) used the BMAmethod to merge five process-based LE algorithms
and effectively improved the skills of the algorithms. Wu et al. (2012)
also found that the BMA method has the highest accuracy than
individual algorithms to combine eight land surface long-wave radia-
tion algorithms. These multi-model ensemble approaches obtain more

accurate estimates of the surface energy budget based on the linear
combination of each single model by gathering useful information from
multiple models to produce ensemble predictions. In theory, multi-
model ensemble approaches based on a nonlinear combination of each
single model, such as machine learning techniques, performs better
than those based on a linear combination of each single model (e.g.
BMA method) for predicting hydrologic and biophysical variables
(Duan and Phillips, 2010; Sheffield and Wood, 2008). However, there
is a lack of similar studies on predicting global terrestrial ET using
machine learning methods for merging multi-models.

In this paper, to reduce uncertainties in global ET estimation using
the individual process-based ET algorithms, we used the classical
machine learning method, the SVM method, to improve global terres-
trial ET estimation by merging three process-based algorithms. In Yao
et al., 2014 paper, five ET algorithms including two PM algorithms, two
PT algorithms and one semi-empirical Penman algorithm were merged
for ET estimation. However, numerous studies found the similar
performance of above two PM or PT algorithms for most land cover
types (Yao et al., 2014; Yuan et al., 2010). Therefore, in this study, we
only selected one PM algorithm, one PT algorithm and one semi-
empirical Penman algorithm for ET estimation. Our specific objectives
are to: 1) assess the performance of the SVM method for merging three
process-based ET algorithms based on a series of cross-validations using
long-term FLUXNET eddy covariance (EC) observations from 2000
through 2009; 2) compare the SVM method with the BMA method,
the general regression neural networks (GRNNs) method and the water
balance (WB) equation at the site and basin scales; and 3) generate a
global daily ET product during 2003–2005 with well-quantified accu-
racy based on MODIS data and Modern Era Retrospective Analysis for
Research and Applications (MERRA) meteorological data.

2. Data and methods

2.1. Data source

2.1.1. Data at eddy covariance flux tower sites
The performances of the SVM method, the GRNNs method, the BMA

method and three process-based ET algorithms were examined using
ground-measured EC data. The data were collected at 200 EC flux tower
sites located in Asia, Europe, Africa, Australia, South America and
North America (Fig. 1). The data were collected from AsiaFlux,
AmeriFlux, LathuileFlux, Arid/Semi-arid experimental observation
synergy and integration, the Chinese Ecosystem Research Network
(CERN) and some individual principal investigators (PIs) of the
FLUXNET project. The EC flux tower sites included nine major biomes:
evergreen broadleaf forests (EBF, 14 sites), evergreen needleleaf forests
(ENF, 50 sites), deciduous broadleaf forests (DBF, 24 sites), deciduous
needleleaf forests (DNF, 4 sites), mixed forests (MF, 10 sites), shrubland
(SHR, 12 sites), savanna (SAW, 8 sites), croplands (CRO, 30 sites) and
grasslands and other types (GRA, 48 sites). The data included half-
hourly or hourly surface net radiation (Rn), solar radiation (Rs), soil
heat flux (G), air temperature (Ta), vapor pressure (e), maximum air
temperature (Tmax), relative humidity (RH), wind speed (WS), sensible
heat flux (H) and ET. Half-hour EC measurements were obtained from
the raw data sampled at 10 Hz with the post-processing software EdiRe
(University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/
micromet/EdiRe). When the number (N) of half-hourly measurements
exceeded 40 per day, the daily average Rn, Rs, G, Ta, e, Tmax, RH, WS, H
and ET were the averages of the measurements. Thus, the total daily ET
can be calculated as:

∑ET
N

ET= 1 × 48
i

N

i
=1 (1)

Where i is the ith half-hourly observation on each day. If N was less than
40, the daily measurements were set to a fill value. Otherwise, they
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were indicated as missing. Similarly, the monthly data were aggregated
from the daily data (Jia et al., 2012; Liu et al., 2011; Liu et al., 2013; Xu
et al., 2013). Considering that the EC method suffers an energy
imbalance problem, the measured ET was corrected based on the
method proposed by Twine et al. (2000).

ET R G H ET ET= ( − )/( + ) ×cor n ori ori ori (2)

where ETcoris the corrected ET, and Hori and ETori are the uncorrected H
and ET, respectively.

2.1.2. Satellite and reanalysis data
To examine the performances of all ET algorithms for all flux tower

sites, the daily Rn, Rs, Ta, Tmax, e, RH, and WS products with a spatial
resolution of 1/2° × 2/3° from MERRA data provided by the National
Aeronautics and Space Administration (NASA) were used in this study.
Details of the MERRA dataset are available from NASA website (http://
gmao.gsfc.nasa.gov/research/merra). We interpolated the daily
MERRA data spatially to 1 km based on the bilinear method.
Accordingly, the 8-day MODIS FPAR/LAI (MOD15A2) product
(Myneni et al., 2002) and the 16 day MODIS NDVI (MOD13A2) product
(Huete et al., 2002) at 1-km spatial resolution were used to drive all ET
algorithms. The daily FPAR/LAI (NDVI) values were temporally inter-
polated from the 8-day (16-day) averages using linear interpolation.
When the data were missing, we temporally filled the missing FPAR,
LAI and NDVI with 1-kmMODIS pixel based on the method described by
Zhao et al. (2005), which exploits the closest reliable 16 day (8 day)
values to replace the missing data.

To generate the global terrestrial ET product at a spatial resolution
of 0.05° from 2003 to 2005, we interpolated the daily MERRA data
spatially to 0.05° based on the bilinear method. We also used the
Collection 5 MODIS NDVI (MOD13C1: CMG, 0.05°), Collection 4 MODIS
land cover (MOD12C1: CMG, 0.05°) (Friedl et al., 2002) and the
Collection 5 MODIS FPAR/LAI (MOD15A2, 1-km) to drive the three
satellite-based ET algorithms. The 1-km LAI/FPAR was also aggregated
into 0.05° gridded data using the bilinear method.

2.1.3. Data at global large basins
A total of 32 global large basins covering areas from 2.3 × 105 to

6.0 × 105 km2 were collected from Pan et al. (2012) (Fig. 1). Basin
averaged monthly data, including precipitation (P) and streamflow (Q),
were used and aggregated into annual data (2003–2005). The P and Q
gridded products at a spatial resolution of 0.5° were generated based on
a constrained Kalman filter technique that merged a number of global
datasets including in situ observations, remote sensing retrievals, land
surface model simulations and global reanalysis (Pan et al., 2012). In
addition, the Gravity Recovery and Climate Experiment (GRACE)
satellites datasets (Center for Space Research Release 4: CSR RL04)
from 2003 to 2005 were also interpolated into 0.5° and used to obtain
the water storage changes (TWSC) (Swenson and Wahr, 2002). At the
basin scale, these gridded variables (P, Q and TWSC) products were all
averaged to derive ET for the global ET algorithms assessment.

2.2. Three process-based ET algorithms

Three process-based ET algorithms were used in this study, and the
algorithms are illustrated using their abbreviations in the figure
legends, for example, the MODIS ET product algorithm is abbreviated
as MOD16. Table 1 describes the three process-based algorithms in
detail.

2.2.1. MODIS ET product algorithm
The MODIS ET product algorithm (MOD16) is an improved Penman-

Monteith equation (Mu et al., 2011), which is based on a beta version
(Mu et al., 2007) after being adapted by Cleugh et al. (2007):

ET
ΔR ρC e e r

Δ γ r r
=

+ ( − )/
+ (1 + / )

n p s a

s a (3)

where esis saturated water vapor pressure, Δ is the slope of the curve
relating saturated water vapor pressure to temperature, ρ is the air
density, Cp is the specific heat capacity of air,γ is the psychrometric
constant, ra is the aerodynamic resistance, and rs is the surface
resistance. The MOD16 ET algorithm is the modified beta version (Mu

Fig. 1. Map of the 200 eddy covariance flux tower sites and the 32 large basins used in this study. 32 large basins are shown: 1. Amazon, 2. Amur, 3. Aral, 4. Columbia, 5. Congo, 6.
Danube, 7. Dnieper, 8. Don, 9. Indigirka, 10. Indus, 11. Kolyma, 12. Lena, 13. Limpopo, 14. Mackenzie, 15. Mekong, 16. Mississippi, 17. Murray-Darling, 18. Niger, 19. Nile, 20. Northern
Dvina, 21. Ob, 22. Olenek, 23. Parana, 24. Pearl, 25. Pechora, 26. Senegal, 27. Ural, 28. Volga, 29. Yangtze, 30. Yellow, 31. Yenisei, 32. Yukon. Nine major biomes are shown: DBF:
deciduous broadleaf forest; DNF: deciduous needleleaf forest; EBF: evergreen broadleaf forest; ENF: evergreen needleleaf forest; MF: mixed forest; SAW: savannas and woody savannas;
SHR: open shrubland and closed shrubland; CRO: cropland; GRA: grassland, urban and built-up, barren or sparsely vegetated.
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et al., 2007) by calculating ET as the sum of daytime and nighttime
components; modifying vegetation cover fraction with FPAR derived
from MOD15A2 product; modifying calculations of aerodynamic,
boundary-layer, and canopy resistance and dividing the canopy and
soil into wet and dry components, respectively (Mu et al., 2011). The
total ET is the sum of interception evaporation (ETi), canopy transpira-
tion (ETc), saturated wet soil evaporation (ETsw) and unsaturated soil
evaporation (ETsu).

ET ET ET ET ET= + + +i c sw su (4)

ET
ΔR ρC e e f rhrc f

Δ
=

[ + ( − ) / ]

+
i

nc p s c wet
P C rvc
λ ε rhrc

× ×
× ×

a p
(5)

ET
ΔR ρC e e f r f

Δ γ r r
=

[ + ( − ) / ](1 − )
+ (1 + / )c

nc p s c a wet

s a (6)

ET
ΔR ρC e e f r f

Δ γ r r
=

[ + ( − )(1 − )/ ]
+ × /sw

ns p s c as wet

tot as (7)

ET
ΔR ρC e e f r f

Δ γ r r
RH=

[ + ( − )(1 − )/ ](1 − )
+ × /

× (
100

)su
ns p s c as wet

tot as

VPD β/
(8)

where Rnc is the net radiation to the canopy, Rns is the net radiation to
the soil, fc is the vegetation cover fraction, fwet is the relative surface
wetness cover from the PT-JPL model (Fisher et al., 2008), VPD is the
vapor pressure deficit, β is a constant (200), rhrcis the aerodynamic
resistance on the wet canopy surface, rvcis the wet canopy resistance,
rtot is the total aerodynamic resistance to vapor transport, and ras is the
aerodynamic resistance at the soil surface. Further details of theMOD16
algorithm can be found in Mu et al. (2011).

2.2.2. Priestley-Taylor-Based ET algorithm
Starting with the Priestley and Taylor (1972) equation for potential

ET, Fisher et al. (2008) developed the PT-JPL model by introducing
both ecophysiological (FPAR and LAI) and atmospheric (RH and VPD)
constraints without using any ground-based observed data to reduce
potential ET to actual ET. The total ET is partitioned into three
components, the soil evaporation (ETs), the canopy transpiration (ETc)
and the interception evaporation (ETi).

ET ET ET ET= + +s i c (9)

ET α Δ
Δ γ

f f f R G=
+

[ + (1 − )]( − )s wet sm wet ns
(10)

ET α Δ
Δ γ

f f f f R=
+

(1 − )c g T m wet nc
(11)

ET α Δ
Δ γ

f R=
+i wet nc

(12)

f F
F

=g
APAR

IPAR (13)

where α is the Priestley-Taylor (PT) coefficient for a wet surface
condition (1.26), fsm is the soil moisture constraint, fT is the plant
temperature constraint, fg is the green canopy fraction, fm is the plant

moisture constraint, FAPAR is the fraction of PAR absorbed by green
vegetation cover and FIPAR is the fraction of PAR intercepted by total
vegetation cover, which is estimated with NDVI (Fisher et al., 2008).
Details of the PT-JPL algorithm were fully described by Fisher et al.
(2008).

2.2.3. Semi-empirical Penman algorithm
Based on the Penman (1948) equation, the Semi-empirical Penman

ET algorithm (SEMI-PM) was developed by Wang et al. (2010a). This
algorithm considers that the total ET is composed of two components,
the energy control component (ETe) and the aerodynamic control
component (ETa).

ET a ET ET a ET ET= ( + ) + ( + )e a e a1 2
2 (14)

ET Δ
Δ γ

R a a NDVI RH a a NDVI=
+

[ + + (1 −
100

)( + )]e s 3 4 5 6
(15)

ET γ
Δ γ

WS a RH a a NDVI VPD=
+

[ + (1 −
100

)( + )]a 7 8 9
(16)

The empirical coefficients were derived from observed data col-
lected at 64 globally distributed flux tower sites. The algorithm
considers different climate conditions and is simple to operate. The
algorithm includes WS, which may play an important role in annual or
decadal ET variability (McVicar et al., 2012; Wang et al., 2010a,b).

2.3. Support vector machine

The support vector machine (SVM) method was used in this study to
merge the three satellite-based ET algorithms to estimate the global
terrestrial ET. For SVM, linear models in the new feature can be used to
resolve the original nonlinear problem because a multi-dimensional
input space is more likely to be linearly separable in a new feature space
(Vapnik, 1995; Yang, 2006; Nurmemet et al., 2015). For a given
training dataset{(xi, yi), 1≤ i ≤ n}, xi is the input of the ET derived
from each single ET algorithm, yi is the target concept of the ground-
measured ET, and n is the number of training examples. To obtain a
functional dependency f(x) between the inputs x and the target y
derived from the set of independent and identically distributed
observations, the objective function for the SVM method (Vapnik,
1995) can be formulated as follows:

f x w x b( ) = < , > +i (17)

∑w K η ηMinimize 1
2

+ ( + *)
i

n

i i

2

=1 (18)

w x b y ε ηSubject to < , > + − ≤ + *i i i (19)

y w x b ε η− < , > − ≤ +i i i (20)

η η, * ≥ 0i i , i = 1,…, n (21)
where x is the input vector, w is the weights vector norm,<w,

xi> is the dot product of x and w,b is a bias,K is a cost of errors, ε is
Vapnik’s insensitive loss function, and ηi denotes the predicted value to

Table 1
Summary of the six ET models and forcing variables. ET is the total evapotranspiration; ETc is the canopy transpiration; ETs is the soil evaporation; ETi is the interception evaporation; ET1
is the total evapotranspiration derived from the MOD16 algorithm; ET2 is the total evapotranspiration derived from the PT-JPL algorithm; and ET3 is the total evapotranspiration derived
from the SEMI-PM algorithm.

ID ET algorithm Forcing Inputs Outs References

1 MODIS ET products algorithm (MOD16) Rn, Ta, Tmin, RH, FPAR, LAI, PFTs ET1, ETc, ETs, ETi Mu et al. (2011)
2 Priestley-Taylor ET algorithm of Jet Propulsion Laboratory (PT-JPL) Rn, Ta, Tmax, RH,FPAR, LAI, NDVI ET2, ETc, ETs, ETi Fisher et al. (2008)
3 Semi-empirical Penman ET algorithm (SEMI-PM) Rs, Ta, RH,WS, NDVI ET3 Wang et al. (2010a)
4 Bayesian model averaging method (BMA) ET1,ET2,ET3 ET Raftery et al. (2005)
5 General regression neural networks (GRNNs) ET1,ET2,ET3 ET Specht (1991)
6 Support vector machine (SVM) ET1,ET2,ET3 ET Vapnik (1995)
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be above the true value by more than ε, and η*
i to be below the true

value by more than ε. Fig. 2 illustrates the one-dimensional linear
regression function with an ε-insensitive band. Data points out of the ε-
insensitive band are called support vectors, and only support vectors
contribute to the optimization solution (Yang, 2006; Shrestha and
Shukla, 2015).

The optimization problem presented in Eqs. (18)–(21) can be solved
based on the technique of Lagrange multipliers (a and a*) by the
following equation:

∑ ∑

∑ ∑

a a y a a ε a a

a a a a x x

Maximize < , * > = ( − *) − ( + *) − 1
2

( − *)( − *) < , >

i

n

i i i
i

n

i i

i

n

j

n

i i j j i j

=1 =1

=1 =1 (22)

Subject to ∑ a a( * − ) = 0
i

n

i i
=1

, a a K, * ∈ [0, ]i i (23)

Then, the approximating f (x) function can be written as:

∑f x a a x x b( ) = ( * − ) < , > +
i

n

i i i
=1 (24)

The kernel function u(x, xi) is introduced to bring the training data
into a high dimension feature space and Eq. (24) can be updated as:

∑f x a a u x x b( ) = ( * − ) ( , ) +
i

n

i i i
=1 (25)

We used the Radial basis function (RBF) kernel in this study because
previous studies have shown that the RBF kernel performs better than
other kernels (Dibike et al., 2001; Khalil et al., 2006). The RBF kernel
function can be expressed as:

u x x
σ

x x( , ) = exp(− 1
2

− )i i
2

2

(26)

where σ is a variance. Further details of the SVM method can be found
in Vapnik (1995).

2.4. Other multi-model ensemble methods

2.4.1. Bayesian model averaging method
The Bayesian model averaging (BMA) method is an approach to

combine the forecast densities predicted by different models, producing
a new forecast probability density function (PDF) (Duan and Phillips,
2010; Raftery et al., 1995; Yao et al., 2016). According to the BMA
method, the combined forecast PDF of a variable y (ET in this study),
given the independent predictions of k models, [A1, A2, …, Ak], and the
corresponding EC ET observation, O, can be expressed as:

∑p y A A A O p A O p y A O( , , ..., , ) = ( ) ( , )k
i

k

i i1 2
=1 (27)

Where p(Ai|O) is the posterior distribution of y for Ai. p(y|Ai, O) is the
predictive model likelihood being correct using the observations, O,
and it can be considered as the weight (Ci) of model Ai. Thus, Eq. (25)
can be written as:

∑p y A A A O C p y A O( , , ..., , ) = ( , )k
i

k

i i1 2
=1 (28)

Ci can be calculated using the maximum likelihood function, which
has been acquired from the expectation maximization (EM) algorithm
(Raftery et al., 2005). Further details of the EM algorithm and the BMA
method can be found in Duan and Phillips (2010).

2.4.2. General regression neural networks
General regression neural networks (GRNNs) are the generalizations

of radial basis function networks and probabilistic neural networks
(Specht, 1991). The functional estimate of the GRNNs method is
calculated directly from the training data without iterative training.
The basic structure of the GRNNs method includes four layers: the input
layer, the pattern layer, the summation layer and the output layer (Jia
et al., 2015; Xiao et al., 2014). The input layer includes the input
variables (ET estimated from each single algorithm) and the output
layer provides the GRNNs method estimated ET by merging the three
algorithms. The kernel function of the GRNNs method meets the
Gaussian distribution and the fundamental formulation can be written
as:

∑

∑
Y X

Y
′( ) =

exp(− )

exp(− )
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where Y ' (X) is the estimation corresponding to the input vectors X, Yi

is the output vector corresponding to the ith training input vector Xi, n
is the number of samples, Di

2 is the squared Euclidean distance between
X and Xi, and σ refers to a smoothing parameter that controls the size of
the receptive region. σ affects the weights and accuracy of the GRNNs
method for ET prediction. The holdout method was used to determine σ
by removing one sample from the training data and then constructing
the GRNNs using all of the remaining training samples. The training
processes were terminated once the minimum of the cost function of σ
was reached:

∑f σ
n

Y X Y( ) = 1 ( ( ) − )
i

n

i i i
=1

2

(31)

where Y X( )i i is the estimate corresponding to Xi based on the GRNNs
trained over all of the training samples, except the ith sample. More
details of the GRNNs method can be found in Specht (1991).

2.5. Evaluation methods

2.5.1. SVM experimental setup based on cross-validation
To merge three satellite-based ET algorithms, we trained the SVM

method based on the ground-measured ET for period of 2000–2009 and
the corresponding estimated ET using the individual algorithms. To
remove the influence of the input variables with different absolute
magnitudes, we scaled all of the input variables on the range of −1 to
1.

We trained and tested the models as follows. Firstly, we selected the
radial basis function (RBF) kernel because it determines the perfor-
mance of machine learning methods and requires only one parameter
(σ). Secondly, we initially set a coarse grid search for K(2−1,20,…,24), ε
(2−5,2−4,…,2−2) and σ (2−3,2−2,…,24), and further found the K, ε and
σ with the lowest mean cross-validation root mean squared error
(RMSE). Based on the selected K, ε and σ, a final training of the SVM

Fig. 2. One-dimensional linear regression with ε-insensitive band for the SVM method.
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for 2000–2009 EC data was performed. Thirdly, we trained and tested
the performances of the SVM method using a fourfold cross-validation
method. The training data sets were stratified into four folds, each
containing ca. 25% of the data (Jung et al., 2011). Entire sites were
assigned to each fold (Jung et al., 2011; Tramontana et al., 2016). SVM
training is performed four times on three of the groups, with the
remaining group reserved for testing and parameters with the lowest
cross-validation errors are chosen. Moreover, we evaluated the perfor-

mance of the SVM method by comparing the SVM results with the BMA
method, the GRNNs method and the WB equation. Here, similar
procedures were performed to design the GRNNs experimental setup.
Finally, we trained the SVM method using all available data to merge
the three satellite-based ET algorithms to generate global terrestrial ET
product.

Fig. 3. a) Taaylor diagrams for the daily ET observations and ET estimates using the different algorithms driven by tower-specific meteorology at the 200 EC sites. The dotted circular
lines connecting the X and Y axes represent the STD, the dotted radial lines are the correlation (R), and the green curves denote the RMSE with respect to the reference dataset. The
simulated ET based on the SVM method, the GRNNs method and the BMA method and by merging three satellite-based ET algorithms for each of the four groups was independently
validated using the samples of the remaining three groups (mm/d refers to mm per day). b) Same as Fig. 3a) but for the results driven by MERRA meteorology at the 200 EC sites. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.5.2. Taylor diagrams
Taylor diagrams were used to assess the performance of the SVM

method, the GRNNs method, the BMA method and the individual ET
algorithms (Taylor, 2001). A Taylor diagram is a polar-style graph that
includes the standard deviation (STD) between the simulations and the
observations, the correlation coefficient (R) and the centered RMSE. In
a Taylor diagram, STD is the radial distance from the origin, R is
characterized by the cosine of the azimuth angle, and RMSE refers to
the radial distance from the observed point. In addition, the average
bias and p values for the estimated ET and ground-measured ET were
used to assess the simulation errors in the different ET algorithms.

2.5.3. The Akaike information criterion and the Bayesian information
criterion

The Akaike information criterion (AIC) and the Bayesian informa-
tion criterion (BIC) were also used to evaluate the performance of the
SVM method, the GRNNs method, the BMA method and the individual
ET algorithms. The AIC is a measure of the quality of each model,
relative to each of the other models for a given set of data (Akaike,
1974; Loehlin, 1992) and the AIC value of the model can be expressed
as:

AIC L c= −2 ln + 2 (32)

Where L is the maximum value of the likelihood function for the model

Fig. 3. (continued)
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and c is the number of free parameters in the model. The model with the
smallest AIC is the best performance. The BIC is also an indicator for
assessing model performance, but it takes into account the number of
data points, n (Schwarz, 1978). The BIC is formally defined as:

BIC L c n= −2 ln + ln( ) (33)

The model with lowest BIC values is preferred. Thus, the good
performance of different algorithms in this study is normally based on
the low AIC and BIC values.

2.5.4. Water balance equation
The SVM-merged ET estimation over the basin and regional scale

was evaluated based on the water balance equation. ET can be
calculated based on the precipitation (P), the streamflow (Q) and the
water storage changes (TWSC) within a water-closed basin.

ET P Q TWSC= − − (34)

Of the four water budget components, P and Q can be acquired from
the multiple datasets that were produced by Pan et al. (2012), and
TWSC can be acquired from the GRACE data. Thus, terrestrial ET can be
inferred using Eq. (34) within the 32 global large basins.

2.5.5. Contribution of each individual algorithm on merged ET
To test the contribution of each individual algorithm on SVM-

merged ET, we removed one of the individual algorithms and replicated
the cross-validation training process. The mean cross-validation RMSE
and the squared correlation coefficient (R2) from the cross-validation
training process were quantitatively used to evaluate the contribution
of each individual algorithm.

3. Results

3.1. The performance of the SVM method at the site scale

Fig. 3a) and b) show the Taylor diagrams for the daily ET
observations and ET estimates using the different algorithms driven
by tower-specific (defined as “ground-measured”) meteorology and
MERRA meteorology at the 200 EC sites, respectively. Figs. 3 and 4
showed that the six algorithms exhibited substantial differences for
each PFT. For the MF, DNF and DBF sites, the SVM method driven by
tower-specific (MERRA) meteorology behaved better than the MOD16
algorithm, the PT-JPL algorithm, the SMEI-PM algorithm, the BMA
method and the GRNNs method, with an R2 of greater 0.78 (0.68),
(p < 0.01), a low bias ranging from −0.01 to 0.01 (−0.02–0.02) mm/
day and smaller RMSEs of less than 0.70 (0.80) mm/day. Similarly, for
the ENF and EBF sites using the SVM method driven by tower-specific
(MERRA) meteorology, the RMSE of the estimated ET versus ground
observations was approximately 0.66 (0.93) mm/day and the R2 is
approximately less than 0.75 (0.61) (p < 0.01), but it still presented
better performance than the BMA method, the GRNNs method and the
individual algorithms. For all of the crop sites, the estimated ET using
the SVM method for tower-specific (MERRA) meteorology inputs still
exhibited the lowest RMSE of 0.81 (1.08) mm/day, and the highest R2

of 0.74 (0.56) at the 99% level of confidence, compared with the BMA
method, the GRNNs method and the individual algorithms. Almost all
three individual algorithms showed the poor performance at the crop
sites and so did the three merged estimates. Therefore, a poor model
performance of the SVM method was also found at these crop sites. For
the other PFTs (GRA, SAW and SHR) sites, the average RMSE was much
lower and the average R2 was slightly higher for the SVM method
compared with the other five algorithms. As another machine learning
method, the GRNNs method was superior to the BMA method and the
individual algorithms for all PFTs, but it still had lower performance
with lower R2 and higher RMSE than the SVM method. For all of the
PFTs, the SVM method was superior to the GRNNs and the BMA
methods. Overall, compared with the individual algorithms, the RMSE

of the SVM method driven by tower-specific (MERRA) meteorology
decreased the RMSE by approximately 0.20 (0.15) mm/day for most
forest sites and approximately 0.30 (0.20) mm/day for most crop and
grass sites and increased the R2 by more than 0.10 (0.08) (95%
confidence) for most flux tower sites.

Fig. 5 demonstrated the AIC and BIC values calculated from six
algorithms. It is clear that the SVM method driven by tower-specific
(MERRA) meteorology gave the lowest AIC and BIC values for different
PFTs when compared to those obtained from other five models.
However, the AIC and BIC values of the SVM method are slightly lower
than those of the GRNNs method. The GRNNs method provided the
second best accuracies. Therefore, the SVM method provides a better
representation of the ET data of the globally distributed eddy covar-
iance tower sites used in this study than other five models.

Fig. 6 shows the SVM exhibited most features of measured ET
seasonality in the ground-measured test data for different PFTs. In
comparison to the BMA method, the GRNNs method and the individual
algorithms, the SVM method produced seasonal ET variations that were
closest to the ground-measured ET. The bias of the estimated ET based
on the SVM method varies from −0.04 to 0.03 mm/day, the R2 varies
from 0.73 to 0.83, and the RMSE varies from 0.41 to 0.80 mm/day.
Fig. 7 shows the frequency distributions of the predictive errors in all
six algorithms driven by tower-specific and MERRA meteorology,
respectively. The errors distributions of the SVM-merged ET estimates
are more closely centered on zero and the SVM method decreased the
substantial positive and negative biases. Therefore, the SVM strategy
can capture the ET variance and has good model performance.

To improve global terrestrial ET estimation using the SVM method,
all of the data collected at the 200 flux tower sites were used as training
data to determine the nonlinear combinations of the three satellite-
based algorithms. Figs. 8 and 9 present the scatter plots between the
monthly observed ET at all of the 200 flux tower sites and the ET
estimates for the six algorithms driven by tower-specific and MERRA
meteorology, respectively. The results show that the SVM method has
the best performance, with the highest R2 (0.90 and 0.80) (p < 0.01)
and the lowest RMSE (11.15 mm/month and 14.71 mm/month) com-
pared with the other five algorithms. Previous substantial studies also
illustrated that the SVM method, trained with hydro-climatic inputs,
yields better ET estimates than do neural networks and other methods
in a series of cross-validation experiments (Yang, 2006; Shrestha and
Shukla, 2015). Therefore, the improved accuracy of the SVMmethod by
merging the three satellite-based algorithms makes it useful for
estimating the regional terrestrial ET.

3.2. Evaluation of the SVM-merged ET at the basin level

We compared the estimated global ET using six algorithms driven by
MERRA meteorology with the inferred ET from basin-scale water
balance calculations for 32 major global basins (Fig. 10). In comparison
to the BMA method, the GRNNs method and the individual algorithms,
the SVMmethod still had the best performance with the lowest RMSE of
90.38 mm and the highest R2 of 0.89 (p < 0.01) over the 32 water-
sheds. Large differences between the SVM-merged ET and the inferred
ET occurred in some of the high latitude basins, such as the Pechora,
Yukon and Ural basins. The mean difference in those basins was
approximately 110 mm/year. This discrepancy may be partially attri-
butable to the few ET observations, which reduced the accuracy of the
SVM-merged ET. Pan et al. (2012) showed that the global terrestrial
water budget (P and Q) determined by merging a number of global
datasets has a higher accuracy compared with that based on the
individual datasets, but there are still small biases in some regions.
Therefore, the biases of P, Q and TWSC from different data sets can also
result in errors in the inferred ET, which will contribute to SVM-merged
ET and inferred ET differences in those regions. Although there were
large differences between the SVM-merged and inferred ET in some of
the basins, the good agreement based on a verification of the water
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balance approach for most of the basins demonstrates that the SVM
method was reliable.

3.3. Contribution of each individual algorithm on SVM-based ET variations

Removing the SEMI-PM algorithm driven by tower-specific meteor-
ology reduced the largest performance of SVM in cross-validation error
analysis for DNF, ENF and MF PFTs (Fig. 11). R2 decreased by
approximately 0.10 and RMSEs increased by approximately 0.08 mm/
day. Removal of the MOD16 algorithm caused the secondary perfor-
mance reduction for all above three PFTs, leading to decreased R2 of
approximately 0.05 and increased RMSEs of 0.06 mm/day. Removing
the PT-JPL algorithm yielded comparatively minor changes with the R2

reduced by about 0.02 and RMSEs rose by 0.02 mm/day. In contrast,
the largest performance reduction for other PFTs was to remove the PT-
JPL algorithm: the RMSEs increased by more than 0.09 mm/day and the
R2 reduced by 0.12. While removal of the MOD16 algorithm resulted in
small performance reduction for other PFTs. Therefore, the SEMI-PM
algorithm captured most of the ET variations for DNF, ENF and MF
PFTs, while the PT-JPL algorithm has the highest contribution to SVM-
merged ET for other PFTs. Although our input each individual
algorithm ranking was based on the tower-specific meteorology, similar
conclusions can be drawn when using the MERRA meteorology as
inputs.

3.4. SVM-merged global terrestrial ET patterns

We applied the SVM method, the GRNNs method, the BMA method
and the individual algorithms with theMERRAmeteorology andMODIS
product to estimate annual ET globally at a 0.05° spatial resolution from
2003 to 2005. Over the 2003–2005 study period, average annual ET
from the SVM method has the smallest values of 85 mm/yr in cold and
arid regions, intermediate values of 321 mm/yr in the temperate
regions, and highest values of 1279 mm/yr over the tropical and sub-
tropical forests of the Congo basin in central Africa, the Amazon basins
in South America and the Indonesia rain forests in Southeast Asia
(Fig. 12). Compared with the MOD16 algorithm, the PT-JPL algorithm
and the BMA method, the SVM method yields lower annual global
terrestrial ET in rain forests regions (Indonesia, Amazon and Congo)
and higher ET in arid and semi-arid regions (Fig. 13). However, there
are opposite spatial differences between the SVM method and the other
two methods (GRNNs and SEMI-PM).

The global terrestrial average annual ET based on the SVM method
was 471.7 mm/yr, which was lower than the ET values that were based
on PT-JPL (508.8 mm/yr), SEMI-PM (517.2 mm/yr), BMA (486.1 mm/
yr) and GRNNs (475.9 mm/yr), and higher than the ET values that were
based on MOD16 (433.7 mm/yr). The average annual ET for CRO, GRA,
SAW, DNF, ENF, DBF and MF was 485 mm/yr, 322 mm/yr, 616 mm/yr,
244 mm/yr, 185 mm/yr, 589 mm/yr and 381 mm/yr, respectively. The
seasonal patterns of ET averaged from 2003 through 2005 based on the

Fig. 4. The averaged biases of estimated ET using six models driven by a) tower-specific and b) MERRA meteorology versus ground-measured ET for nine PFTs at the 200 flux tower sites.
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SVM method driven by the MERRA meteorology and MODIS product
illustrated obviously seasonality for most PFTs (Fig. 14). However,
there is no seasonality for EBF and SAW with high ET values around the
whole year.

4. Discussion

4.1. The performance of the SVM method

By merging three process-based ET algorithms, the SVM method not
only preserved the partial dynamic information of ET process, but
yielded the global terrestrial ET with high accuracy. We found that the

Fig. 5. The AIC and BIC values of six models. The AIC values of estimated ET using six models driven by a) tower-specific and b) MERRA meteorology for nine PFTs at the 200 flux tower
sites. The BIC values of estimated ET using six models driven by c) tower-specific and d) MERRA meteorology for nine PFTs at the 200 flux tower sites.
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SVM method successfully improved the ET estimate accuracy by
10–20% and 5–10% compared with the individual models and other
ensemble methods (BMA and GRNNs), respectively. The SVM method

performed well and explained more than 81% of the ET variability for
the DBF, DNF and GRA flux tower sites. Previous studies have shown
that the vegetation leaf, moisture and chlorophyll content of these

Fig. 6. Examples of the 8-day ET average as measured and estimated using the different tower-driven algorithms for the different PFTs.
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biomes display obviously seasonal variations (Mu et al., 2007; Yao
et al., 2015; Yebra et al., 2013). LAI and NDVI derived from remote
sensing reflect the seasonal changes of vegetation information and
based on these vegetation parameters, the individual algorithms have
successfully captured the seasonal cycle of those biomes, which will
improve ET estimation because the performance of the SVM method
relies on the accuracy of the individual algorithms. In contrast to the
deciduous forests and grassland cover types, the evergreen forests,
including ENF and EBF, had less evident seasonal variations. Therefore,
the weak variations in the satellite-based vegetation signals abated the
ability of the individual algorithms and the SVMmethod to calculate ET
(Eugster et al., 2000; Huete et al., 2002; Wang and Dickinson, 2012). In
addition, for the irrigated CRO flux tower sites, the SVM method
presented the poorer local performances for the ET (R2 = 0.51,
bias =−0.91 mm/day and RMSE = 1.22 mm/day) estimates with
MERRA meteorology inputs. In contrast, the SVM method presented
the better local performances for the ET (R2 = 0.60, bias = 0.20 mm/
day and RMSE = 0.98 mm/day) estimates. This may be attributable to
the fact that the SVM method failed to simulate irrigation practice
because the three satellite-based algorithms only use RH and VPD to
infer soil moisture stress for model parameterization (Fisher et al.,
2008; Mu et al., 2011; Wang et al., 2010a). Beyond these irrigated crop
sites, the SVM method significantly improved the performance.

The relative contributions of each individual algorithm to SVM-
merged ET vary for different PFTs. The SEMI-PM algorithm has the
largest contribution for DNF, ENF and MF land cover types and the PT-

JPL algorithm has largest contribution for other land cover types, which
are generally consistent with the BMA-derived weights for the three
process-based ET algorithms (Fig. 15). The study of Yang (2006)
indicated that SVM outperformed other techniques (e.g. neural net-
works and multiple regressions) and the contribution of input variable
may change with different PFTs and spatial resolution. Yao et al. (2014)
also reported that SEMI-PM latent heat flux estimates had large
contribution to BMA-merged ET for most land cover types because it
closely matched the BMA latent heat flux estimate.

4.2. SVM-merged global terrestrial ET estimation

The SVM method for merging the three process-based ET demon-
strated its reliability for estimating global terrestrial annual ET.
Considering that we used the GRACE satellite data to compare the
SVM-based ET and the GRACE data are available from March 2002, we
generated SVM-based ET product during period of 2003–2005 in this
study. Importantly, the SVM-merged annual global terrestrial ET
(excluding Greenland and Antarctica) was 471.7 mm/yr from 2003
through 2005, which was comparable to other estimates. For instance,
Wang and Dickinson (2012) reported that global average ET derived
from surface water budget varied from 1.2 mm/d to 1.5 mm/d with an
average of 1.3 ± 0.1 mm/d. Mueller et al. (2013) inferred that the
estimates of globally averaged ET from satellite observation, reanalysis
data and land surface model simulations were between 0.83 mm/d and
1.45 mm/d. The SVM ensemble results were similar to those results.
However, spatial differences between the SVM-merged ET and other ET
estimates are much greater than those for the global average values.
This discrepancy may have been caused by the differences in the
algorithm structures of the SVM and GRNNs methods.

Although the superior performance of the SVM method demon-
strates that the use of the SVM method for merging different ET
algorithms can effectively characterize the spatial distribution of ET,
the SVM method underestimates monthly ET when the measurements
exceed 120 mm per month. Similarly, SVM-merged averaged ET over
the tropical and sub-tropical forests is 1279 mm/yr, which was lower
than the results of other estimates. For instance, Bruijnzeel (1990)
reported that annual ET ranges from 1310 to 1500 mm in humid
tropical forests. Frank and Inouye (1994) used 25 year climate records
to calculate annual ET at 10 sites and found annual ET of
1363 ± 77 mm/yr for wet tropical forest. Perhaps few training
samples available for tropical forest attribute to the underestimate ET.

4.3. Uncertainty in SVM-merged ET estimate

Validation results indicate that uncertainty in SVM-merged daily ET
estimate (with respect to FLUXNET) was found to range between 21 and
47%. We attribute the reasons for uncertainty in global terrestrial ET
product to factors such as the corresponding errors in the tower EC
observations, MERRA meteorology and satellite-based vegetation para-
meters (e.g., LAI and FPAR) and the spatial scale mismatch among the
different data sources. Firstly, the energy balance closure of the EC
observation was generally approximately 30% due to complexities in
the wind patterns and to footprint variability (Foken, 2008; Twine
et al., 2000; Wilson et al., 2002; Zhang et al., 2010). Although the EC
data were corrected, they still had an error of approximately 5–20%
(Foken, 2008), which would have reduced the accuracy of the
algorithms used for the ET estimation. Secondly, many studies have
demonstrated that there are large errors in theMERRAmeteorology and
MERRA data tend to underestimate Rn at high values when compared
with ground measurements (Rienecker et al., 2011; Zhao et al., 2006).
This indicates that the biases in MERRA meteorological data can
introduce substantial uncertainties into the ET estimates, and it is
necessary to minimize those biases to improve the quality of the ET
product. Thirdly, the accuracy of the MODIS LAI, FPAR and land cover
types can also influence the accuracy of the ET estimates. Recent studies

Fig. 7. The frequency distributions of the predictive errors in all six models driven by a)
tower-specific and b) MERRA meteorology, respectively.
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have revealed errors in MODIS LAI and FPAR when compared with
ground measurements (Serbin et al., 2013). Similarly the accuracy of
the MODIS Collection 5 Land Cover Type product is less than 75%
globally (Hansen et al., 2000), which will lead to approximately 17%
errors in SVM-merged ET estimate. Thus, these inaccurate MODIS
products will also reduce the accuracy of ET estimates. The individual
ET algorithms, such asMOD16, have large errors due to the biases of the
MERRA and MODIS products (Mu et al., 2011; Velpuri et al., 2013). Mu
et al. (2011) reported uncertainties in MOD16 ET product up to 20% on
individual station-based FLUXNET validation. Finally, the spatial scale
mismatch among the different data sources may have introduced errors
in the ET estimation. The spatial resolution of the gridded data
including the MERRA and MODIS products, was no less than 1-km,
which was greater than the footprint for field measurements, which
have spatial resolutions of several meters (Baldocchi, 2008). Such

coarse MERRA and MODIS products may not adequately capture sub-
grid scale meteorological and vegetation signals at these sites, espe-
cially in areas with complex land surfaces.

The performance of the SVM-merged ET estimates was not only
validated at the site scale but was also evaluated at the basin scale using
water balance approach. Basin scale validation results indicated
uncertainties up to 21% of the annual estimates for SVM-merged ET.
The accuracy of the inferred ET using water balance approach could be
also affected by the sources of error in P, Q and TWSC. Pan et al. (2012)
reported that about 10% relative error in both P and Q will persist at 15
per 106 km2 despite increasing gauge density. The error in TWSC
caused by the different methods for GRACE estimation (Swenson and
Wahr, 2002) can lead to 14% error in calculated ET using water balance
approach. In addition, the spatial resolution of MODIS products was
approximately 5 km in size and was much finer than the resolution

Fig. 8. The scatter plots between the monthly observed ET at all 200 flux tower sites and the ET estimates for the six algorithms driven by tower-specific meteorology (mm/Mon refers to
mm per month).
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(more than 50 km) of other gridded products including MERRA, GRA-
CE, fused P and Q datasets. Although all gridded products were
interpolated into 5 km, error propagation through calculations, includ-
ing threshold filtering, averaging, interpolation, and data fusion
affected the uncertainty of the comparison of the SVM-merged ET and
inferred ET based on water balance approach. Even if all the errors
could be eliminated from a model and even if observational uncertain-
ties could be reduced to zero, the modeled and observed estimates
cannot be expected to be identical (Taylor, 2001). Therefore, the choice
of a reasonable dataset should be made carefully depending on the
requirements of the study.

4.4. Limitations and recommendations for future research

Although the SVM highlights global rather than local optima and

leads to better performance compared with other machine learning
methods, such as the GRNNs method, which ensures local optimization
(Shrestha and Shukla, 2015; Specht, 1991; Vapnik, 1995; Verrelst et al.,
2015; Yang, 2006), it faces three known limitations. Firstly, it requires a
relatively long processing time (about 47.3 s for 1000 samples) to train
a model. Secondly, it behaves relatively unpredictable when used with
input ground-measured ET deviating from those presented during the
training stage (Shrestha and Shukla, 2015; Verrelst et al., 2012).
Finally, regardless of the performance outcome, however, we do not
know that any of machine learning methods possess the useful
information to directly deliver additional confidence ET maps. Con-
fidence ET maps should be evaluated and validated using other ground-
measured ET data from other PFTs EC sites.

To make the training samples more globally applicable, it is urgent
to add samples from other PFTs (e.g. snow and ice). However, there are

Fig. 9. The scatter plots between the monthly observed ET at all 200 flux tower sites and the ET estimates for the six algorithms driven byMERRAmeteorology (mm/Mon refers to mm per
month).
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few EC data available for these specific PFTs. During the past decades,
there are many semi-empirical and physical methods for estimating the
sublimation of snow and ice (Kuzmin, 1953; Hu and Jia, 2015). The
advantage of these methods is that they do not require training samples
to estimate the sublimation of snow and ice, though the accuracy of
these methods may not be the highest. Future research will consider the
development of machine learning methods when coupled with these
semi-empirical and physical methods to improve the global terrestrial
ET at more different PFTs.

5. Conclusions

We used the SVM method to merge three satellite-based ET

algorithms (MOD16, PT-JPL and SEMI-PM) for global terrestrial ET
estimation across multiple biomes. The inputs of each algorithm
included tower-specific meteorology collected from 200 global flux
tower sites,MERRAmeteorology andMODIS products. Compared to the
BMA method, the GRNNs method and the individual algorithms, the
SVM methods had the best performance for each vegetation type and
can be effectively applied to estimate global terrestrial ET.

The performance of the SVM method was examined at 200
FLUXNET EC flux towers based on a fourfold cross-validation method
for each PFT. The SVM method enhanced ET estimates by merging the
three satellite-based ET algorithms driven by tower-specific (MERRA)
meteorology, decreasing the tower-specific RMSE of the daily ET by
approximately 0.20 (0.15) mm/day for most of the forest sites and by

Fig. 10. Comparison of the estimated ET using six algorithms driven by MERRA meteorology and the corresponding ET inferred by the water balance equation over the global 32 river
basins.

Y. Yao et al. Agricultural and Forest Meteorology 242 (2017) 55–74

69



approximately 0.39 (0.20) mm/day for most of the crop and grass sites.
The SVM-merged ET estimates captured the magnitudes of the ET
measurements better than the BMAmethod, the GRNNs method and the
individual algorithms. The regional water balance analysis also demon-
strated that the regional estimates of the ensemble ET were reliable.

The SVM method improved annual ET estimates by merging the
three satellite-based ET algorithms driven by MERRA meteorology and
MODIS products. The mean annual SVM-merged ET over the global
terrestrial ecosystem during 2003–2005 was 471.7 mm/yr, which was
closer to the observations than that produced by the algorithms

Fig. 11. Impact of removing one of the three algorithms on the predicting performance (R2 and RMSE) of SVM on ET. The results shown are the average from a fourfold cross-validation
on the training data.

Fig. 12. The map of mean annual global terrestrial ET from 2003 through 2005 at a spatial resolution of 0.05° using different algorithms driven by MERRA meteorology.
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individually. More importantly, the SVM-merged ET will provide
critical information for the characterization of global terrestrial water
and energy cycles as well as regional drought assessment.
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Fig. 13. Spatial differences in the average annual global terrestrial ET (2003–2005) between the SVM method and other models.
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