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Abstract The MODerate-resolution Imaging Spectroradiometer (MODIS) provides spatially contiguous
measurements of terrestrial biophysical variables, which can be used to estimate the terrestrial latent heat
flux (LE). MODIS-derived shortwave infrared reflectance (SWIR) metrics (SWIRs) are sensitive to the soil
moisture and vegetation water stress. In this study, we used the MODIS-derived SWIRs with eddy covariance
flux measurements obtained from 25 flux tower sites representing 10 different land cover types within China
to evaluate the sensitivity of SWIRs to ground-measured evaporation fraction and LE. The water constraint
metrics determined using the MODIS-derived SWIR generally corresponded better with the
ground-measured evaporation fraction values than those obtained without using SWIR. The MODIS-derived
SWIRs were used as proxies for the soil and vegetation water supply constraints in a revised Priestley-Taylor
algorithm to estimate the terrestrial LE. The estimated LE using the MODIS-derived SWIRs generally
corresponded well with the ground-measured LE (0.56 ≤ R2 ≤ 0.97) for most of the flux tower sites. Regional
algorithm sensitivity analysis using the MODIS-derived SWIRs as water supply proxies demonstrated that
water limitations reduce LE by more than 53% over China, and the atmospheric vapor pressure deficit and
relative humidity are not sufficient to characterize both the atmosphere demand and water supply for LE
estimation. Our results demonstrate the potential of using MODIS-derived SWIRs to characterize soil and
vegetation water supply factors for determining LE, where the relatively high spatial and temporal resolutions
(500 m and daily) are closer to the scale of the eddy covariance ground measurements.

1. Introduction

The terrestrial latent heat flux (LE) is the sum of heat flux from soil evaporation, vegetation transpiration, and
interception evaporation by vegetation canopies, and it is a key variable linked to energy, water, and carbon
exchange among the terrestrial biosphere, hydrosphere, and atmosphere (Fisher et al., 2017; Jung et al., 2010;
Monteith, 1965; Mu et al., 2007; K. Wang & Dickinson, 2012; Yao et al., 2013). It is challenging to accurately and
reliably obtain the regional or global terrestrial LE due to heterogeneity in the soil and vegetation conditions,
as well as the uncertainty in biophysical processes. Since the 1990s, eddy covariance (EC) measurements from
more than 700 flux tower sites provided by FLUXNET projects have been used widely to measure LE at the
level of a local tower footprint and with half-hour temporal resolution (Baldocchi et al., 2001; S. Liu et al.,
2011). However, a major limitation of these EC measurements for regional LE estimation is their spatial isola-
tion and representation, and sampling error relative to the global scale due to the complex heterogeneity of
terrestrial ecosystems (Schimel et al., 2014; Yao et al., 2015; Yuan et al., 2010).

Satellite remote sensing, especially using the MODerate-resolution Imaging Spectroradiometer (MODIS), can
provide frequent and spatially contiguous measurements of the dynamics of terrestrial biophysical variables,
for example, land surface temperature (LST) and vegetation index (VI), to estimate the regional LE or
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evapotranspiration (ET) (Kalma et al., 2008; Xu et al., 2011; Yao et al., 2014). A classic and alternative satellite-
based LE method, the Priestley-Taylor (PT) algorithm, employs a coefficient multiplier (the PT parameter, a) to
reduce the error in LE estimation by avoiding the complex parameterizations of aerodynamic and surface
resistance in the Penman-Monteith method (Fisher et al., 2008; Monteith, 1965; Priestley & Taylor, 1972). In
general, a varies from 0 to 1.26 to reduce potential ET to actual ET with changes in the surface moisture avail-
ability and atmospheric demand. Two different modeling methods have been proposed to calculate a for
estimating the regional LE. One method uses the spatial variation in LST and the normalized difference vege-
tation index (NDVI) in the LST-NDVI triangular/trapezoid spectral space to determine a for estimating the eva-
poration fraction (EF; the ratio of LE to available energy) and LE (Jiang & Islam, 2001; Long & Singh, 2012; Yang
& Shang, 2013; Zhang et al., 2005). Another method, the PT-JPL algorithm, uses the potential maximum a to
multiply ecophysiological constraints, including the leaf area index (LAI), NDVI, relative humidity (RH), and
atmospheric vapor pressure deficit (VPD, Fisher et al., 2008; Jin et al., 2011; Miralles et al., 2011; Yao et al.,
2017). Currently, the PT-JPL algorithm based on ecophysiological constraints is employed for estimating LE
for global and regional cropland relative to crop water using LE algorithms to ensure food security in the
21st century.

Terrestrial water vapor and CO2 exchanges in the soil-plant-atmosphere continuum are affected significantly
by the moisture supply from the plant canopy water and soil moisture (SM) within different soil profile layers
(K. Wang & Dickinson, 2012; J. Xiao et al., 2010; Xu et al., 2016). In the PT-JPL model, RHVPD is used to charac-
terize the impacts of SM on soil evaporation (Fisher et al., 2008). However, RH and VPD only account for the
effects of the air moisture concentration and atmospheric evaporation demand, whereas they ignore the
impacts of the SM supply, which may lead to large uncertainty in estimation of soil evaporation (ETs, H.
Yan et al., 2012). Many subsequent extensions of the PT models directly use ground-measured or
microwave-derived SM to estimate ETs, but the high spatial resolution SM data required is not regionally
available (Dirmeyer et al., 2004; Miralles et al., 2011). In addition, the PT-JPL model includes a plant moisture
constraint derived from the fraction of photosynthetically active radiation (PAR) absorbed by green vegeta-
tion cover (fAPAR) using the satellite visible and near infrared (VNIR) bands, but a fAPAR-based representation of
plant water constraint may lead to large uncertainty in modeled estimates of vegetation transpiration (ETv)
due to the limited ability of fAPAR to simulate plant moisture (Ceccato et al., 2001; Yao et al., 2015). Many
PT and Penman-Monteith models have successfully parameterized soil and plant moisture constraints using
meteorological factors and satellite-based VNIR data, but the comprehensive utilization of VNIR and short-
wave infrared reflectance (SWIR) for detecting the regional LE responses to surface moisture stress is lacking.

Numerous studies have demonstrated the potential of using satellite-derived SWIR metrics (SWIRs) to
improve estimates of the regional LE and gross primary production (GPP). The traditional SWIR-based surface
moisture indices are the most useful indicators for understanding short-term changes in terrestrial water
availability and LE, whereas VNIR-based indices do not reflect them well because the SWIR spectra (1,605–
2,105 nm) are sensitive to liquid water in the soil and the vegetation canopy (Ceccato et al., 2001; B. Gao,
1996; Olsen et al., 2015). Previous studies that employed a SWIR-based water stress index or normalized dif-
ference water index (NDWI) as a VNIR-based NDVI proxy for estimating LE obtained good agreement with
ground-measured LE and improved detection of intraseasonal stress (Lu & Zhuang, 2010; Olsen et al.,
2013, 2015). MODIS-derived SWIRs coupled with amodified PT algorithm also obtained good agreement with
ground-measured LE under a wide variety of conditions (Daniela & Virginia, 2014).

Alternatively, the satellite-derived SWIRs might be regarded as a surface moisture stress index for character-
izing the surface water conditions by retrieving the SM and plant water content (D. Chen et al., 2005; Sadeghi
et al., 2017, 2015; X. Xiao et al., 2004; Yilmaz et al., 2008). A linear relationship between the transformed reflec-
tance and soil water content in the MODIS SWIR bands was reported by Zarco-Tejada et al. (2003) based on
their demonstration that MODIS SWIR band 7 (2105–2155 nm) corresponds to the peak and valley of the sur-
face water absorption curve. Similarly, Sadeghi et al. (2015) used the soil surface reflectance in Landsat SWIR
bands to account for more than 70% of the SM moisture variation for different soils based on a combination
of the referenced dry soil reflectance and saturated wet soil reflectance. In addition, it has been verified that
the integrated SWIR and near infrared (NIR) metrics are sensitive to the variations in the plant water contents
caused by environmental water stress, although they are also sensitive to vegetation types and the soil back-
ground conditions (X. Xiao et al., 2002). X. Xiao et al. (2004) successfully used a land surface water index (LSWI)
calculated based on the SWIR and NIR bands to consider the effects of vegetation water stress on plant
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photosynthesis for estimating the GPP. The time series LSWI could track the seasonal dynamics of the vege-
tation water stress (X. Xiao et al., 2005). The MODIS-derived SWIRs were also obtained to optimize the canopy
conductance associated with vegetation water stress for estimating LE at 16 global FLUXNET sites located in
six different biomes (Yebra et al., 2013).

Satellite-derived SWIRs are also sensitive to other environmental factors (e.g., soil texture, vegetation
types, and structure), but cloud contamination and differences in the observation view angles of satellite
sensors may constrain the utility of satellite-derived SWIRs at regional scales (Barton & North, 2001;
Fernández et al., 2015; X. Liu & Liu, 2014). Fortunately, MODIS-derived SWIRs have relatively high spatial
and temporal resolutions (~500 m and daily), which promotes the acquisition of biophysical variables.
However, the impacts of MODIS-derived SWIRs as the water stress indicators and the environmental con-
trol factors on the terrestrial LE remain unclear. Thus, the use of MODIS-derived SWIRs to characterize
water supply constraints that affect the terrestrial LE still requires further evaluation for a variety
of biomes.

In this study, we investigated the impacts of water stress on the terrestrial LE using MODIS-derived SWIRs as
water supply constraints to replace the SM and plant water constraints in a revised PT model. The objectives
of this study were (1) to analyze the correlations between MODIS-derived SWIRs andmeteorological variables
such as the ground-measured SM, EF, and LE; (2) to apply the revised PT algorithm by coupling MODIS-
derived SWIRs to evaluate the impacts of water stress on LE; and (3) to map the differences in the mean daily
LE (2003–2005) in China according to the estimated LE using the MODIS-derived SWIRs and that estimated
without using SWIRs to assess the regional impacts related to SWIRs on the water supply and the
terrestrial LE.

2. Data
2.1. Eddy Covariance Data at the Flux Tower Sites

Eddy flux measurements of the surface heat fluxes and the corresponding meteorological data across China
were used to assess the performance of the model. Data from 25 EC flux tower sites were provided by the
Synergetic Enhanced Observation Network for the arid and semiarid regions of northern China (Hao et al.,
2016; Ma et al., 2014; H. Wang et al., 2010; X. F. Wang et al., 2012), Chinaflux (Fu et al., 2006; Guan et al.,
2006; Sun et al., 2006; H. Wang et al., 2008; Wen et al., 2006; Yu et al., 2006; G. Y. Zhou et al., 2011), the flux
observation experiment of the Haihe River Basin of North China (Jia et al., 2012; S. Liu et al., 2013), the
Multiscale Observation Experiment on Evapotranspiration over heterogeneous land surface of the Heihe
Water Allied Telemetry Experimental Research of Northwest China (Li et al., 2013; S. Liu et al., 2011;
Xu et al., 2013), the Chinese Ecosystem Research Network (R. Liu et al., 2012), and the coordinated
Asia-European long-term observing system of Qinghai-Tibet Plateau hydrometeorological processes and
the Asian-monsoon system with ground satellite image data and numerical simulations (Ma et al., 2014),
which is conducted under the European Commission FP7 framework and by the individual principal
investigators of the FLUXNET network (Wei et al., 2012; Y. Yan et al., 2008; J. Zhou et al., 2011; Table 1 and
Figure 1). These flux tower sites include 10 major land cover types: evergreen needleleaf forest (ENF),
evergreen broadleaf forest (EBF), deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF), mixed
forest (MIF), cropland (CRO), grassland (GRA), open shrubland (OSH), desert/barren lands (BAR), and wetland
(WET). The climates covered by these flux tower sites comprised subtropical, temperate, subarctic, and
arid zones.

The half-hour data included the surface net radiation (Rn), downward shortwave radiation (Rs), soil heat flux
(G), LE, sensible heat flux (H), air temperature (Ta), RH, atmospheric water pressure (e), precipitation (P), SM,
and wind speed (WS). The half-hour turbulent surface heat fluxes and other climate parameters were linearly
aggregated into daily, monthly, and annual means. The daily data were set as missing when the amount of
missing data exceeded 20% of the reliable half-hourly measurements. Due to the energy imbalance problem,
we corrected the LE and H using the method developed by Twine et al. (2000). We also used the climatic
drought index (Zhang, 1998) calculated as the ratio of potential ET (PET) relative to P using the ground-
measured data to assess the regional impacts of water stress on terrestrial LE. The dry climate conditions
comprised five categories: extreme humid (DI ≤ 0.5), humid (0.5 < DI ≤ 1.0), subhumid (1.0 < DI ≤ 3.0), semi-
arid (3.0 < DI ≤ 7.0), and arid (DI > 7.0).
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2.2. MODIS Data

To evaluate LE model at the site scales, we used the daily 500-m resolution Terra MODIS surface reflectance
product (MCD43A; Collection V006, Z. S. Wang et al., 2018) from 2000 to 2012 to acquire SWIRs. MCD43A
includes seven bands: band 1 (red: 620–670 nm), band 2 (NIR: 841–876 nm), band 3 (blue: 459–479 nm), band
4 (green: 545–565 nm), band 5 (NIR: 1,230–1,250 nm), band 6 (SWIR: 1,638–1,652 nm), and band 7 (SWIR:
2,105–2,135 nm). The daily 250-m resolution MODIS cloud mask product (MOD35_L2) was used to remove
the surface reflectance product with high cloud cover (Goerner et al., 2011), and the daily cloudmask product
was linearly interpolated to 500 m. Based on the geolocation information for the flux tower sites, the daily
SWIRs with 500-m spatial resolution were extracted from MODIS surface reflectance product over each flux
tower site.

To estimate the regional LE in China, we also used the 500-m resolution International Geosphere-Biosphere
Programme land cover types from the MODIS product (MCD12Q1, Friedl et al., 2002) for 2004 to represent
land cover information. In addition, the 16-day MODIS collection five surface Bidirectional Reflectance
Distribution Function/albedo product at a 500-m spatial resolution (Lucht et al., 2000) for the period of
2003–2005 was also used to calculate Rn, and the daily albedo values were linearly interpolated from the
16-day averages at the temporal scale.

2.3. Regional Meteorological Data

The regional averaged daily LE was estimated in China using the revised PT algorithm and daily gridded
near-surface meteorological data from the Environmental and Ecological Science Data Center for West
China (Y. Chen et al., 2011; Yang et al., 2010). The daily gridded meteorological data with a spatial resolution
of 0.1° were acquired for the period of 1982–2015, including Rs, Ta, maximum daily air temperature (Tmax),
minimum daily air temperature (Tmin), RH, e, and WS. The gridded data sets were produced by fusing
Global Energy and Water Cycle Experiment Surface Radiation Budget products, Global Land Data
Assimilation System data, Princeton reanalysis data, and ground-measured meteorological variables
provided by the China Meteorological Administration (He & Yang, 2011). The daily gridded meteorological
data were spatially interpolated to 500 m using the bilinear interpolation method.

3. Methods
3.1. MODIS-Derived SWIR Metrics

Two MODIS-based SWIRs were used to drive the revised PT algorithm for terrestrial LE estimation. The first
SWIR index employed was the SWIR SM index (SMI) used to characterize the variation in SM for bare soil
(He & Kobayashi, 1998; Sadeghi et al., 2015; Zarco-Tejada et al., 2003), which is defined as

SMI ¼ ρswir;d � ρswir;s
ρswir;d � ρswir;w

; (1)

where ρswir,d, ρswir,s, and ρswir,w are the reflectances of the dry soil, regular soil, and saturated soil in the
SWIR bands (band 7 in the MODIS data), respectively. In this study, ρswir,d and ρswir,w were determined
as 0.75 and 0.001 based on our ground measurements. Assuming that the pixel only includes two end-
members (vegetation and bare soil), the satellite-derived reflectance (ρswir,7) of the mixed pixel in the
SWIR bands (band 7 in the MODIS data) is considered to be a linear combination of the ρswir,s and the
reflectance of vegetation (ρswir,c).

ρswir;s 1� f gð Þ½ � þ ρswir;cf gð Þ ¼ ρswir;7 (2)

and

ρswir;s ¼
ρswir;7 � ρswir;cf gð Þ

1� f gð Þ ; (3)

where f(g) is the green canopy fraction, which can be calculated based on a simple empirical equation using
NDVI data (Carlson & Ripley, 1997; Fisher et al., 2008). In this study, ρswir,cwas determined as 0.10 based on our
ground measurements.
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The second SWIR index employed was the LSWI proposed by X. Xiao et al. (2002), which uses the NIR and
SWIR bands to reflect vegetation canopy water stress. LSWI is calculated as

LSWI ¼ ρnir � ρswir;6
ρnir þ ρswir;6

; (4)

where ρnir and ρswir,6 represent the reflectance of the NIR (band 2 in the MODIS data) and SWIR (band 6 in the
MODIS data) bands, respectively.

3.2. Revised PT Algorithm Framework

The terrestrial LE was estimated based on the satellite-based PT algorithm (PT-JPL) framework (Fisher et al.,
2008; Priestley & Taylor, 1972) as

LE ¼ LEs þ LEc þ LEi; (5)

LEs ¼ α 1� fwetð Þf SMð Þ Δ
Δþ γ

Rns � Gð Þ; (6)

LEc ¼ α 1� fwetð Þf gð Þf Tð Þf CMð Þ Δ
Δþ γ

Rnc; (7)

and

LEi ¼ αfwet
Δ

Δþ γ
Rn � Gð Þ; (8)

where LEs is the LE for soil evaporation, LEc is the LE for vegetation canopy transpiration, LEi is the LE for inter-
ception evaporation, a is the PT parameter (1.26), fwet is the wet surface fraction (RH4), Δ is the slope of the
saturated vapor pressure curve, γ is the psychrometric constant, and Rns and Rnc are the surface net radiation
(Rn) partitioned to the soil and vegetation canopy, respectively. G is the soil heat flux, f(T) is the plant

Figure 1. Locations of 25 flux tower sites used in this study and 7 natural divisions of mainland China. The natural divisions
are 1. Northeast China; 2. North China; 3. Central China; 4. South China; 5. Inner Mongolia; 6. northwest China; and 7.
Qinghai-Tibet region. NDB refers to natural division boundary. The background image shows the land cover product for
2004 from the MODIS land cover (MOD12) product. WAT = water body; ENF = evergreen needleleaf forest; EBF = evergreen
broadleaf forest; DNF = deciduous needleleaf forest; DBF = deciduous broadleaf forest; MIF = mixed forest; CSH = closed
shrubland; OSH = open shrubland; GRA = grassland; WET = wetland; CRO = crop land; URB = urban/buildup; CNV = crop
land/natural vegetation mosaic; SNI = snow/ice; BAR = barren lands; MODIS = MODerate-resolution Imaging
Spectroradiometer.
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temperature constraint (exp{�[(Ta� Topt)/Topt]
2}), Topt is the optimum air temperature (25 °C), f (SM) is the SM

constraint, and f (CM) is the plant moisture constraint.

At the site scale, we directly used ground-measured Rn, G, Ta, and RH to drive the satellite-based PT-JPL for LE
estimation. At the regional scale, Rn was obtained based on the method given by Allen et al. (1998)

Rn ¼ Rs 1� ∂ð Þ � Rnl (9)

and

Rnl ¼ δ
Tmax þ 273:15ð Þ4 þ Tmin þ 273:15ð Þ4

2

" #
0:34� 0:14

ffiffiffi
e

p� �
1:35

Rs
Rs0

� 0:35

� �
; (10)

where ∂ is the surface albedo, δ is the Stefan-Boltzmann constant (4.903 × 10�9 MJ/[K4·m2·d]), and Rs0 is the
clear-sky incoming shortwave radiation (W/m2). Regional Gwas calculated using a simple empirical algorithm
provided by Yao et al. (2013)

G ¼ αg 1� f gð Þ½ �Rn; (11)

where ag is an empirical coefficient and is set as 0.18 herein (Yao et al., 2013).

In general, f (SM) can be defined as (SM � SMmin)/(SMmax � SMmin), where SMmax and SMmin represent the
maximum and minimum SM, respectively. SMmax was set as the value of SM in 1 year after a strong rainfall
event, and SMmin was derived from the minimum value in the dry season using the ground-measured data
for the study period (Garcia et al., 2013; Morillas et al., 2013). In the original PT-JPL model, f (SM) uses an indi-
cator of the atmospheric evaporative demand (RHVPD) as a proxy for SM. In the present study, we considered
the effects of the atmospheric evaporative demand and surface SM supply on LEs (He & Kobayashi, 1998),
where the response of LEs to SM stress was defined as

f SMð Þ ¼ SMI�RHð ÞRHD=β; (12)

where SMI is the SWIR SMI described in section 3.1, RHD is the relative humidity deficit (1 – RH; K. Wang et al.,
2010), and β is a fixed parameter (0.50).

f (CM) was calculated using the relative variation in light absorbance (fAPAR/fAPARmax) in the original PT-JPL
model, but the validation also demonstrated the usefulness of the LSWI for improving estimate of the canopy
water content and LE for a variety of biomes (Maki et al., 2004; Olsen et al., 2015; X. Xiao et al., 2005). Wu et al.
(2010) further found that the product of VI × VI improved estimates of the canopy water content and GPP. In
this study, we followed X. Xiao et al. (2005) and Wu et al. (2010) and define f (CM) as

f CMð Þ ¼ CMI
CMImax

(13)

and

CMI ¼ NDVI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ LSWI

p
; (14)

where CMI is the vegetation canopy water index, CMImax is the maximum CMI, and we select the maximum
CMI value within the vegetation growing season for single pixels as an estimate of CMImax.

3.3. Assessment Methods

To identify the capacity of MODIS-derived SWIRs to represent water supply constraints in the revised PT algo-
rithm, we used the squared correlation coefficient (R2) between different moisture constraint metrics shown
in Table 2 and the ground-measured EF across all flux tower sites to analyze the sensitivity of the revised PT
algorithm-derived daily terrestrial EF and LE to water constraints. In addition, the LE values estimated using
different moisture constraint metrics (LE_swir using both f (sm)_swir and f (cm)_swir; LE_sm using both f (sm)
_sm and f (cm)_fapar; and LE_no using both f (sm)_no and f (cm)_no) were compared with the ground-
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measured values to assess the performance of themodel and the effects of
the water supply constraints on LE. The performance of the model was
evaluated using R2, the root-mean-squared error (RMSE), and the bias of
the estimation and observations. RMSE represents the closeness of the
simulation and ground measurements, and it is expressed as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
Si �Mið Þ2

r
; (15)

where Si is the simulated value for sample i, Mi is the ground-measured
value for sample i, and n is the number of samples.

The spatial pattern in the mean daily LE (2003–2005) difference percen-
tage (ΔLE) in China between the estimated LE (LE_swir) determined by
employing the MODIS-derived SWIRs and that (LE_no) without using
SWIRs was obtained according to the following method:

ΔLE ¼ LEswir � LEno
LEno

�100%: (16)

4. Results
4.1. Sensitivity of MODIS-Derived SWIRs to Ground-Measured EF and LE

Several moisture constraint metrics comprising three SM constraint metrics (f (sm)_swir, f (sm)_sm, and f (sm)
_no) and three SM-related vegetation canopy moisture constraint metrics (f (cm)_swir, f (cm)_fapar, and f
(cm)_no) were calculated using MODIS-derived SWIRs and ground-measured RH and SM (Table 3).

Table 2
Formulations for Different Water Constraint Metrics Used in This Study From
MODIS-Derived SWIRs and Meteorological Variables

Water constraint metrics Formula

f (sm)_swir (RH × SMI)RHD/β

f (sm)_sm
SM�SMmin

SMmax�SMmin

f (sm)_no RHRHD/β

f (cm)_swir
NDVI

ffiffiffiffiffiffiffiffiffiffiffiffi
1þLSWI

p
NDVI

ffiffiffiffiffiffiffiffiffiffiffiffi
1þLSWI

pð Þmax

f (cm)_fapar
fAPAR

fAPARmax

f (cm)_no
NDVI

NDVImax

Note. fAPARmax and NDVImax refer to the maximum fAPAR and NDVI within
the vegetation growing season for single pixels, respectively.
NDVI = normalized difference vegetation index; LSWI = land surface water
index.

Table 3
Squared Correlation Coefficients (R2) Between Different Moisture Constraint Metrics Shown in Table 2 and Ground-Measured EF
Across All the Flux Tower Sites

Name IGBP f (sm)_swir f (sm)_sm f (sm)_no f (cm)_swir f (cm)_fapar f (cm)_no

DX CRO 0.38 0.42 0.27 0.58 0.49 0.50
GT CRO 0.26 0.17 0.18 0.29 0.21 0.22
JZ CRO 0.49 0.27 0.38 0.60 0.54 0.52
MY CRO 0.58 0.38 0.49 0.63 0.56 0.57
TY CRO 0.52 0.46 0.45 0.58 0.51 0.50
YC CRO 0.33 0.24 0.24 0.57 0.50 0.49
AR GRA 0.35 0.14 0.16 0.51 0.45 0.45
FK GRA 0.21 0.16 0.12 0.19 0.11 0.10
NMG GRA 0.30 0.21 0.22 0.34 0.26 0.26
LZ GRA 0.33 0.24 0.22 0.27 0.17 0.15
MQ GRA 0.79 0.69 0.62 0.82 0.73 0.72
NQ GRA 0.61 0.42 0.52 0.58 0.49 0.47
NaC GRA 0.34 0.18 0.25 0.41 0.32 0.31
QY GRA 0.29 0.15 0.21 0.28 0.19 0.20
HN DBF 0.40 0.30 0.28 0.33 0.23 0.22
YY DBF 0.23 0.15 0.14 0.28 0.19 0.20
DHS EBF 0.27 0.16 0.17 0.23 0.16 0.15
XSBN EBF 0.23 0.15 0.11 0.21 0.12 0.12
LSH DNF 0.66 0.42 0.56 0.58 0.50 0.49
QYZ ENF 0.24 0.25 0.13 0.24 0.16 0.15
CBS MIF 0.47 0.22 0.36 0.41 0.32 0.32
HB OSH 0.57 0.40 0.42 0.83 0.73 0.72
DT WET 0.25 0.27 0.16 0.37 0.28 0.27
HZZ BAR 0.44 0.25 0.35 0.23 0.16 0.15
SSW BAR 0.53 0.42 0.40 0.43 0.34 0.36

Note. CRO = cropland; GRA = grassland; DBF = deciduous broadleaf forest; EBF = evergreen broadleaf forest;
DNF = deciduous needleleaf forest; ENF = evergreen needleleaf forest; MIF = mixed forest; OSH = open shrubland;
WET = wetland; BAR = barren lands; IGBP = International Geosphere-Biosphere Programme; EF = evaporation fraction.

10.1029/2018JD029011Journal of Geophysical Research: Atmospheres

YAO ET AL. 8



Among the three SM constraint metrics, the ground-measured EF estimates generally had the highest corre-
spondence with f (sm)_swir (0.21 < R2 < 0.79) for most of the flux tower sites (except for Daxing,
Qianyanzhou, and Dongtan), with f (sm)_sm (0.15 < R2 < 0.69) was second best, and f (sm)_no
(0.11 < R2 < 0.62) had the worst performance at these flux tower sites. Similarly, for the three SM-related
vegetation canopy water constraint metrics, the f (cm)_swir results also accounted for the greatest propor-
tion of the daily variability in EF for most of the flux tower sites (Table 3). Overall, both the f (sm)_swir and
f (cm)_swir had the highest potential capacity for determining the EF seasonality over a variety of land cover
and environmental status types.

Figure 2 shows an example of the seasonal variations in the MODIS-derived f (sm)_swir and ground-
measured f (sm)_sm, and EF for different typical flux tower sites. The f (sm)_swir was generally propor-
tional to ground-measured EF, and both metrics indicated similar seasonal variations under different
land cover types and climate zones. However, the responses of EF to variations in f (sm)_sm were rela-
tively complex according to the different climatic moisture gradients. f (sm)_sm exhibited large fluctua-
tions, whereas the dynamics of EF and f (sm)_swir were relatively small during the growing season at
forest (DBF, EBF, DNF, ENF, and MIF) sites, which was consistent with deep soil water extraction via
transpiration by actively growing vegetation. However, the variations in both EF and f (sm)_swir were
only weakly consistent with the variability in f (sm)_sm at OSH and WET sites because no water stress
occurred at these sites. In addition, both f (sm)_swir and EF exhibited evidence of shifts to a response
to seasonal f (sm)_sm variability at the semiarid and arid GRA, CRO, and BAR sites, and these results
were consistent with the SM-related constraints to terrestrial LE at these flux tower sites. An example
of the similar seasonal dynamics of the MODIS-derived f (cm)_swir and f (cm)_fapar, and the ground-
measured EF are also shown in Figure 3. Both f (cm)_swir and f (cm)_fapar corresponded well with
EF during seasonal periods at most of the flux tower sites, which was consistent with the vegetation
indices used for characterizing the available vegetation canopy water contents.

The distributions of flux tower site correlation coefficients (r) between the ground-measured LE and f (sm)
_swir, f (sm)_sm, and f (sm)_no along the climatic dryness status indicated by the climatic drought index
(DI) are shown in Figure 4. To reduce the impacts of higher seasonal frequency variations, we calculated
the correlations using the mean monthly composites of the daily values. The LE values were all positively cor-
related with f (sm)_swir, f (sm)_sm, and f (sm)_no, and the correlations were larger as DI increased (from 0.49
through 7.20). However, at the same DI values, the correlations between f (sm)_swir and LE were slightly lar-
ger than the correlations between f (sm)_sm and LE for most of the flux tower sites, and the smallest correla-
tions were between f (sm)_no and LE at these sites.

4.2. Impacts of Water Stress on LE Estimates Across Different Multiple Biomes

Three sets of revised PT algorithm simulations were conducted using tower meteorology at different flux
tower sites. The ground-measured SM, RH, and MODIS-derived SWIR observations were used as different
water constraint inputs to estimate the daily LE at each flux tower site (LE_swir, LE_sm, and LE_no). Table 4
shows that the LE_swir estimates generally corresponded better with the ground-measured LE than LE_sm
or LE_no for most of the flux tower sites. For the CRO (except for both Daxing and Jinzhou), GRA, and BAR
sites, the LE_swir results present 6% to 20% greater R2 (p < 0.01) correspondence, as well as 7% to 23.9%
lower RMSE differences compared with the ground-measured LE relative to the LE_sm results because SM
was generally expected to impose a stronger limitation on LE in these relatively drier regions. For all the forest
(DBF, EBF, DNF, ENF, and MIF) flux tower sites, LE_swir exhibited slightly better performance compared to the
ground measurements than LE_sm, as indicated by the approximately 8.7% higher R2 value (p < 0.01) and
9.8% smaller RMSE. Similarly, the LE_swir results were 6.7% better in terms of R2 (p < 0.01) than LE_no at
these flux tower sites, thereby indicating that the MODIS-derived SWIRs successfully captured the vegetation
canopy water content under dense vegetation conditions. In addition, the LE_swir results were improved
relative to LE_sm or LE_no at the OSH and WET flux tower sites, as indicated by the higher R2 value and
smaller RMSE.

Figure 5 shows the superior capacity of the three modified PT algorithms driven by tower meteorology for
estimating the spatial variation in LE. The RMSE of the site-averaged LE_swir estimates driven by tower
meteorology versus the ground-measured LE for different biomes at 25 sites was 14.2 W/m2, and R2 was
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Figure 2. Examples of seasonal ground-measured EF, f (sm)_swir and f (sm)_sm results for 10 sites. Ten-day moving
averages of the daily ground observations are shown for the selected study periods. CRO = crop land; GRA = grassland;
DBF = deciduous broadleaf forest; EBF = evergreen broadleaf forest; DNF = deciduous needleleaf forest; ENF = evergreen
needleleaf forest; MIF =mixed forest; OSH = open shrubland; WET = wetland; BAR = barren lands. MY =Miyun; NMG = Inner
Mongolia; HN = Huaining; DHS = Dinghushan; LSH = Laoshan; QYZ = Qianyanhzou; CBS = Changbaishan; HB = Haibei;
DT = Dongtan; SSW = Shenshawo.
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Figure 3. Examples of seasonal ground-measured EF, f (cm)_swir and f (cm)_fapar results for 10 sites. Ten-day moving
averages of the daily ground observations are shown for the selected study period. CRO = cropland; GRA = grassland;
DBF = deciduous broadleaf forest; EBF = evergreen broadleaf forest; DNF = deciduous needleleaf forest; ENF = evergreen
needleleaf forest; MIF =mixed forest; OSH = open shrubland; WET = wetland; BAR = barren lands. MY =Miyun; NMG = Inner
Mongolia; HN = Huaining; DHS = Dinghushan; LSH = Laoshan; QYZ = Qianyanhzou; CBS = Changbaishan; HB = Haibei;
DT = Dongtan; SSW = Shenshawo.
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0.85 (p < 0.01), thereby indicating that the performance was better than the LE_sm results (RMSE = 22.3 W/
m2, R2 = 0.78, p < 0.01) and the LE_no results (RMSE = 16.9 W/m2, R2 = 0.80, p < 0.01). Overall, the use of
MODIS-derived SWIRs as the water supply constraints in the revised PT algorithm improved the algorithm’s
performance compared with the alternative LE estimation methods using the ground-measured SM inputs
(LE_sm) or without the SWIRs-based water supply constraint (LE_no) for most of the flux tower sites
representing different land cover types.

Figure 4. Plots of flux tower site correlation coefficients (R) between the ground-measured LE and f (sm)_swir, f (sm)_sm,
and f (sm)_no. The flux tower site correlations are distributed along the climatic dryness status indicated by a climatic
drought index (DI). The DI comprises five categories: extreme humid (DI ≤ 0.5); humid (0.5 < DI ≤ 1.0); subhumid
(1.0 < DI ≤ 3.0); semiarid (3.0 < DI ≤ 7.0); and arid (DI > 7.0). LE = latent heat flux.

Table 4
Comparisons of the Estimated LE Using Different Moisture Constraint Metrics: LE_swir Using Both f (sm)_swir and f (cm)_swir;
LE_sm Using Both f (sm)_sm and f (cm)_fapar; and LE_no Using Both f (sm)_no and f (cm)_no; and Ground-Measured LE
Across Different Flux Tower Sites

Name IGBP

LE_swir LE_sm LE_no

R2 RMSE bias R2 RMSE bias R2 RMSE bias

DX CRO 0.75 38.2 �20.2 0.76 37.1 �16.8 0.68 41.6 �19.1
GT CRO 0.81 28.6 �14.7 0.75 30.6 �15.9 0.72 30.1 �13.9
JZ CRO 0.68 30.9 �3.1 0.69 39.1 �27.3 0.61 33.5 �5.9
MY CRO 0.84 27.3 �10.8 0.74 35.4 8.9 0.76 29.4 �10.5
TY CRO 0.80 29.1 �5.2 0.74 34.4 �15.7 0.73 31.8 �2.2
YC CRO 0.86 17.5 �5.8 0.76 24.5 �13.5 0.77 19.5 �4.7
AR GRA 0.94 30.4 �26.3 0.84 54.3 �41.4 0.85 43.4 �26.0
FK GRA 0.56 29.7 5.1 0.50 31.8 0.48 0.42 32.6 12.6
NMG GRA 0.78 12.5 1.1 0.71 14.3 2.7 0.72 15.9 7.8
LZ GRA 0.91 20.2 �15.1 0.82 27.8 �22.2 0.83 22.5 �16.1
MQ GRA 0.97 18.2 �13.7 0.89 25.2 �19.1 0.90 19.4 �13.1
NQ GRA 0.85 29.8 �23.6 0.77 33.2 �25.1 0.78 32.3 �22.4
NaC GRA 0.71 26.1 �18.3 0.60 34.5 �21.3 0.65 28.2 �17.6
QY GRA 0.92 32.8 �27.1 0.86 38.2 �30.6 0.85 34.5 �23.3
HN DBF 0.82 25.8 1.1 0.72 45.8 �17.5 0.74 27.3 1.3
YY DBF 0.87 24.6 8.9 0.71 40.2 �10.4 0.76 26.1 9.7
DHS EBF 0.82 19.5 5.9 0.74 20.9 �9.4 0.75 22.5 6.8
XSBN EBF 0.78 25.4 �4.5 0.71 28.9 �12.3 0.72 29.6 �4.1
LSH DNF 0.86 23.7 �14.4 0.79 32.3 �23.4 0.80 26.5 �14.2
QYZ ENF 0.87 19.8 4.7 0.78 23.7 �8.3 0.79 22.2 5.1
CBS MIF 0.89 25.3 �18.7 0.80 32.1 �25.2 0.81 27.1 �17.7
HB OSH 0.93 16.1 �10.7 0.88 25.4 �18.6 0.87 18.9 �10.1
DT WET 0.61 50.6 23.8 0.55 49.8 18.6 0.54 53.9 25.5
HZZ BAR 0.74 18.7 �8.1 0.54 26.5 4.8 0.65 21.8 3.9
SSW BAR 0.85 9.6 �0.1 0.77 16.8 8.4 0.78 12.9 6.9

Note. All of the statistics were calculated at the 99% confidence level. Units for both RMSE and bias are all W/m2.
CRO = cropland; GRA = grassland; DBF = deciduous broadleaf forest; EBF = evergreen broadleaf forest;
DNF = deciduous needleleaf forest; ENF = evergreen needleleaf forest; MIF = mixed forest; OSH = open shrubland;
WET = wetland; BAR = barren lands; IGBP = International Geosphere-Biosphere Programme; LE = latent heat flux;
RMSE = root-mean-squared error.
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4.3. Regional LE Estimation Based on MODIS-Derived SWIRs
4.3.1. Validation of the Estimated Regional Surface Fluxes
We compared the estimated regional Rn, G, LE_swir, and LE_no using daily gridded meteorological data with
the ground measurements for all 25 sites. Table 5 illustrates the good agreement between the estimated
daily Rn and G using gridded meteorological data versus the ground-measured flux measurements. The
RMSE of the daily Rn for different biomes varies from 11.8 to 45.7 W/m2, and the R2 varies from 0.67 to
0.94 (p < 0.01). For the individual sites, the largest RMSE of 45.7 W/m2 was observed for daily Rn, at the
Xishuangbanna site. The errors in Rn may be caused by propagated errors from gridded Rs, Tmax, Tmin, e,
albedo, EC ground-measured data, and discrepancies in spatial resolution. Similarly the R2 of the estimated
daily G using daily gridded meteorological data versus ground-measurements ranges from 0.41 to 0.63
(p < 0.01), and the RMSE ranges from 4.8 to 10.4 W/m2 across all 25 flux tower sites. The biases in G may
be mainly caused by the simple algorithm for G calculation that does not consider the differences among soil
textures because of a lack of data

Table 5 also presents the statistical comparisons of the estimated daily LE (LE_swir and LE_no) using gridded
meteorological data with the corresponding flux-tower measurements. The RMSE of the daily LE_swir (LE_no)
for different biomes varies from 17.6 (20.2) to 59.7 (62.4) W/m2, and the R2 varies from 0.48 (0.44) to 0.80 (0.73;
p< 0.01). When compared with the estimated LE (LE_swir and LE_no) values using tower meteorology, there
was slightly worse agreement between the estimated daily LE (LE_swir and LE_no) using gridded meteoro-
logical data versus the ground measurements. However, for most flux tower sites, the LE_swir results still
show 5% to 16.2% greater R2 (p< 0.01) correspondence, as well as 3% to 15.6% lower RMSE differences com-
pared with the ground-measured LE relative to the LE_sm results. Figure 6 demonstrates the ability of the two
modified PT algorithms driven by gridded meteorological data to predict spatial variation in LE accurately.
The RMSE of the site-averaged LE_swir estimates versus the ground-measured LE was 24.3 W/m2 and R2

was 0.74 (p < 0.01), and the LE_swir results were better than the LE_no results (RMSE = 26.7 W/m2,
R2 = 0.69, p < 0.01). Overall, the estimated regional LE_swir and LE_no using daily gridded meteorological
data displayed high accuracy according to the validation of daily and spatial variation in LE.

Figure 5. Comparisons of the estimated (a) LE_swir, (b) LE_sm, and (c) LE_no using tower meteorology and measured site
averaged daily LE values for different biomes at 25 sites. LE = latent heat flux; CRO = cropland; GRA = grassland;
DBF = deciduous broadleaf forest; EBF = evergreen broadleaf forest; DNF = deciduous needleleaf forest; ENF = evergreen
needleleaf forest; MIF = mixed forest; OSH = open shrubland; WET = wetland; BAR = barren lands.
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4.3.2. Regional LE Mapping From MODIS-Derived SWIRs
Figure 7 shows the spatial pattern of the estimated average daily LE_swir (2003–2005) in China. The LE results
obtained by the algorithm were relatively higher in the CRO, WET, OSH, and forest areas in the north, north-
east, central, and south regions of China. Lower LE values were found in the semiarid and arid GRA and BAR
regions of Inner Mongolia, northwest China, and the Qinghai-Tibet regions of China. The LE_swir pattern was
consistent with that obtained in previous studies (Y. Chen et al., 2014; Li et al., 2014; Yao et al., 2013). These
results indicate that LE_swir can be used successfully to characterize the LE spatial patterns as well as the
temporal dynamics corresponding to the climate and vegetation patterns.

Figure 8 shows the spatial pattern of the differences between LE_swir and LE_no as a percentage of LE_no
(ΔLE), which indicates the regional impacts of water stress characterized by the MODIS-derived SWIRs on
LE. Large terrestrial moisture constraints (ΔLE approximately up to �56%) mainly occurred in the semiarid
and arid GRA and BAR regions of northwest China because SM is the dominant factor that limits the terrestrial
LE (K. Wang & Dickinson, 2012). By contrast, the small terrestrial water constraints areas included CRO, WET,
OSH, and forests regions in southeast China, where SM was not a main controlling factor in terms of LE.
Overall, these results demonstrate that the terrestrial LE is strongly controlled by water supply constraints
(ΔLE exceeding �30%) by more than 53% over China.

5. Discussion
5.1. Characterization of Water Constraints for Determining EF and LE Using MODIS-Derived SWIRs

The water supplies from both the soil and vegetation canopy are recognized as major constraints in the PT
algorithms for the partition of H and LE under unsaturated soil and vegetation surfaces (Jin et al., 2011;
Priestley & Taylor, 1972; K. Wang & Dickinson, 2012). Many previous studies have shown that MODIS-derived
SWIRs are sensitive to SM and vegetation water when modeling LE (Daniela & Virginia, 2014; Huang et al.,
2015; Olsen et al., 2015; Yebra et al., 2013). The f (sm)_swir and f (cm)_swir values used in this study effectively
characterized the soil water availability and vegetation water information, respectively. Importantly, the good
correlations between f (sm)_swir (and f (cm)_swir) and EF confirmed the sensitivity of the MODIS-derived
SWIRs to the EF variability associated with variations in SM and LE (Table 3).

The point-observed SM used in this study to drive the PT algorithm for evaluating the ground-measured LE
estimates might not be an effective variable for regional LE estimation because a single point may not ade-
quately capture the spatial heterogeneity in SM at large scales (Wanders et al., 2012). Alternatively, the spatial
resolution of the satellite-derived and reanalysis SM products may be too coarse to characterize heteroge-
neous SM conditions associated with the EF spatial heterogeneity at finer scales (Albergel et al., 2013;
Dirmeyer et al., 2004; Miralles et al., 2011). Previous studies replaced SM with some key meteorological vari-
ables (e.g., Dongtan, RH, and VPD) in the PT model for estimating EFs. For instance, Granger and Gray (1989)
combined the available surface energy (Rn� G) and drying power of the air to define a surface dryness index
for simulating the terrestrial LE. K. Wang and Liang (2008) used the diurnal air temperature range as a surro-
gate for SM to investigate the effects of SM on LE. According to the complementary hypothesis of Bouchet
(1963), the surface SM may be characterized by the atmospheric evaporative demand, while Fisher et al.
(2008) directly defined RHVPD as a soil water deficit index to constrain LEs. However, using these soil evapora-
tion parameters without considering the SM supply may lead to the overestimation of LEs during extreme
drought conditions (K. Wang et al., 2007; H. Yan et al., 2012). Fortunately, the f (sm)_swir parameter used in
this study had relatively high spatial and temporal resolution, but it is also accounted for the effects of both
the surface water supply and atmospheric evaporative demand on EFs to improve the estimates of LEs
obtained from a combination of MODIS-derived SWIRs and RHD. The f (sm)_swir-based algorithm can effec-
tively replace SM-based models, especially when there is a lack of SM data.

f (cm)_swir combines NDVI and LSWI to improve the sensitivity of vegetation water constraints to vegetation
transpiration because the SWIR band in LSWI is more sensitive to the canopy water content than the red band
used in NDVI, and together they can effectively reflect the internal water storage ability of woody plants to
offset the SM demand (He et al., 2016; Reichstein et al., 2002; Wagle et al., 2014). By contrast, the ground-
observed upper layer SM might not adequately represent the water constraints of deep-rooted vegetation
because this vegetation can sustain elevated transpiration rates by extracting SM from deeply rooted

10.1029/2018JD029011Journal of Geophysical Research: Atmospheres

YAO ET AL. 14



systems (Juárez et al., 2007; K. Wang & Dickinson, 2012). This may explain why the f (cm)_swir results had
higher correlations with the ground-observed EF compared with the f (cm)_no results at the forest flux
tower sites.

The MODIS-derived SWIR metrics were also sensitive to other environmental constraint factors that influ-
enced the soil and vegetation spectral reflectance values, including Ta, VPD, and fAPAR. In this study, both f

Table 5
Comparison of the Estimated daily Rn, G and LE (LE_swir and LE_no) Values Using Daily Gridded Meteorological Data With Corresponding Ground Measurements From All
25 Sites

Name IGBP

Rn G LE_swir LE_no

R2 RMSE bias R2 RMSE bias R2 RMSE bias R2 RMSE bias

DX CRO 0.81 28.4 �8.5 0.52 9.2 �4.7 0.57 42.4 �21.1 0.50 44.3 �20.3
GT CRO 0.94 21.5 �4.1 0.45 8.9 �3.6 0.71 38.2 �15.5 0.65 40.4 �13.7
JZ CRO 0.73 23.9 �4.6 0.52 7.5 �3.5 0.55 42.6 17.5 0.51 46.2 18.1
MY CRO 0.89 35.2 �16.3 0.62 10.4 �7.3 0.76 33.3 12.3 0.71 38.5 13.2
TY CRO 0.79 24.5 �7.7 0.41 9.5 �6.4 0.66 38.1 �6.8 0.61 42.3 �4.9
YC CRO 0.93 25.9 10.8 0.51 9.8 3.2 0.75 26.9 �9.7 0.69 29.6 �8.8
AR GRA 0.91 28.8 �4.9 0.45 5.7 �1.1 0.70 44.5 �27.5 0.64 48.3 �27.2
FK GRA 0.70 27.4 14.5 0.48 7.6 4.4 0.48 37.1 11.2 0.44 40.9 14.5
NMG GRA 0.81 22.7 9.8 0.60 5.5 2.6 0.65 26.3 �2.3 0.60 28.1 4.1
LZ GRA 0.88 29.1 9.5 0.52 7.6 3.3 0.77 31.3 �16.6 0.71 35.4 �14.1
MQ GRA 0.84 25.9 6.6 0.51 8.2 4.2 0.76 29.8 �17.4 0.72 32.3 �15.4
NQ GRA 0.82 23.3 5.8 0.50 9.1 4.6 0.71 40.2 �24.9 0.67 43.5 �22.6
NaC GRA 0.74 28.5 7.1 0.48 8.5 3.7 0.63 38.4 �20.3 0.57 41.6 �19.8
QY GRA 0.90 29.4 13.1 0.55 7.5 1.1 0.78 45.1 �24.3 0.71 49.2 �23.3
HN DBF 0.85 27.1 6.5 0.47 9.4 4.5 0.70 34.9 6.1 0.63 37.3 8.6
YY DBF 0.83 22.6 7.8 0.44 7.8 3.5 0.65 36.8 7.9 0.60 39.1 8.5
DHS EBF 0.89 23.5 4.2 0.49 6.2 3.8 0.78 30.3 2.8 0.68 33.7 3.9
XSBN EBF 0.79 45.7 �12.9 0.46 4.8 2.1 0.58 48.6 �23.7 0.52 50.3 �22.2
LSH DNF 0.82 37.4 2.6 0.45 8.2 3.1 0.67 32.5 �14.1 0.61 34.9 �13.6
QYZ ENF 0.89 30.5 5.7 0.50 7.1 1.5 0.64 30.9 1.1 0.59 35.5 �2.4
CBS MIF 0.91 22.8 7.2 0.53 9.1 3.5 0.69 42.2 �22.7 0.61 45.4 �21.8
HB OSH 0.94 24.9 0.7 0.47 9.3 4.2 0.80 28.7 �17.2 0.73 30.3 �16.9
DT WET 0.67 26.6 9.2 0.44 8.6 5.1 0.50 59.7 25.9 0.47 62.4 28.3
HZZ BAR 0.75 33.2 �14.4 0.63 8.8 �3.3 0.57 22.9 9.5 0.49 25.8 11.2
SSW BAR 0.87 11.8 �2.4 0.61 7.4 �4.8 0.69 17.6 �6.8 0.61 20.2 2.1

Note. All of the statistics were calculated at the 99% confidence level. Units for both RMSE and bias are all W/m2. CRO = cropland; GRA = grassland;
DBF = deciduous broadleaf forest; EBF = evergreen broadleaf forest; DNF = deciduous needleleaf forest; ENF = evergreen needleleaf forest; MIF = mixed forest;
OSH = open shrubland; WET = wetland; BAR = barren lands; IGBP = International Geosphere-Biosphere Programme; LE = latent heat flux; RMSE = root-mean-
squared error; IGBP = International Geosphere-Biosphere Programme.

Figure 6. Comparisons of the estimated (a) LE_swir and (b) LE_no using daily gridded meteorological data and the corre-
sponding measured site averaged daily LE values for different biomes at 25 sites. LE = latent heat flux; CRO = cropland;
GRA = grassland; DBF = deciduous broadleaf forest; EBF = evergreen broadleaf forest; DNF = deciduous needleleaf forest;
ENF = evergreen needleleaf forest; MIF = mixed forest; OSH = open shrubland; WET = wetland; BAR = barren lands.

10.1029/2018JD029011Journal of Geophysical Research: Atmospheres

YAO ET AL. 15



(sm)_swir and f (cm)_swir were strongly positively correlated with Ta
at the GRA sites (R2 > 0.45) in the Inner Mongolia and Qinghai-Tibet
regions, thereby indicating that the dynamics of the daily Ta was a
dominant controlling factor that affected the variability of both f
(sm)_swir and f (cm)_swir, while the associated cold Ta also induced
variations in EF and LE for these biomes. However, we found no signif-
icant correlations between the MODIS-derived SWIR metrics and Ta at
other biome sites where the cold Ta may have been less of a major
constraint on LE than the low SM. The MODIS-derived SWIRs were cor-
related with VPD at the DBF and EBF sites (R2 > 0.41), whereas they
were not significantly correlated with VPD at the other biome sites.
These results demonstrate that the MODIS-derived SWIRs were sensi-
tive to SM-related impacts on the soil and vegetation reflectance
values in addition to atmospheric VPD effects. f (cm)_swir was highly
sensitive to plant structural and photosynthetic changes (indicated by
fAPAR) at most of the biome sites (R2 > 0.54). Other studies also
demonstrated the potential utility of alternative MODIS-derived
SWIRs as environmental stress indicators for simulating ET, GPP, and
agricultural drought (Daniela & Virginia, 2014; Olsen et al., 2013;
X. Xiao et al., 2004; Yebra et al., 2013; Y. Zhou et al., 2017). Thus, using
alternative MODIS-derived SWIRs across multiple biomes may
enhance the performance of the PT algorithm when estimating the
regional LE under different environmental stress conditions.

5.2. Impacts of Water Stress on LE Using MODIS-Derived SWIRs

We highlighted the potential use of the MODIS-derived SWIRs as water supply indicators to characterize
water (SM and vegetation canopy water content) constraints in the revised PT algorithm to estimate the ter-
restrial LE for a variety of land cover types throughout China. The estimated daily LE using the MODIS-derived

SWIRs as a surrogate for water supply constraints was significantly bet-
ter than LE_no at most of the flux tower sites. Similarly, LE_swir per-
formed better than LE_sm at these flux tower sites. At the regional
scale, the water stress impacts on LE determined using the MODIS-
derived SWIRs were large in the semiarid and arid GRA and BAR regions
of northwest China. In fact, the actual severity of the water stress areas
could be larger than that indicated in Figure 8 due to land cover
changes and agricultural irrigation by human activities, which may
reduce the sensitivity of the MODIS-derived SWIRs to water supply def-
icits (He et al., 2016; W. Liu et al., 2018; Y. Zhou et al., 2017). These results
indicate that the MODIS-derived SWIRs are sensitive proxies for water
supply constraints when estimating the tower and regional LE values.

The revised PT algorithm using MODIS-derived SWIRs exhibited a
reliable and robust capacity for estimating the terrestrial LE, where
the impacts of water stress on the estimations of EF and LE varied
greatly among multiple biomes and climatic zones. For example,
both f (sm)_swir and f (cm)_swir accounted for high amounts of
the variability in the terrestrial EF for most of the CRO, GRA, DBF,
DNF, MIF, OSH, and BAR flux tower sites (Table 3). Previous studies
have demonstrated that MODIS-derived SWIRs respond strongly to
the seasonal dynamics of the surface SM and vegetation water con-
tents in the early stage of surface drought (Jackson et al., 2004;
Maki et al., 2004; Olsen et al., 2015; Wagle et al., 2014; Yebra
et al., 2013; Y. Zhou et al., 2017). The revised PT algorithm success-
fully captured the seasonal soil and vegetation cycles to improve

Figure 7. Spatial pattern of the estimated mean daily LE (2003–2005) in China
using f (sm)_swir and f (cm)_swir as water supply constraints in the revised PT
algorithm. Natural division boundaries are denoted by gray lines. LE = latent heat
flux; PT = Priestley-Taylor.

Figure 8. Spatial pattern of the estimated mean daily LE (2003–2005) difference
percentage (ΔLE) in China between the estimated LE (LE_swir) using the MODIS-
derived SWIRs and that (LE_no) without using SWIRs. Natural division boundaries
are denoted by gray lines. LE = latent heat flux; SWIRs = shortwave infrared
reflectance metrics; MODIS = MODerate-resolution Imaging Spectroradiometer.
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the estimates of LE from the MODIS-derived SWIRs. By contrast, both f (sm)_swir and f (cm)_swir
explained merely less than 24% of the variability in the terrestrial EF for the EBF, ENF, and WET flux tower
sites. These biomes were located in subtropical humid climatic zones and were not water stressed, with
weak seasonality in the SM and vegetation water contents, and the MODIS-derived SWIRs showed that
the information loss and contamination over high reflectance areas were caused by the high cloud cover
(Jackson et al., 2004; Sadeghi et al., 2017, 2015; Wagle et al., 2014; Y. Zhou et al., 2017). Consequently, the
suitability of both f (sm)_swir and f (cm)_swir for reflecting variations in the SM and vegetation water con-
tents was limited in these regions. X. Xiao et al. (2005) also found that the large seasonal cycles in the LSWI
and Enhanced Vegetation Index values were caused by clouds when using the MODIS data from an ENF flux
tower site at Howland, Maine, USA. Similarly, Daniela and Virginia (2014) proposed a simple index based on
MODIS-derived SWIRs to represent the SM variations well at 15 CRO and GRA flux tower sites in the South
Great Plains area, USA, and they also demonstrated that themodified PT algorithm optimized with this simple
index only yields 11% errors in the ET. In addition, Huang et al. (2015) showed that integrating the MODIS-
derived NDWI into the surface energy balance system as an indicator of water stress could avoid instanta-
neous overestimations of LE, where RMSE decreased by 33 W/m2 at the irrigated CRO flux tower sites in
the semiarid and arid regions of northwest China. These findings support our interpretations of the differ-
ences in the estimations of LE using MODIS-derived SWIRs as water stress factors for a variety of biomes.

5.3. Limitations and Future Research

A major issue according to the results of this investigation is the spatial scale mismatch between the foot-
prints of EC measurements and MODIS-derived reflectance metric values (Baldocchi et al., 2001; Mu et al.,
2011; Schmid, 1994; Yao et al., 2015). The typical EC flux tower footprints are about hundreds of meters
depending on measurement height above canopy layer and WS (Baldocchi et al., 2001; Foken, 2008; K.
Wang & Dickinson, 2012), which may be generally much smaller than the spatial resolution of the MODIS-
derived reflectance products at 500 m. Thus, the MODIS-derived reflectance signals might not adequately
reflect the subpixel scale SM and vegetation ecophysiological information at these EC flux tower sites, espe-
cially in complex and heterogeneous areas (Baldocchi, 2008; Yao et al., 2015; Zhang et al., 2010). Therefore,
inaccurate MODIS-derived reflectance metrics representing the EC flux tower footprint may still introduce
additional uncertainties into the estimates of LE.

A second source of uncertainty is the EC flux ground measurements and the associated surface energy
imbalance problem due to the variations in wind patterns, the representation of the footprint, and the
temporal sampling variability (Foken, 2008; Wilson et al., 2002). Currently, EC ground measurements pro-
vide the best reference data for evaluating satellite-based LE estimates. However, their typical measured
errors are still 5–20% compared with the LE measurements obtained using other methods, such as the
scintillometer method and sap flow technique, and their uncertainties still need to be interpreted
(Mahrt, 2010; K. Wang & Dickinson, 2012). An important problem is that the averaged energy balance clo-
sure (Re = (LE + H)/(Rn � G)) for more than 60 flux tower sites provided by the FLUXNET project was
approximately 0.8 (Wilson et al., 2002). It is possible that the EC method only accurately obtains small
eddies, and it might not measure large eddies in the lower boundary layer, which may contribute to
the energy imbalance (Foken, 2008; Franssen et al., 2010; Twine et al., 2000). In the present study, the
LE measurements were corrected based on the method developed by Twine et al. (2000), but these cor-
rections will still lead to substantial uncertainties in the EC ground-measured LE values, which were asso-
ciated with evaluations of the impacts of water stress on LE.

Further studies are required to elucidate the parameterization of f (sm)_swir for different soil types over glo-
bal vegetation and climate conditions to evaluate the impacts of water stress on LE because the f (sm)_swir
parameter used in this study ignores the differences among soil types and textures. Other remote sensing
data may provide additional water stress variables that influence the regional terrestrial LE, such as the hyper-
spectral remote sensing data (Oltra-Carrió et al., 2015), the terrestrial water storage changes acquired from
Gravity Recovery and Climate Experiment measurements (Swenson & Wahr, 2002), and the downscaling
SM data set from microwave remote sensing (Entekhabi et al., 2010; S. Gao et al., 2017). The MODIS-derived
SWIRs are useful methods successfully quantifying the impacts of SM on terrestrial LE values because they are
closer to the landscape scale, thereby potentially allowing the acquisition of finer spatial information regard-
ing the impacts of heterogeneous soil and vegetation water stress.
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6. Conclusion

In this study, we evaluated the impacts of moisture stress on terrestrial LE based on MODIS-derived SWIRs as
water supply proxies for SM and vegetation water constraints in the revised PT model. In this revised PT algo-
rithm, the SM constraint is parameterized by a combination of the SWIR SMI and an indicator of atmospheric
evaporative demand (RHD), and the vegetation water constraint is optimized by NDVI and LSWI. This revised
PT algorithm simultaneously considers the effects of the atmospheric evaporative demand and surface SM
supply on LEs. The estimated LE using the MODIS-derived SWIRs and that those without using SWIRs based
on the revised PT algorithm were employed to assess the impacts on the terrestrial LE of SWIRs related to the
water supply.

Evaluations conducted at 25 EC flux tower sites in China indicated that the revised PT algorithm based on the
MODIS-derived SWIRs could be used to effectively estimate the terrestrial LE accurately. The sensitivity ana-
lysis results suggested that the MODIS-derived SWIRs were sensitive to variations in SM and plant water. The
use of MODIS-derived SWIRs as water supply constraints in the revised PT algorithm improved the algorithm’s
performance compared with alternative LE estimation methods using the ground-measured SM inputs
(LE_sm) or without SWIRs based on the water supply constraint (LE_no) for most of the flux tower sites repre-
senting different land cover types. Regional model analysis using the MODIS-derived SWIRs as water supply
proxies indicated that water restrictions limited the terrestrial LE by more than 53% over China, particularly in
the drier climate areas of northwest China where atmospheric VPD and RH were not sufficient to characterize
both the atmospheric demand and water supply.
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