
Science of the Total Environment 695 (2019) 133787

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Evaluation of a satellite-derived model parameterized by three soil
moisture constraints to estimate terrestrial latent heat flux in the Heihe
River basin of Northwest China
Yunjun Yao a, Yuhu Zhang b,⁎, Qiang Liu c, Shaomin Liu d, Kun Jia a, Xiaotong Zhang a, Ziwei Xu d, Tongren Xu d,
Jiquan Chen e, Joshua B. Fisher f

a State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
b College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
c College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
d State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
e CGCEO/Geography, Michigan State University, East Lansing, MI 48823, USA
f Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• A satellite-derived hybrid LE model was
developed from MODIS and reanalysis
data.

• Three SM constraints schemes exhibited
some LE modeling differences.

• Different SM constraint schemes could
impact the regional LE simulation.
⁎ Corresponding author at: Capital Normal University, B
E-mail address: yuhu.zhang@cnu.edu.cn (Y. Zhang).

https://doi.org/10.1016/j.scitotenv.2019.133787
0048-9697/© 2019 Elsevier B.V. All rights reserved.
Multiyear (2013–2015) mean seasonality of estimated LE across the Heihe River Basin.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 24 March 2019
Received in revised form 2 August 2019
Accepted 4 August 2019
Available online 06 August 2019

Editor: Ashantha Goonetilleke
Satellite-derived terrestrial latent heat flux (LE) models are useful tools to understand regional surface energy
and water cycle processes for terrestrial ecosystems in the Heihe River basin (HRB) of Northwest China. This
study developed a satellite-derived hybrid LE model parameterized by three soil moisture (SM) constraints:
SM, relative humidity (RH), and diurnal air temperature range (DT); and assessed model performance and sen-
sitivity. We used MODerate Resolution Imaging Spectroradiometer (MODIS) and eddy covariance (EC) data
from 12 EC flux tower sites across the HRB. The hybrid model was trained using observed LE over 2012/
2013–2014, and validated using observed LE for 2015 and leave-one-out cross-validation. The results show
that the three SM constraints schemes exhibited some modeling differences at the flux tower site scale. LE esti-
mation using SM achieved the highest correlation (R2 = 0.87, p b 0.01) and lowest root mean square error
(RMSE = 20.1 W/m2) compared to schemes using RH or DT schemes. We then produced regional daily LE
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maps at 1 km× 1 km across theHRB for 2013–2015. Regional analysis shows that our LE estimates from all three
constraint models exhibited large spatial variability and strong seasonal and annual variations, attributed to dif-
ferences in parameterizing the model water constraints. This study provides data and model based evidence to
improve satellite-derived hybrid LE models with regard to water constraints.

© 2019 Elsevier B.V. All rights reserved.
Soil moisture constraints
Heihe River basin
1. Introduction

Terrestrial latent heat flux (LE) plays an important role in exchanges
of water, energy and carbon cycles in the terrestrial ecosystem (Wang
and Dickinson, 2012). Terrestrial LE has noticeably shifted for many re-
gional LE estimation models, due to climatic change and human activi-
ties, which influences regional water cycles, vegetation growth, and
climate change feedback, particularly in arid and semiarid regions
(Fisher et al., 2017; Liu et al., 2018a; Zhou et al., 2018). Therefore, accu-
rate regional LE quantification in arid and semiarid regions is crucial for
water resource management, ecosystem conservation, and adaption
strategies to climate change.

The Heihe River basin (HRB) is a typical oasis-desert arid region, par-
ticularly susceptible to surface energy and water cycle process changes
due to increased agricultural irrigation, population expansion, and eco-
nomic development (Liu et al., 2018a; Song et al., 2018; McVicar and
Jupp, 2002; Mu et al., 2007; Wang and Dickinson, 2012; Yao et al.,
2013; Priestley and Taylor, 1972). The Chinese scientific community
has monitored terrestrial LE and eco-hydrological processes in the
HRB, as part of the Heihe Plan launched by the National Natural Science
Foundation of China (NSFC), including the watershed allied telemetry
experimental research (WATER) and Heihe watershed allied telemetry
experimental research (HiWATER) programs (Li et al., 2009a, 2009b; Li
et al., 2013; Liu et al., 2018a; Cheng et al., 2014). Although these exper-
iments provide accurate point measurements using eddy covariance
(EC) methods, theymay not represent large areas due to terrestrial eco-
system heterogeneity and dynamic heat transfer processes (Baldocchi
et al., 2001; Twine et al., 2000; Wang et al., 2007).

Remote sensing has greatly improved regional scale soil and vegeta-
tion dynamics observations linked to terrestrial LE over heterogeneous
ecosystems. Many satellite-derived LE products are available, including
the MODerate-resolution Imaging Spectroradiometer (MODIS) LE
(MOD16) (Mu et al., 2011; Yao et al., 2014; Jung et al., 2010; Zhang
et al., 2010). Although MOD16 has relatively high spatial (1 km) and
temporal (8-day) resolution, validations have indicated that it retains
significant uncertainties for most EC flux tower sites and LE values for
the HRB are omitted (Hu et al., 2015a; Yao et al., 2017a; Mu et al.,
2011; Xiong et al., 2015).

Various satellite-derived methods have been developed to estimate
regional terrestrial LE, including empirical methods (Jackson et al.,
1977; Jung et al., 2011; Nagler et al., 2005; Yang et al., 2006; Yao et al.,
2015), physical models (e.g. surface energy balance (SEB) models,
Penman-Monteith (PM) logic, Priestley-Taylor (PT) approach)
(Norman et al., 1995; Anderson et al., 2008; Cleugh et al., 2007; Mu
et al., 2011; Zhang et al., 2010; Fisher et al., 2008; Yao et al., 2017b;
Miralles et al., 2011), data assimilation models (Pipunic et al., 2008;
Xu et al., 2011a, 2011b), and distributed hydrology and land surface
models based on satellite and meteorological data (Overgaard et al.,
2006; Xie et al., 2015). Comprehensive reviews of the models develop-
ment and validation accuracies are provided elsewhere (Kalma et al.,
2008; Li et al., 2009a, 2009b; Wang and Dickinson, 2012; Ershadi
et al., 2014; Polhamus et al., 2012; Badgley et al., 2015). However, not
all models are equally good, providing a range of LE estimates at site
and regional scales. For example, Wang and Dickinson (2012) reported
that globally averaged LE estimates varied from 24.1 W/m2 to
42.0 W/m2 from 17 models. Similarly Ershadi et al. (2014) compared
four models for various land cover types and showed that no single
model was consistently best across all biomes. Model results were
verified with low confidence at regional and site scales due to three
main limitations: (1) surface landscape and terrestrial ecosystem pro-
cess heterogeneity, (2) physiological parameter calibrations in the
model, and (3) inadequate validation against ground measurements
(Baldocchi et al., 1996; Yuan et al., 2010).

Satellite derived hybrid LEmodelsmay have the best potential to ad-
equately simulate LE over a wide range of soil moisture (SM) content
and land cover type, because they combine physical models and cali-
brated coefficients using ground observations from different ecosys-
tems. For example, Wang et al. (2007) proposed a simple hybrid
method to estimate terrestrial LE by relating ground-measured LE to
net radiation (LE/Rn) from the US Atmospheric Radiation Measurement
(ARM) to normalized difference vegetation index (NDVI) and air tem-
perature (Ta). This method was consistent with the PT equation while
incorporating vegetation influence on LE. However, the proposed
method ignored SM impact on LE and overestimated LE during severe
drought conditions. Subsequently Wang and Liang (2008) took into ac-
count the influence of SM on LE by incorporating diurnal Ta range (DT).
Yao et al. (2015) used the combination of air relative humidity (RH) and
atmospheric vapor pressure deficit (VPD) to parameterize SM effects on
LE in a satellite-derived hybrid algorithm. Purdy et al. (2018) used SM
from the Soil Moisture Active Passive Mission (SMAP) with the PT-JPL
model (PT model provided by the Jet Propulsion Laboratory, USA), and
demonstrated improved performance for semi-arid ecosystems. How-
ever, performance for satellite-derived hybrid LEmodels parameterized
by different SM constraints remains unclear, particularly for the HRB,
which incorporates large barren or sparsely vegetated areas. Thus, ef-
fects from employing surface SM, RH, and DT to characterize SM con-
straints for hybrid LE model performance require further evaluation
for HRB.

In this study, we developed a satellite derived hybrid LE model pa-
rameterized by SM, RH, and DT soil moisture constraints in HRB, and
assessed model performance. The objectives of this study are threefold:
(1) to develop a satellite-derived hybrid LEmodel based on site-specific
flux tower and MODIS data for HRB, and validate the model using eddy
flux data in temporal and spatial domains; (2) to assess performance
for the hybrid LE model parameterized by SM, RH, and DT constraints;
and (3) to examine regional LE patterns using SM, RH, and DT con-
straints for 2013–2015.

2. Materials and methods

2.1. Research area

HRB is located on the northern slopes of the Qilian Mountains be-
tween 37.7°–42.7°N and 97.1°–102.0°E, covering a land area of approx-
imately 143, 200 km2 (Fig. 1). HRB is the second largest inland river
basin in arid Northern China, with the Heihe River originating in the
Qilian Mountains (Liu et al., 2018a, 2018b). The river stream flows
through theHexi Corridor of Gansu Province and arrives at two terminal
lakes in theWestern Inner Mongolia Plateau desert (Xiong et al., 2015).
Study area elevation decreases from 2000 to 5000 m upstream,
1000–3000 m midstream, and 800–1700 m to downstream, covering
several biomes. Major land cover types in the upstream region are gla-
cier (snow/ice, SIN), alpine meadow (grassland, GRA) and Qinghai
spruce (evergreen needleleaf forest, ENF); midstream includes maize
(cropland, CRO), and piedmont desert (barren lands, BAR); and down-
stream includes mixed forests (MIF), terminal lake (water body, WAT),



Fig. 1. Locations of 12 flux tower sites used in this study. The flux tower sites include 1. Arou; 2. Bajitan; 3. Daman; 4.Dashalong; 5. Huazhaizi; 6. Mixed forest; 7. Populus forest; 8. Barren-
land; 9. Cropland; 10. Shenshawo; 11. Sidaoqiao; and 12. Zhangye. HRB refers to Heihe river basin boundary. The background image shows July 2015 land cover product from Landsat TM
images.DBF: deciduous broadleaf forest; ENF: evergreen needleleaf forest;MIF: mixed forest; SHR: shrubland;GRA: grassland; CRO: cropland;WET: permanentwetland;URB: urban/build
up; WAT: water body; SNI: snow/ice; and BAR: barren lands.
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desert (BAR), and Populus euphratica and Tamarix (shrubland, SHR) (Li
et al., 2018; Liu et al. 2018a). The region is dominated by continental
arid climate with mean annual Ta increasing rapidly from 0.4 °C up-
stream to 7.3 °C midstream and 8.2 °C downstream. Annual precipita-
tion (P) decreases gradually from 322.1 mm to 130.4 mm and
30.7 mm for the three reaches, respectively (Cheng et al., 2010; Song
et al., 2018).

2.2. Data collection

2.2.1. Eddy covariance data
Eddy flux measurements for surface heat fluxes and corresponding

meteorological data acrossHRBwere used to assessmodel performance.
Data from 12 EC flux tower sites in HRB provided by WATER and
HiWATER experiments were collected to provide a data set covering
37 years (Liu et al., 2011; Liu et al., 2013; Xu et al., 2013). TheWATER ex-
periment incorporated a prototype hydrometeorology observatory net-
work, with EC systems and automatic weather stations (AWSs) in
upstream and midstream regions (Li et al., 2009a, 2009b). The subse-
quent HiWATER experiment established a comprehensive hydrometeo-
rological observatory network across HRB upstream, midstream, and
downstream regions in 2013 (Li et al., 2013; Liu et al. 2018a). Table S1
summarizes the 12 flux tower sites and Fig. 1 shows the site locations.
Two flux tower sites were located upstream (Arou and Dashalong),
five midstream (Bajitan, Daman, Huazhaizi, Shenshawo, and Zhangye),
and five downstream (Mixed forest, Populus forest, Barren-land, Crop-
land and Sidaoqiao). Flux tower sites covered all six major land cover
types:GRA, CRO, BAR,MIF, deciduous broadleaf forest (DBF), and perma-
nent wetland (WET).

The data included half hourly surface net radiation (Rn), download
solar radiation (Rs), soil heat flux (G), Ta, vapor pressure (e), maximum
air temperature (Tmax), minimum air temperature (Tmin), relative hu-
midity (RH), wind speed (WS), sensible heat flux (H), precipitation (P)
and LE, which were subsequently aggregated into daily and monthly
means. When missing data comprised b30% of the entire data for a
given day, daily average was the numerical average of the measure-
ments, otherwise daily average was treated as missing. Monthly data
were similarly aggregated from the daily data. The data covered
2012–2015, with at least 2 years data from each flux tower. We used
the Bowen ratio (BR) closuremethod to correct LE andHwhen process-
ing EC data (Twine et al., 2000).

2.2.2. Remote sensing and reanalysis data
We used the MODIS 16-day NDVI product (MOD13A2) with 1-km

spatial resolution (Huete et al., 2002) (http://daac.ornl.gov/MODIS/)
and the 16-day albedo product with 1 km spatial resolution for
2013–2015 from the Global LAnd Surface Satellite (GLASS) product
(http://glass-product.bnu.edu.cn) to develop a satellite derived hybrid
LEmodel incorporating SM, RH, andDT for LE estimates across the entire
watershed. Daily NDVI and albedo values were temporally linear inter-
polated from 16-day averages, and monthly land cover data with
30 m spatial resolution were used (Zhong et al., 2014).

We also used the global satellite-observed daily SM dataset (ESA CCI
SM) to estimate regional LE in forHRB, part of the Climate Change Initia-
tive (CCI) program with 0.25° spatial resolution from 2013 to 2015, a
combined active and passive microwave product released by the
European Space Agency (ESA) (Dorigo et al., 2017). Daily ESA CCI SM
data were spatially interpolated to 1 km resolution using bilinear inter-
polation. Daily regional meteorological variables including Ta, Tmax, Tmin,
Rs, and RHwere simulated at 5 km spatial resolution using the weather
research and forecasting (WRF) model combined with observations
from China Meteorological Administration station (Pan et al., 2012).
WRF is a next-generation, fully compressible, Euler non-hydrostaticme-
soscale forecastmodel to derivemeteorological parameters required for
hydrological models. The model uses a terrain-following hydrostatic
pressure coordinate system with permitted vertical grid stretching.
Arakawa-C grid staggering is used for horizontal discretization.
Skamarock and Klemp (2008) provide a detailed description for WRF.
A one-way nested computational domain comprising 100 × 120 × 27
grid points with 5 km horizontal resolution was established previously
by Pan et al. (2012). These weather data are freely accessible from the
following website (http://westdc.westgis.ac.cn/data/). Regional meteo-
rological variableswere resampled from5× 5 km to 1× 1 kmresolution
using bilinear interpolation.

Regional scale Rn was obtained following the method by Wang and
Liang (2009). This model estimates the Rn from the surface albedo,

http://daac.ornl.gov/MODIS/
http://glass-product.bnu.edu.cn
http://westdc.westgis.ac.cn/data/
Image of Fig. 1


Table 1
Correlation coefficients between daily normalized LE (LE/Rn) and the daily SM (rLR, SM), RH
(rLR, RH), NDVI(rLR, NDVI), Ta(rLR, Ta), DT (rLR, DT) and cumulated P over 15 days. LR refers to
normalized LE (LE/Rn).

Name rLR, SM rLR, RH rLR, NDVI rLR, Ta rLR, DT rLR, P

Arou 0.62 0.66 0.81 0.78 −0.45 0.46
Bajitan 0.50 0.40 0.43 0.23 −0.10 0.51
Daman 0.74 0.22 0.73 0.71 −0.04 0.53
Dashalong 0.83 0.61 0.82 0.80 −0.35 0.50
Huazhaizi 0.36 0.53 0.14 0.12 −0.20 0.40
Mixed forest 0.05 0.03 0.71 0.70 −0.04 0.04
Populus forest 0.27 0.02 0.58 0.79 −0.02 0.17
Barren-land 0.32 0.10 0.55 0.70 −0.01 0.20
Cropland 0.62 0.10 0.61 0.60 −0.02 0.15
Shenshawo 0.43 0.67 0.48 0.28 −0.27 0.29
Sidaoqiao 0.53 0.11 0.51 0.50 −0.14 0.49
Zhangye 0.73 0.10 0.75 0.71 −0.10 0.44
All 0.58 0.26 0.66 0.51 −0.02 0.39
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daily Rs, Tmin,DT,NDVI and RH. Wang and Liang (2009) reported that the
method used in their study to estimate Rn for 22US sites yielded 19% rel-
ative error.

2.3. Remote sensing method

2.3.1. Satellite-derived hybrid LE model logic
Weproposed a satellite-derived hybrid LEmodel based on theWang

and Liang (2008) model:

LE ¼ Rn k0 þ k1Ta þ k2NDVI þ k3 f sð Þ; ð1Þ

where ki (i=0,…,3) is the empirical coefficient, which can be calibrated
using ground-measurements and satellite data; and fs is the SM con-
straint. In the Wang and Liang (2008) model, fs refers exclusively to
DT, whereas in the current study, fs can refer to SM, RH, or DT because
these variables reflect surface SM stress in different regions (Fisher
et al., 2008; Wang and Liang, 2008; Wang et al., 2010; Yan and
Shugart, 2010). Fig. S1 shows the hybrid LEmodel design, and empirical
model coefficients were determined using surfacemeteorology and sat-
ellite data.

This satellite-derived hybrid LEmodel, characterized with LE/Rn, is a
classical soil moisture and energy-limited LE regime (Seneviratne et al.,
2010). In the energy-limited LE regime, corresponding to SM N thresh-
old or critical value, LE/Rn is independent of SM content and fs (SM, RH,
or DT). This hybrid LE model varies less for SM saturated conditions
and does not impact LE variability. In contrast, below the critical value,
SM content provides a first-order constraint on LE/Rn in the soil
moisture-limited LE regime. Incorporating fs into the algorithm to esti-
mate LE under insufficient-water conditions considers the effects of sur-
face SM stress on terrestrial LE because fs varies greatly for water-
deficient surfaces, which strongly constrains LE/Rn variability and feed-
backs to the atmosphere.

A satellite-derived hybrid LE model offers several advantages over
complicated physical LE models, including providing easy routine and
long term LE mapping because it only requires Rn, Ta, NDVI, and fs,
avoiding computational complexities of aerodynamic and surface resis-
tance (Gao and Dirmeyer, 2006; McVicar et al., 2012; Yao et al., 2015);
and reducing errors from forcing data by avoiding the use of the land
surface temperature and Ta differences (Wang and Dickinson, 2012).

2.3.2. Model calibration and validation
We calibrated empirical coefficients for Eq. (1) using site specific

MODIS and EC ground measured data. We split site level EC and
MODIS datasets from the 12 flux tower sites into training (2012/
2013–2014) and test (2015) datasets using the holdout method, pro-
viding 5113 and 2605 sample datasets, respectively. We evaluated
model performance using root mean squared error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

xis−xioð Þ2
vuut ; ð2Þ

where xis is the daily simulated LE, xio is the daily observed LE, N is the
number of samples. We then estimated RMSE and seasonal variations
between estimated and observed LE.

We also assessed the proposedmodel performance in the spatial do-
main using leave one out cross-validation (Xiao et al., 2010), i.e., data
from a single site was used for validation, after data from the remaining
sites provided Eq. (1) calibration coefficients. Because calibration and
validation data were from different sites that were generally several ki-
lometers from each other, and spatial autocorrelation between siteswas
negligible, calibration and validation data were considered to be inde-
pendent. The leave one out cross-validation was separately conducted
for each site.
2.3.3. Regional LE estimation
As discussed above, since land cover types for the 12 EC flux tower

sites included alpine meadow, cropland, Gobi, desert, wetlands, forests,
andmixed cover (including vegetation and bare soil); and the locations
differed from each other, ground-measured datasets were reasonable
representative of typical HRB ecosystems and climate types. Thus, the
proposed model developed from the 12 sites could be extrapolated to
regional LE estimation across the whole HRB. We used the proposed
model to estimate daily terrestrial LE for each 1 × 1 km cell across HRB
for 2013–2015 usingMODIS, ESA CCI SM, andWRF gridded meteorolog-
ical data. Monthly estimated LEwas calculated by averaging daily esti-
mated LE. We examined regional LE patterns for 2013–2015 to
compare model performance.

3. Results

3.1. Sensitivity of environmental regulators to LE

Data collected from 2012/2013–2014 were analyzed at 12 flux
tower sites to identify environmental regulators from terrestrial LE var-
iation. Table S2 summarizes the correlation coefficients between LE and
surface Rn, Ta, RH, DT, SM, NDVI and P at the 12 sites. For all flux tower
sites, Rn exhibited the highest correlation coefficient (r) with LE (0.50
≤ r ≤ 0.91), with correlation coefficients between LE and Ta second
highest (0.46 ≤ r ≤ 0.84), indicating Rn and Ta were the most essential
controlling parameters to estimate terrestrial LE. NDVI and SM were
also highly correlated to LE with correlation coefficients between LE
and NDVI (and SM) for most flux tower sites N0.5(and 0.4). Therefore,
NDVI and SM are also important parameters for determining terrestrial
LE. In contrast, correlation coefficients between RH (and DT) and LE
were relatively low because seasonal variation differ between RH (and
DT) and LE. Cumulative P over 15 days was also highly correlated with
LE for most flux tower sites (0.35 ≤ r ≤ 0.65) due to time lags between
LE change and P occurrence for consecutive time periods.

Normalized terrestrial LE (LE/Rn) can also be used to develop LE
models due to their near-linear relationship (Wang et al., 2007; Wang
and Liang, 2008). Table 1 shows LE/Rn correlation coefficients with re-
lated parameters. For most flux tower sites, ground measured LE/Rn
showed highest correlations with NDVI (0.14 ≤ r ≤ 0.81) and SM (0.05
≤ r ≤ 0.83), with Ta (0.12 ≤ r ≤ 0.80), cumulated P over 15 days (0.15 ≤
r ≤ 0.53), RH (0.02 ≤ r ≤ 0.67), and DT (−0.45 ≤ r ≤−0.01) subsequently.
Although SM was weakly positive correlated to LE/Rn at three sites
(Mixed forest, Populus forest and Barren-land), the high correlations
between SM and LE/Rn at most sites indicated that SM influence on LE
was larger than for near-surface meteorological conditions (RH and
DT) in the HRB. Overall, after NDVI, SM had high potential capacity for
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determining LE/Rn variations across various land cover and environ-
mental status types. SM was positively correlated with LE/Rn every-
where, and had the largest overall correlation for almost all flux tower
sites, whereas DT was negatively correlated with LE/Rn everywhere,
and had the lowest overall correlation (Table 1).

However, the correlations differed greatly between tower sites. For
example, LE/Rn showed strong correlation with RH at two desert sites
(Huazhazi and Shenshawo), suggesting that RH may capture the
water stress for LE estimation on bare land (desert), whereas RH and
LE/Rnwere only weakly correlated at the two forests sites (Mixed forest
and Populus forest), suggesting that RHmay not successfully character-
ize LE at forest sites.
Fig. 2. Scatterplots of observed daily LE versus estimated daily LE for 2015. The estimated LEwa
c) LE_DT.
3.2. Model evaluation using three soil moisture constraints

3.2.1. Model evaluation based on the holdout method
Fig. 2 shows performance for the hybrid LEmodel parameterized by

SM, RH, and DT using the training dataset (2012/2013–2014) collected
at the 12 flux tower sites, covering a wide range of land cover types.
The SM constrained schemes exhibited LE model differences at the
flux tower site scale. LE estimation using SM (LE_SM) achieved the
highest R2 = 0.87 (p b 0.01) and lowest RMSE= 20.1 W/m2 compared
with LE estimation using RH (LE_RH) and DT (LE_DT); with LE_DT
achieving the lowest R2 = 0.81 (p b 0.01) and largest RMSE =
22.1 W/m2. Hybrid LE models using different SM constraint schemes
s calculated using the coefficients for Eq. (1) for 2012/2013–2014. a) LE_SM; b) LE_RH and

Image of Fig. 2
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performances for the test dataset (2015) were similar to the training
dataset (Fig. 2), although RMSE and R2 were slightly poorer
[22.1 W/m2 and 0.81 (p b 0.01), 25.3 W/m2 and 0.76 (p b 0.01), and
26.7 W/m2 and 0.72 (p b 0.01) for LE_SM, LE_RH, and LE_DT, respec-
tively]. Validation tests showed that LE_SM decreased RMSE by
N3.2 W/m2, and increased R2 by N0.05 (p b 0.01) compared with
LE_RH and LE_DT.

Fig. 3 compares LE estimates using the SM constraint schemes with
observed LE for each flux tower site for 2015. The estimates captured
most LE seasonal features through 2015, aside from exceptionally high
LE for some sites, e.g., Mixed forest and Populus forest sites. Model per-
formance between the SM constraint schemes also varied with site. The
schemes all exhibited large overestimation for Barren land and large
Fig. 3.Daily variation of estimated and groundmeasured latent heat of evaporation (LE) variati
for Eq. (1) for 2012/2013–2014.
underestimation for the Sidaoqiao site; with other forest and cropland
sites only showing moderate underestimation over June to August. In
contrast, the Shenshawo site underestimation occurred for winter
2015 and Barren land overestimation occurred in other periods. LE_SM
produced the closest seasonal LE variations to ground observed values
compared with LE_RH and LE_DT for most flux tower sites.

Fig. 4 shows the superior capacity of the proposed model to predict
LE spatial variation by comparing estimated and measured site average
daily LE for 2015 at the 12 flux tower sites. The proposed models esti-
mated LE reasonably (R2 = 0.75, 0.62, and 0.55; and RMSE = 14.3,
18.4, and 19.3 W/m2, respectively) although they all greatly
underestimated LE at Sidaoqiao. LE_SM achieved the highest accuracy
according to LE spatial variation validation. Therefore, regional LE
on from ECmeasurements for 2015. The estimated LEwas calculated using the coefficients

Image of Fig. 3


Fig. 4. Comparisons of estimated and measured site averaged daily LE for 2015 at 12 flux tower sites: (a) LE_SM, (b) LE_RH, and (c) LE_DT.
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simulation may be acceptable by adjusting Eq. (1) coefficients to local
conditions with relatively sparse ground observations.

3.2.2. Model evaluation using leave-one-out cross-validation
We then validated the models in the spatial domain using leave one

out-cross- validation. Fig. 5 shows that all proposed models (LE_SM,
LE_RH, and LE_DT) estimated LE fairly well, though model performance
varied with site and biome type. Generally, higher performance was
achieved for GRA (meadow) and CRO (maize) ecosystems than MIF,
DBF (Populus forest), and SHR (Tamarix chinensis). Overall, LE_SM exhib-
ited slightly better performance compared to ground measurements
than LE_RH and LE_DT atmostflux tower sites, achieving approximately
7.8% higher R2 (p b 0.01), and 8.2% smaller RMSE.

Fig. S3 shows the proposed model had a good ability to estimate LE
spatial variation. Site averaged LE_SM estimates for different biome LEs
at the 12 sites achieved superior RMSE = 6.8 W/m2 and R2 = 0.89 (p
b 0.01), compared with LE_RH (RMSE = 10.5 W/m2, R2 = 0.77, p b

0.01) and LE_DT (RMSE = 10.9 W/m2, R2 = 0.73, p b 0.01). SM con-
straints in the hybrid LEmodel generally improved model performance
comparedwith RH andDT constraints formost flux tower sites and land
cover types.

Temporal and spatial domain validation verified that the perfor-
mance of our proposed model using three SM constraints schemes
was particularly encouraging, across ecosystem types, structures, and
management practices. The model used EC flux tower data, and in-
cluded typical HRB ecosystems and climate types. Thus, the proposed
hybrid model has potential to upscale flux tower LE data to regional
scale across HRB.

3.3. Regional LE estimation using three soil moisture constraints

3.3.1. Regional implementation of the LE model
We implemented the satellite-derived hybrid LEmodel in theHRB to

further demonstrate its robustness. We recalibrated Eq. (1) coefficients
using the MODIS products, ground measured meteorological variables,
and LE data collected at all 12 flux tower sites. Table 2 lists Eq. (1) pa-
rameters for all biomes by linear regression based on MODIS derived
NDVI, ground measured Ta, and RH, and DT, and SM. Because of the
different land cover types and locations of the 12 EC flux tower sites,
we found the models sufficiently representative to estimate regional
LE across the HRB.

Fig. 6 compares daily estimated LEderived from tower specificmete-
orology and groundmeasured LE at all 12 flux tower sites, with RMSE=
21.1, 23.1, and 24.2W/m2; and R2=0.85, 0.80, and0.78 (all p b 0.01) for
LE_SM, LE_RH and LE_DT, respectively. Monthly estimated LE showed
good correlation to ground measured LE at all 12 flux tower sites, with
RMSE = 15.8 W/m2, 18.5 W/m2, and 19.9 W/m2; and R2 = 0.89, 0.84,
and 0.81 at the 99% level of confidence, respectively. Similar outcomes
were found for estimated daily and monthly LE derived from WRF re-
analysis, MODIS, and ESA CCI SM data (Fig. S3). Thus, estimated LE
from the proposed approach could be applied to estimate regional ter-
restrial LE across HRB for 2013–2015.
3.3.2. Seasonal and annual LE patterns
Daily LE estimates from the proposed approach were highly

constrained by eddy flux data, and provided spatially and temporally
continuous LE across HRB, allowing seasonal and annual LE patterns to
be investigated. Fig. 7 shows multiyear (2013–2015) mean seasonality
for LE_SM, LE_RH and LE_DT model estimates. LE exhibited large spatial
variability and strong seasonal fluctuations reflecting controlling effects
from climate conditions. In the spring months (March–May), LE in the
upstream andmidstream areawas higher than downstream as temper-
ature gradually increased and vegetation growth commenced. In the
summer months (June–August), LE peaked due to favorable tempera-
ture and SM conditions, with summer precipitation accounting for
approximately 80% of annual precipitation. In the fall months (Septem-
ber–November), LE substantially decreased relative to summer as tem-
perature dropped and vegetation began to senesce. Spatial patterns and
LEmagnitudewere similar to spring. In the winter months (December–
February), LEvalueswere lowest since the low temperature caused little
or no photosynthesis as the vegetation was dormant.

Fig. S4 shows seasonal terrestrial LE spatial differences across the
HRB (ΔLESR = LE_SM-LE_RH; ΔLESD = LE_SM-LE_DT; and ΔLERD =
LE_RH-LE_DT). Relative to LE_RH and LE_DT, LE_SM yielded lower sea-
sonal terrestrial LE across almost all HRB regions; whereas LE_RH

Image of Fig. 4


Fig. 5. Leave one out cross-validation for estimated daily LE models.
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Fig. 5 (continued).
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Image of Fig. 5


Table 2
Fitted parameters for Eq. (1) and related statistics for the tower sites. Eq. (1) was used to
estimate daily LE at the sites using the parameters shown.

Combinations of parameters NDVI, Ta, SM NDVI, Ta, RH NDVI, Ta, DT

K0 0.036 −0.028 0.089
K1 0.006 0.009 0.007
K2 0.710 0.760 0.983
K3 0.708 0.337 −0.001
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exhibited higher seasonal terrestrial LE than LE_DT across almost allHRB
regions from summer to winter, but lower than LE_DT during spring.

Fig. S5 shows calculated annual LE_SM, LE_RH, and LE_DT for
2013–2015 from daily LE estimates, and subsequent average annual LE
over the period. Total LE for LE_SM, LE_RH, and LE_DT is 25.1 W/m2,
Fig. 6. Comparison of the estimated using tower-specific meteorology and measured daily a
29.6 W/m2, and 30.3 W/m2 for HRB over 2013–2015, respectively. An-
nual LE showed considerable spatial variationwith large spatial gradient
from south (upstream) to north (downstream), i.e., LE decreased along
a gradient starting in the southern mountains, where vegetation cover-
age was abundant, through to sparse vegetation across the northern re-
gion,which is largely semiarid climate (Xiong et al., 2015). Therefore, LE
variation was consistent with regional climate and vegetation
distributions.

Fig. S6 compares estimated annual LE from the proposed models for
2013–2015 across HRB. LE_SM exhibited lower annual terrestrial LE for
almost all regions compared with LE_RH and LE_DT; whereas LE_RH
had higher annual LE than LE_DT for most upstream and downstream
regions but lower LE across most midstream regions. The LE_DTmodel
exhibited particularly low performance for water limited regions (de-
sert regions).
nd monthly LE collected at all 12 flux tower sites: (a) LE_SM, (b) LE_RH, and (c) LE_DT.

Image of Fig. 6


Fig. 7.Multiyear (2013–2015) mean seasonality of estimated LE across the Heihe River Basin. Units are in W/m2.
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4. Discussion

4.1. Model performance for different biomes

Previous studies have shown that satellite-derived hybrid LEmodels
can achieve comparable accuracy tomore complicatedmodels (Jiménez
et al., 2011; Kalma et al., 2008; Mueller et al., 2011; Wang and
Dickinson, 2012; Yao et al., 2018) and, the model simplicity also allows
regional application. However, the proposed hybrid LEmodels parame-
terized by SM, RH, and DT differed over various biomes and conditions.
For example, all the proposed hybrid LE models achieved high
performance at Arou, Daman, Dashalong, and Zhangye sites, which
may be partially attributed to themodel successfully capturing seasonal
LEvariation reflected by the strongNDVI seasonality for grass (meadow)
and crops (Yebra et al., 2013). Vinukollu et al. (2011) and Ershadi et al.
(2014) showed superior PT model performance, similar to satellite-
derived hybrid LE models, for 12 EC towers located in grasslands and
croplands over a three-year period using monthly averages of hourly
data. However, significant bias was identified for the growing season
(summer). In contrast, the proposed hybrid LE models achieved rela-
tively low performance formost forest sites because rising groundwater
levels due to the ecological water diversion project (EWDP) induced LE

Image of Fig. 7
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changes and the models did not consider groundwater effects on LE
(Zhou et al., 2018). Vegetation transpiration can extracts groundwater
from the rooting zone down to tens of meters or more when available
soil water is low (Wang and Dickinson, 2012). For example, LE for the
forested area (in the middle of the study region), which had high
groundwater level, was higher than that in lower areas where vegeta-
tion degradation was associated with artificial canals (Hu et al., 2015b).

Generally, LE_SMmodels achieved superior statistical agreement to
observation compared with LE_RH and LE_DT models, which had rela-
tively close agreement. However, LE_SM achieved lower accuracy com-
pared with both LE_RH and LE_DT for Mixed forest and Populus forest
sites, because SMwas not the main LE controlling factor. Previous stud-
ies have shown thatRHwasmore closely related to evaporation fraction
(EF) than SM for several biomes (Yan and Shugart, 2010). García et al.
(2013) also found that SMwas the most sensitive constraint for energy
driven LEmodels, contributing 22% to estimated LE uncertainty.

Satellite derived hybrid LEmodel biaswas likely due to the following
reasons. First, EC measurements have approximately 5–20% error
(Foken, 2008; Glenn et al., 2008) and gap filling from half hourly data
to daily means also adds approximately 5% error (Hui et al., 2004). EC
measurements also have energy imbalances and we corrected LE
using the Twine et al. (2000) method in this study; but, errors due to
these effects remain unclear (Shuttleworth, 2007). Second, MODIS
NDVI and tower footprints were not matched, hence vegetation signals
at flux towers could significantly differ from those within the MODIS
footprint (Xiao et al., 2010). Third, cloud cover caused significant miss-
ing daily NDVI, hence 16 day NDVImay not always represent valid aver-
age environmental conditions and fluxes over the period, causing LE
underestimation or overestimation (Xiao et al., 2008). Finally, indepen-
dent variables included in themodel did not consider potentially signif-
icant other factors, e.g. wind speed or CO2 levels, which could potentially
reduce LE estimation errors by 5–10% (Idso and Brazel, 1984; McVicar
et al., 2012).

4.2. Regulators impacts on model performance

Available energy, air temperature, and moisture demand were been
considered as the three most important regulators controlling LE. The
satellite-derived hybrid LE models correlated strongly with Rn because
it represents the energy available to drive surface evaporation and veg-
etation transpiration, which varies with spatiotemporal LE variation in
terrestrial ecosystems (Wang and Dickinson, 2012). However, Rn exerts
greater influence on energy limited water yielding than water limited
catchments (McVicar et al., 2012). Air temperature (Ta) is another key
factor in determining LE for most ecosystems, particularly in alpine re-
gions. Previous studies have shown that transpiration shows significant
linear correlation with Ta in desert riparian forest and other extreme
arid regions (Si et al., 2007). The present study confirmed high correla-
tion between LE and Ta in HRB. Additionally, we used NDVI to develop
the hybrid models because it can characterize spatial vegetation mois-
ture variability. LE is significantly modulated by available water and
vegetation canopy characteristics characterized byNDVI for unsaturated
soil and vegetation surfaces with limited water supply (Fisher et al.,
2008; Wang and Liang, 2008; Wang et al., 2010). Therefore, the hybrid
LE models improved LE simulation accuracy by integrating satellite-
derived vegetation parameters (NDVI).

Three variables (SM, RH, andDT) were used to parameterize SM con-
straints for the hybrid LE models. For hybrid model parameterized by
SM, SM is directly used to optimize SM constraints. The SM in this
study from ground observation covered 0–5 cm and ESA CCI SM gener-
ally covers layer depth as 0.5–2 cm, but SM from deeper soil layers con-
tributed to water energy processes, which may be another reason for
underestimation of the Mixed forest and DBF (Populus forest). Previous
studies have shown explicit SM functions from different soil layers to be
useful in parameterizing LEmoisture controls (Jin et al., 2011; Brutsaert,
2005; Chen and Dudhia, 2001; Miralles et al., 2011). However, they
cannot be applied when SM from different soil layers is unavailable.
The proposed hybrid LE models parameterized by different SM con-
straints were complementary to other complicated approaches.

The proposed hybrid model used RH to characterize SM constraint
based on the complementary Bouchet (1963) hypothesis,where surface
moisture status was linked to and reflected atmospheric evaporative
demands (Fisher et al., 2008; Yao et al., 2015; Yan and Shugart, 2010).
Similarly, the hybrid models parameterized by DT used simplified ap-
parent thermal inertia (ATI) characterized by temperature change, be-
cause ATI reflects surface SM variation (Zhang et al., 2003). However,
RH and DT used in the hybrid models include uncertainties for optimiz-
ing SM constraints. First, they only account for effects due to air mois-
ture concentration and atmospheric evaporation demand, ignoring
surface SM supply impacts. Second, they are not good indicators for
SM spatial heterogeneity across the landscape (Yao et al., 2017a). There-
fore, SM constraint noise (SM, RH, or DT) will reduce hybrid LE model
performance due to the complicated relationship between SM and soil
evaporation. Future researchwill consider other biophysical variable ef-
fects on SM constraints for different biomes.

4.3. Regional LE estimation differences using different soil moisture
constraints

Spatial differences among LE_SM, LE_RH, and LE_DT were much
greater than those for regional mean values. The large discrepancies
may be attributed to differences in water constraint parameterization
for themodel. Fig. S7 shows an example spatial distribution for interpo-
lated monthly SM derived from the ESA CCI dataset, with RH and DT de-
rived from reanalysis data for June 2013–2015 at 1 km spatial
resolution. SM, RH, and DT had similar spatial distribution patterns
reflecting surface moisture variations, although spatial distributions in
Northwestern HRB exhibited small differences. Different SM constraint
parameterizations could impact the simulation by partitioning surface
energy flux differently (Robock et al., 2003; Wang and Liang, 2008).

Aside from SM constraint effects on LE, biases and discrepancies in
regional LE estimates among LE_SM, LE_RH, and LE_DT could be attrib-
uted to the following reasons. First, ESA CCI SM biasesmay influence hy-
brid LEmodel accuracy, whichwould lead to estimated LE discrepancies
among LE_SM, LE_RH, and LE_DT. For example, we found ESA CCI SM
underestimated SM compared to ground measurements at Arou site
(Fig. S8) (Wang et al., 2018). Thus, ESA CCI SM product biases could
have introduced substantial uncertainties into LE estimates. Second, al-
though all gridded products were interpolated to 1 km at the regional
scale, error propagation through averaging and interpolation could
have affected biases and discrepancies in different LE estimates. For ex-
ample, three downscaling methods (bilinear interpolation, Kriging in-
terpolation, and Bayesian maximum entropy) for interpolating ESA CCI
SM data with 0.25° spatial resolution to 1 km resolution generate 12%,
13%, and15% LE estimation error, respectively. Finally, the regional Rn al-
gorithm derived from gridded data could also introduced LE estimation
errors and discrepancies in regional LE estimates among LE_SM, LE_RH,
and LE_DT. The algorithm considers NDVI and RH influences, which are
also included in the satellite derived hybrid LEmodels. Thus, RH effects
on LE are greater than bothDT and SM. Further work is required to com-
pare and explain differences between hybrid model estimate LE and
other LE products.

5. Conclusion

The goal of this study was to develop a suitable satellite-derived hy-
brid LE model to estimate terrestrial LE in the Heihe River Basin of
Northwest China, and to assess model performance and sensitivity pa-
rameterized by three soil moisture constraints: SM, RH and DT. The hy-
brid LEmodelwas trained using observed LE over 2012/2013–2014, and
validated using observed LE for 2015 and leave-one-out cross-
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validation. We also estimated regional LE in HRB using the resulting
LE_SM, LE_RH, and LE_DT models.

Validation results showed LE model differences across the 12 se-
lected flux tower sites, incorporating different land cover types. From
the three SM constraint schemes investigated, LE_SM achieved the
highest accuracy in terms of spatial variation compared with LE_RH,
and LE_DT. A satellite-derived hybrid LE model using three SM con-
straints may be the most feasible approach to estimate terrestrial LE
for different biomes, since SM, RH, and DT could potentially determine
LE/Rn variations for various land cover types. Regional LE estimation
showed large spatial variability for LE estimates along with strong sea-
sonal and annual variations, reflecting climate conditions and vegeta-
tion distributions controlling effects. The large discrepancies may be
attributed to differences in water constraint parameterization within
the models. To refine a satellite-derived hybrid model by coupling em-
pirical models and process-basedmodels for improving regional terres-
trial LE, further work is required to compare and explain differences
between hybrid model derived-LE and other LE products.
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