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ABSTRACT

Terrestrial carbon cycle models have incorporated increasingly more processes as a means to achieve more-realistic repre-

sentations of ecosystem carbon cycling. Despite this, there are large across-model variations in the simulation and projection of

carbon cycling. Several model intercomparison projects (MIPs), for example, the fifth phase of the Coupled Model In-

tercomparison Project (CMIP5) (historical simulations), Trends in Net Land–Atmosphere Carbon Exchange (TRENDY), and

Multiscale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), have sought to understand intermodel differ-

ences. In this study, the authors developeda suiteof new techniques to conduct post-MIPanalysis to gain insights intouncertainty

sources across 25models in the threeMIPs. First, terrestrial carbon storage dynamics were characterized by a three-dimensional

(3D) model output space with coordinates of carbon residence time, net primary productivity (NPP), and carbon storage po-

tential. The latter represents thepotential of anecosystem to loseor gain carbon.This space canbeused tomeasurehowandwhy

model output differs. Models with a nitrogen cycle generally exhibit lower annual NPP in comparison with other models, and

mostly negative carbon storage potential. Second, a transient traceability framework was used to decompose any given carbon

cycle model into traceable components and identify the sources of model differences. The carbon residence time (or NPP) was

traced to baseline carbon residence time (or baseline NPP related to the maximum carbon input), environmental scalars, and

climate forcing. Third, by applying a variance decompositionmethod, the authors show that the intermodel differences in carbon

storage can bemainly attributed to the baseline carbon residence time and baseline NPP (.90% in the threeMIPs). The three

techniquesdeveloped in this studyoffer anovel approach to gainmore insight fromexistingMIPs and canpoint out directions for

futureMIPs.Since this study is conductedat theglobal scale foranoverviewon intermodeldifferences, future studies should focus

more on regional analysis to identify the sources of uncertainties and improve models at the specified mechanism level.
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1. Introduction

To better understand the past, present, and future role

of the terrestrial biosphere in the global carbon cycle,

terrestrial carbon cycle models have become increas-

ingly complex. These models are continuously de-

veloped and updated based on improved understanding

of mechanisms controlling the carbon cycle, such as the

improvement of the carbon–nitrogen cycling and dy-

namic global vegetation from earlier Community Land

Model (CLM) to current CLM4.5 (Oleson et al. 2013).

Compared to the Coupled Climate–Carbon Cycle Model

Intercomparison Project (C4MIP) (Friedlingstein et al.

2006), the fifth phase of the Coupled Model In-

tercomparison Project (CMIP5) comprises models that

include improved processes, components, or forcing

(Knutti and Sedlá�cek 2013; Taylor et al. 2012). However,

large uncertainties remain in the simulation and pre-

diction of carbon uptake and storage among different

models. The simulated global soil carbon varied by

5.9-fold across 11 models from CMIP5, resulting from

the difference in the simulated net primary productivity

and the parameterization of soil heterotrophic respira-

tion (Todd-Brown et al. 2013), as well as the integration

over long spinup procedures (Exbrayat et al. 2014). To

improve future projection of carbon storage dynamics

and constrain its uncertainties, it is essential to un-

derstand the underlying key mechanisms of the global

carbon cycle.

Model intercomparison studies have been conducted

to assess differences between model output and explain

the uncertainties among models (Fisher et al. 2014;

Friend et al. 2014; Nishina et al. 2014, 2015). Schwalm

et al. (2010) examined the ability of 22 terrestrial bio-

sphere models to simulate the seasonal variability in

biosphere–atmosphere exchange of CO2 using data

from 44 flux tower sites. Model performance was gen-

erally poor, and a large divergence between observa-

tions and simulations (;10 times observational error)

was found, especially for nonforested sites. Keenan et al.

(2012) compared the interannual variability of CO2 ex-

change from 16 terrestrial biosphere models against 11

long-term eddy-covariance forest sites in North America.

They found that the large biases in the modeled in-

terannual variability are related to the poor represen-

tation of spring phenology, soil thaw and snowpack

melting, and the lagged response to extreme climatic

events. Ichii et al. (2010) showed that the terrestrial

biosphere models, which have been calibrated using

eddy flux data, can successfully capture the seasonal and

interannual variations in the terrestrial carbon cycle,

indicating that the eddy flux observations are critical to

improve model simulations and reduce uncertainties.

Although observations can evaluatemodel performance

and constrain model uncertainties to a certain degree,

the sources of uncertainties among models are still hard

to quantify (De Kauwe et al. 2014).

Several model intercomparison projects (MIPs) have

been established to identify the sources of model un-

certainties and improve process representation in

models. CMIP provides a standard experiment protocol

to evaluate output from coupled ocean–atmosphere–

cryosphere–land general circulation models (Meehl

et al. 2005). One of themost important targets of CMIP5

is to assess the mechanisms responsible for the spread in

model projections when the same set of ‘‘external’’

forcing, such as greenhouse gas forcing in historical

simulations, is used (Taylor et al. 2012). The Trends in

Net Land–Atmosphere Carbon Exchange (TRENDY)

(Sitch et al. 2015) andMultiscale Synthesis and Terrestrial

Model Intercomparison Project (MsTMIP) (Huntzinger

et al. 2013; Wei et al. 2014) projects facilitate the com-

parison of model output by using prescribed environ-

mental and meteorological drivers shared among all

models. Thus, the role of model structure and parame-

ters in the uncertainty of land–atmosphere carbon ex-

change can be systematically evaluated. For instance, by

investigating the difference in model output under a

series of common scenarios, the contribution of envi-

ronmental drivers (e.g., changingCO2, climate, nitrogen,

and land use) to the trend and variability of carbon ex-

change can be diagnosed (Ahlström et al. 2012; Nishina

et al. 2015). Despite the fact that these projects can

evaluate the impact of environmental drivers on carbon

storage based on sensitivity simulations, they have led to

little understanding of the underlying mechanisms of

carbon storage variations across different models. Even

so, the simulated terrestrial carbon storage dynamics

from these MIPs can be used to identify the sources of

intermodel differences.

Based on the biogeochemical principles of the ter-

restrial carbon cycle, Xia et al. (2013) proposed a

framework to decompose a complex carbon cycle model

into traceable components. In the framework, the

modeled ecosystem carbon storage capacity is decom-

posed into the product of carbon residence time and net

primary productivity (NPP). The carbon residence time

refers to the mean duration of carbon in terrestrial

ecosystems from its input via photosynthesis to its

release via respiration (Luo et al. 2003). A three-

dimensional (3D) model output space proposed by

Luo et al. (2017) extends the approach of Xia et al.

(2013) by involving carbon storage potential to repre-

sent the difference between carbon storage capacity and

carbon storage itself. The 3Dmodel output space can be

used to evaluate the terrestrial carbon storage dynamics

2834 JOURNAL OF CL IMATE VOLUME 31



by decomposing the carbon storage into carbon resi-

dence time, NPP, and carbon storage potential (Jiang

et al. 2018). Thus, the simulated terrestrial carbon stor-

age can be placed into the 3D model output space to

attribute differences in model outputs to the three

variables.

The three variables can be further decomposed into

their traceable components to track the sources of

model uncertainty. The traceability framework de-

veloped by Xia et al. (2013) suggested that the carbon

residence time can be traced to 1) baseline carbon res-

idence time, which is related to vegetation characteris-

tics and soil types, 2) environmental scalar, including

temperature and water scalars, and 3) climate variables,

such as temperature and precipitation. The baseline

carbon residence time is inversely related to the maxi-

mum decomposition rate, which is modified by tem-

perature and moisture conditions. The environmental

scalar expressed as a function of environmental vari-

ables, such as temperature and precipitation, links the

baseline carbon residence time to actual carbon resi-

dence time. This framework decomposes carbon resi-

dence time into its traceable components; however, the

traceability analysis for NPP has not been performed.

In terrestrial carbon cycle models, NPP is generally

estimated using two basic approaches. Most models,

such as BIOME-BGC (Running and Hunt 1993) and

HYBRID (Friend et al. 1997), estimate NPP as the

difference between gross primary productivity (GPP)

and autotrophic respiration (Ra), while the others di-

rectly simulate NPP as influenced by vegetation and

environmental variables, such as CASA (Potter et al.

1993) and CENTURY (Parton 1996). Despite different

representations of physical and biological processes in

different models, the concept of light use efficiency

(LUE) underpins the simulation of NPP across most

models (Cramer et al. 1999). That is, NPP (or GPP) can

be expressed as the product of LUE, photosynthetically

active radiation (PAR), and the fraction of PAR ab-

sorbed by vegetation (fPAR) (Zhang et al. 2016). LUE

is regulated by climatic conditions (e.g., temperature

and precipitation), and fPAR is the most important

vegetation characteristics in controlling potential pho-

tosynthetic capacity of vegetation (Schloss et al. 1999).

Thus, NPP can be traced to a ‘‘baseline NPP,’’ which is

related to vegetation characteristics and an environ-

mental scalar determined by environmental variables,

in a similar fashion to carbon residence time. The

baselineNPP corresponds to themaximum carbon input

when the environmental conditions are favorable for

carbon assimilation. The environmental stress on NPP

is evaluated by the environmental scalar, which con-

verts the baseline NPP to actual NPP. Following this

traceability analysis, the variation in terrestrial carbon

storage can be quantitatively attributed to its sources to

evaluate the intermodel differences based on variance

decomposition.

The objective of this study is to compare the annual

carbon storage simulated by different models in the

three MIPs (i.e., CMIP5, TRENDY and MsTMIP),

based on the 3D model output space, and identify the

sources of carbon storage variation using a transient

traceability framework and a variance decomposition

method. First, the terrestrial carbon storage is decom-

posed into the 3Dmodel output space: carbon residence

time, NPP, and carbon storage potential. Second, a

transient traceability framework of carbon storage

dynamics is proposed to determine what controls the

carbon cycle dynamics (e.g., climate factors such as

temperature and precipitation). Following the transient

traceability framework, the sources of the variation in

carbon storage dynamics will be diagnosed. Third, the

variation in carbon storage simulations is attributed to

its sources by quantifying the relative contributions of

them using the variance decomposition method. Our

rigorous framework for multimodel assessment facili-

tates better understanding of the complex behaviors of

various terrestrial carbon cycle models and is suggested

to be a valuable evaluation method for future model

intercomparison projects.

2. Methods and materials

a. Carbon storage dynamics decomposition

Based on mathematical analysis of the matrix equa-

tion for terrestrial carbon cycle models, Luo et al. (2017)

developed a 3D model output space to assess the dy-

namics of terrestrial carbon storage X. By decomposing

the carbon storage dynamics into three variables, we can

better evaluate the responses of terrestrial carbon stor-

age to environmental factors and the capability of eco-

system processes to influence the carbon storage change.

The magnitude and direction of carbon storage

change are controlled by the carbon storage capacityXc,

that is, the capacity of an ecosystem to store carbon or

the carbon storage at steady state under current condi-

tions (see Table 1 for symbol definition). The Xc is

jointly determined by the carbon residence time tE and

ecosystem carbon input, for example, NPP (Xia et al.

2013):

X
c
5 t

E
3NPP. (1)

Luo et al. (2017) further proposed that the capability of

the terrestrial carbon cycle to influence carbon storage

can be evaluated by carbon storage potential Xp, the
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potential of an ecosystem to store additional carbon or

lose carbon. TheXp is proportional to the rate of carbon

storage changeX 0 and regulated by the chasing time tch:

X
p
5 t

ch
X 0 . (2)

The tch is a nonnegative matrix of carbon residence

times through the network of individual pools. TheXp is

positive (negative) when the carbon storage capacity is

larger (smaller) than current carbon storage. PositiveXp

values indicate an increasing trend of carbon storage,

and vice versa. The larger the carbon storage potential,

the faster the rate of carbon storage change, and the

ratio between the two is determined by the chasing time.

Carbon storage can be expressed as the difference

between carbon storage capacity [Eq. (1)] and carbon

storage potential (Luo et al. 2017). Thus, dynamics in

terrestrial carbon storage can be projected into a 3D

model output space: tE, NPP, and Xp as

X5 t
E
3NPP2X

p
. (3)

The 3D model output space above offers a new frame-

work to quantify differences across land carbon cycle

models. Thus, it helps us better understand complex

model dynamics, diagnose sources of model differences,

and improve model predictive capability.

To apply the 3D model output space to those three

MIPs, we consider the terrestrial ecosystem as one pool.

According to Luo et al. (2017), tch equals tE when there

is only one pool. Thus, Eq. (3) can be transformed into

X5 t
E
(NPP2X 0) , (4)

where (NPP 2 X0) represents the total carbon losses

from the terrestrial ecosystem, mainly through hetero-

trophic respiration. Generally, X and NPP are directly

available frommodel output,X 0 can be calculated as the
difference of carbon storage between time step (t 1 1)

and t. So the carbon residence time and carbon storage

potential can be calculated as follows:

t
E
5

X

NPP2X 0, and (5a)

X
p
5 t

E
3NPP2X . (5b)

Although the structure varies in different models, a one-

pool model can effectively estimate the three variables.

For example, we have reproduced the model output in

CanESM2 and CESM1(BGC) using a five-pool model

and found that the derived tE is close to that calculated

using the one-pool model (see Fig. S1 in the online

supplemental material).

b. Traceability analysis of carbon storage dynamics

Xia et al. (2013) developed a framework for trace-

ability analysis of steady-state carbon storage. This

study expands the framework to transient dynamics of

terrestrial carbon storage (Fig. 1), by incorporating the

third dimension of carbon cycle dynamics (i.e., the

carbon storage potential). This transient traceability

framework can decompose the land carbon cycle into

traceable components. The framework first traces the

simulated terrestrial carbon storage to carbon storage

capacity and potential. The former can be traced to a

product of carbon residence time and NPP. The carbon

residence time and NPP are further traced to 1) their

baseline values, which are determined by soil properties

and vegetation characteristics, 2) the environmental

scalars, including temperature and water scalars, and

ultimately 3) the climate forcing.

1) TRACEABILITY ANALYSIS FOR CARBON

RESIDENCE TIME AND NPP

The carbon residence time is mainly related to carbon

release from an ecosystem via decomposition and res-

piration. The maximum carbon decomposition rate

corresponds to the baseline carbon residence time, un-

der optimal temperature and moisture conditions (Xia

et al. 2013). The carbon residence time is determined by

the baseline carbon residence time t0E and modified by

the environmental scalar j:

TABLE 1. Symbols and parameters used in this study.

Symbol or

parameter Definition Unit

X Carbon storage PgC

Xc Carbon storage capacity PgC

Xp Carbon storage potential PgC

X 0 Rate of carbon storage change PgC yr21

NPP Net primary productivity PgC yr21

tE Carbon residence time yr

tch Chasing time yr

j Environmental scalar for carbon

residence time

—

d Environmental scalar for NPP —

t0E Baseline carbon residence time yr

NPP0 Baseline NPP PgC yr21

jT Temperature scalar for carbon residence

time

—

jW Water scalar for carbon residence time —

dT Temperature scalar for NPP —

dW Water scalar for NPP —

Q10 Respiration temperature sensitivity —

T0 Reference temperature 8C
T Mean annual temperature 8C
W0 Reference precipitation mmyr21

W Annual total precipitation mmyr21
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t
E
5 j21t0E . (6)

The baseline carbon residence time is usually preset in a

carbon cycle model, according to soil properties and

vegetation characteristics (Fig. 1).

NPP has been simulated according to different pro-

cesses by different models, and a large uncertainty of

modeled NPP simulation still exists (Cramer et al. 1999;

Schwalm et al. 2010). Almost all models simulate NPP as

controlled by vegetation characteristics and regulated

by climate variables (Schloss et al. 1999). We assume a

‘‘baseline NPP,’’ which is related to the maximum car-

bon input when the environmental conditions are fa-

vorable for carbon assimilation, and an environmental

scalar to convert the baseline NPP to actual NPP. Thus,

the modeled NPP can be traced to baseline NPP (NPP0)
and an environmental scalar d, just as the carbon resi-

dence time, for the sake of this analysis:

NPP5 d3NPP0 . (7)

The baseline NPP is related to vegetation characteris-

tics, including photosynthetic capacity and vegetation

type (Fig. 1).

The environmental scalar usually consists of the

temperature and water scalars, which are traced to the

climate forcing (i.e., temperature and precipitation)

(Xia et al. 2013). The terrestrial carbon storage is

affected by various environmental factors, including

climate, CO2 concentration, land cover, nitrogen de-

position, and so forth. In this study, we focus on the

effect of climate change on the carbon storage, by in-

vestigating the responses of carbon residence time and

NPP to climate forcing (i.e., temperature and precipi-

tation). Thus, the environmental scalars j and d are

further decomposed into temperature and water scalars

as follows:

j5 j
T
j
W
, and (8a)

d5 d
T
d
W
, (8b)

where the subscripts T and W refer to the temperature

and water scalars, respectively.

To estimate the baseline residence time and baseline

NPP, we use an optimization method to reproduce the

simulation results of carbon residence time and NPP

using annual temperature and precipitation as inputs.

Here we only show the optimization method for the

carbon residence time; the method for NPP is the same.

In this method, t0E is set to be an unknown parameter, jT
and jW are expressed as functions of temperature T and

precipitation W, respectively:

j
T
5Q

10

�
T2T0
10

�
, and (9a)

j
W
5

W

W
0

, (9b)

whereQ10 is an unknown parameter that is related to the

temperature sensitivity of respiration and T0 andW0 are

the reference temperature and precipitation, which are

set be to the maximum values of annual temperature

and precipitation, respectively, across the study period.

The two parameters, t0E and Q10, are calibrated by

comparing the calculated (jTjW)
21t0E with the tE de-

rived from model output [Eq. (5a)], according to two

FIG. 1. Schematic diagram of the transient traceability framework. This framework traces the modeled transient

carbon storage dynamics to carbon residence time, NPP, carbon storage potential, and their source factors.
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indicators: the coefficient of determination R2 and the

root-mean-square error (RMSE). The objective of the

optimization method is to maximize R2 while minimizing

RMSE:

Max

�
R2

RMSE

�
, (10a)

R2 5 12
�i

[t
E,i

2(j
T,i
j
W,i
)21t0E,i]

2

�i
(t

E,i
2 t

E,i
)2

, and (10b)

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i

[t
E,i

2 (j
T,i
j
W,i
)21t0E,i]

2

n

s
, (10c)

where the subscript i refers to the time step, and n is the

total time steps. In the optimization method, the pa-

rameters t 0
E and Q10 are obtained using the generalized

reduced gradient (GRG) nonlinear solving method

(Drud 1985). For the optimization method for NPP, the

two parameters NPP0 and Q10 are calibrated using the

same method as the carbon residence time.

2) ATTRIBUTION ANALYSIS OF CARBON STORAGE

DYNAMICS

After decomposing a complex land carbon cycle

model into traceable components, we can better un-

derstand model output through attribution. Here we

propose a variance decomposition method for the at-

tribution analysis of carbon storage dynamics. This

method is based on the covariance allocation principle

for capital allocation, which is widely used for portfolio

risk decomposition and attribution (Dhaene et al. 2012).

According to the covariance allocation principle, the

variance of a variable can be decomposed into the sum

of the covariances of its individual components and itself

(see text section S1 in the online supplementalmaterial).

Three steps are taken to decompose the variance of

terrestrial carbon storage into the contributions of the

three variables and the source factors. Following the

transient traceability framework (Fig. 1), the variance of

terrestrial carbon storage is first decomposed into the

contributions from carbon storage capacity and poten-

tial. The variance of carbon storage capacity is further

decomposed into the contributions from carbon resi-

dence time and NPP. Finally, the variance of carbon

residence time and NPP are decomposed into the con-

tributions from the environmental scalars and the

baseline values of them, respectively. To apply the var-

iance decomposition method, the variable to be de-

composed should be expressed as the sum of its

components. Thus, we perform logarithmic trans-

formation for the carbon storage capacity in Eq. (1),

carbon residence time in Eq. (6), and NPP in Eq. (7) to

separate them into several components, respectively.

Details of the variance decomposition method for ter-

restrial carbon storage can be found in text section S2 in

the online supplemental material.

c. The model intercomparison projects

In this study, we compared the model output from the

three MIPs (i.e., CMIP5, TRENDY-v1 and MsTMIP),

based on the 3D model output space and the transient

traceability framework. For the 3D model output space,

carbon storage data (including carbon in the vegetation,

soil, litter, and coarse woody debris pools) and NPP

were obtained from the three MIPs. For each MIP,

several models were selected based on the availability of

model output in given historical simulations for our

analysis (Table S1 in the online supplemental material).

In addition, outlier models, such as SiBCASA with

unrealistically strong increase in carbon storage be-

tween two continuous years, were excluded.

In CMIP5, output from nine Earth system models

(ESMs) for the historical experiment covering a period

from mid-nineteenth century to near present (1850 to

2005) was used. The ESMs allow us to explore the

comprehensive behaviors of the Earth system through

the coupling of ocean–atmosphere–land components.

The land components of the ESMs differ in their rep-

resentations of vegetation types, soil properties, human

disturbances, and carbon and nitrogen pools, as well as

their spatial resolutions (Anav et al. 2013). In addition,

the nitrogen cycle is incorporated in BNU-ESM,

CESM1(BGC), and NorESM1-ME, and the latter two

ESMs use the same land components as CLM4. The

historical simulations are forced by changing conditions

that are consistent with observations, including changes

in atmospheric chemical composition and land-use

change (Taylor et al. 2012). Since the carbon storage

and NPP output from ESMs in CMIP5 represent cou-

pled simulations, the climate forcing used in our analysis

was also obtained from the output of each ESM.

In TRENDY-v1, global simulations S2 (with histori-

cal climate, CO2 fertilization) over the period 1901–2009

from nine dynamic global vegetation models (DGVMs)

were used. The historical climate forcing data are taken

from the combined dataset of the climatology data

produced by the Climate Research Unit (CRU) and the

reanalysis data from National Centers for Environ-

mental Prediction (NCEP)–National Center for Atmo-

spheric Research (NCAR) (Harris et al. 2014; Kalnay

et al. 1996). Annual-resolution CO2 data are sourced

from historic atmospheric CO2 from ice cores, and the

National Oceanic and Atmospheric Administration

(NOAA) for 1901–2009. Although the simulations S3,

which use the historical land-use-change data from the
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History Database of the Global Environment (HYDE)

(Hurtt et al. 2011), are more suitable for comparison

with observations, the simulations S2 with a constant

land-use mask were employed because the former sim-

ulations S3 are only available for a smaller subset of

TRENDY models.

In MsTMIP, global simulations SG3 (with historical

climate, CO2 fertilization, land-use and land-cover

change) from seven terrestrial biosphere models

(TBMs) were used. Four of the seven models are in-

corporated with nitrogen cycle (i.e., CLM4, CLM4VIC,

ISAM, and DLEM). The global simulations were run at

0.58 spatial resolution from 1901 to 2010 (Huntzinger

et al. 2013). The standardized environmental driver data

are described by Wei et al. (2014) in detail. Similar to

TRENDY-v1, the CRU–NCEP dataset is also used as

climate forcing in MsTMIP. The atmospheric CO2

concentration data for MsTMIP are prepared based on

the GLOBVIEW–CO2 product, fossil fuel emissions,

andCO2 observations atMauna Loa and the South Pole.

The land-use and land-cover change are prescribed by

merging a statistic satellite-based land-cover product,

with the time-varying land-use harmonization data (Wei

et al. 2014).

Air temperature and precipitation in the three MIPs

were also used for traceability analysis. We used the

GCM forcing for individual models in CMIP5 and the

CRU–NCEP data for the models in TRENDY and

MsTMIP. The monthly output from each model in the

three MIPs was processed following three steps. First,

the components of all the carbon pools were summed as

terrestrial carbon storage. Second, monthly carbon

storage and NPP were aggregated into annual totals for

each grid cell and then accumulated over all grid cells to

calculate the global annual values, respectively. Third,

global mean precipitation and temperature over land

(excluding Antarctica and Greenland) for each year

were similarly obtained from the monthly data at each

grid. The global annual data were finally used to derive

the 3D model output space and perform traceability

analysis.

3. Results

a. The 3D model output space

Figures 2a, 2b, and 2c show the distributions of annual

carbon residence time, NPP, and carbon storage po-

tential for the models in CMIP5, TRENDY, and

MsTMIP, respectively, at the global scale. The three

variables together determine the simulated annual car-

bon storage by themodels in the 3Dmodel output space.

Among the nine ESMs in CMIP5, NPP ranges from

about 40 to 95 PgCyr21 and the carbon residence time

from about 20 to 55 years, while the carbon storage po-

tential varies from about2250 to 200 PgC (Fig. 2a). The

range of global mean annual carbon residence time is

generally small within each model, but annual NPP

varies a lot for most models, with those that include ni-

trogen limitation [i.e., BNU-ESM, CESM1(BGC), and

NorESM1-ME] showing smaller mean values (43–44

PgCyr21) than other ESMs (60–80 PgCyr21, see Table

S2 in the online supplemental material). The carbon

storage capacity (i.e., the product of carbon residence

timeandNPP) ranges considerably from less than 1200PgC

for CESM1(BGC) and NorESM1-ME to more than

3200 PgC for MPI-ESM-LR. For the seven TBMs in

MsTMIP, the global annual carbon storage capacity also

shows large variation, which is attributed to the high

variability in carbon residence time and NPP (Fig. 2c).

In addition, the carbon storage and carbon storage

capacity are generally smaller for the four models

(i.e., CLM4, CLM4VIC, ISAM, and DLEM), which

incorporate a nitrogen cycle and show lower mean an-

nual NPP (38–51 PgCyr21) in comparison with other

TBMs (50–73 PgCyr21, see supplemental Table S2).

However, the carbon residence time and NPP exhibit

smaller variations across the nine DGVMs in TRENDY

than those models in CMIP5 and MsTMIP, resulting in

less variation in the simulated carbon storage capacity

(Fig. 2b).

The time series of global annual carbon storage and

carbon storage capacity for the models in CMIP5,

TRENDY, and MsTMIP are shown in Figs. 2d, 2e, and

2f, respectively. Large diversity in the simulated carbon

storage is found for the 25 models. The annual carbon

storage varies considerably from less than 600 PgC for

CLM4VIC in MsTMIP to about 3200 PgC for MPI-

ESM-LR in CMIP5. The large range of carbon storage is

highly related to that of the carbon storage capacity. In

responses to the external environmental changes, the

carbon storage capacity changes quickly, and it drives

the carbon storage change. The change rate of annual

carbon storage is much slower than that of annual car-

bon storage capacity, as it is also regulated by the in-

ternal carbon cycle processes.

The difference between carbon storage capacity and

terrestrial carbon storage is expressed as carbon storage

potential in Figs. 2d–f. The interannual patterns of car-

bon storage in the threeMIPs are mainly affected by the

carbon storage potential, because the sign and value of

the carbon storage potential determine the direction and

rate of carbon storage change, respectively. The nine

DGVMs in TRENDY present positive carbon storage

potential, with larger values over the recent three

decades than the first half of the twentieth century,
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FIG. 2. The 3Dmodel output space (carbon residence time, NPP, and carbon storage potential), and time series of annual carbon storage

(solid lines) with the shaded outlines indicating the year-to-year fluctuations due to changes in carbon storage capacity (PgC) for the

models in (a),(d) CMIP5, (b),(e) TRENDY, and (c),(f) MsTMIP. The points in (a)–(c) represent the global annual values for the three

variables. The contour lines in (a)–(c) represent the carbon storage capacity. The shades in (d)–(f) show the values of the carbon storage

potential for the models (positive above the solid lines, and negative below the solid lines).
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resulting in an increasing direction of carbon storage

change toward the carbon storage capacity. However,

the models in CMIP5 and MsTMIP exhibit lower vari-

ation in annual carbon storage. The carbon storage po-

tential fluctuates between positive and negative values,

so the current carbon storage rises and falls frequently

within a small range over the study period. Several

models in CMIP5 [i.e., CESM1(BGC), GFDL-ESM2G,

MIROC-ESM, and NorESM1-ME] and MsTMIP (i.e.,

CLM4, CLM4VIC, GTEC, ISAM, and VEGAS2.1)

show negative carbon storage potential over most years,

resulting in a long-term decline in carbon storage

(Figs. 2d,f; and supplemental Table S2).

b. Traceability analyses of carbon residence time and
NPP

The carbon residence time andNPP are traced to their

baseline values and the environmental scalars. Figure 3

shows the environmental space consisting of air tem-

perature and precipitation for the three MIPs. As the

climate and carbon cycle form an intimately coupled

system, the environmental space of annual temperature

and precipitation is different across the nine ESMs in

CMIP5. The simulated precipitation varies from about

680 to 1020mmyr21, and temperature from 10.78 to

15.58C among the nine ESMs over the period 1850–2005

(Fig. 3). Generally, the environmental space is not

widespread for each model. The ranges of global mean

annual temperature and precipitation are less than 38C
and 110mmyr21, respectively. The environmental space

is identical for the models in MsTMIP and TRENDY

because the same climate forcing (CRU-NCEP) is used

to drive the uncoupled models. The global mean annual

precipitation and temperature over land (excluding

Antarctica and Greenland) from CRU-NCEP range

from 718 to 818mmyr21 and from 12.88 to 14.38C, re-
spectively, over the period 1901–2010 (Fig. 3). Because

the traceability analysis is performed at the global an-

nual scale, the environmental space shows small di-

versity and does not reflect the seasonal and spatial

variability of temperature and precipitation, such as

their large variations in semiarid ecosystems (Poulter

et al. 2014).

Figure 4 shows the dependence of carbon residence

time and NPP on their baseline values and the envi-

ronmental scalars in the three MIPs. The difference in

carbon residence time (or NPP) results from the base-

line carbon residence time (or baseline NPP) and the

environmental scalar across different models. There is a

one- to threefold variation in the baseline carbon resi-

dence time and baseline NPP among the models in the

three MIPs. The baseline carbon residence time ranges

from 21 to 42 years in CMIP5, from 23 to 35 years in

TRENDY, and from 12 to 37 years inMsTMIP (Table 2;

Figs. 4a–c). And the baseline NPP varies from 49 to

91 PgC yr21 in CMIP5, from 58 to 82 PgCyr21 in

TRENDY, and from 42 to 85 PgCyr21 in MsTMIP

(Table 2; Figs. 4d–f). However, the distributions of the

environmental scalars are much closer across different

models, ranging from about 0.7 to 1, both for the carbon

residence time and NPP. Thus, the large ranges in carbon

residence time and NPP in Figs. 2a–c are mainly attrib-

uted to the baseline carbon residence time and baseline

NPP among the models in the three MIPs.

It should be noted that the 3D points in Fig. 4 are

scattered. In the traceability analysis, we use the opti-

mization method to decompose the carbon residence

time (or NPP) into the baseline carbon residence time

(or baseline NPP) and the environmental scalar. As a

consequence, the product of them cannot fully explain

the variation in the carbon residence time (or NPP)

(Table 2 and Fig. S2 in the online supplemental mate-

rial). The product of the baseline value and the envi-

ronmental scalar explains 556 12% (mean6 1 standard

deviation) of the variation in the carbon residence time,

and 59 6 16% of the variation in NPP, for the three

MIPs. The optimization method performs better for the

models in TRENDY (R2 5 0.61 6 0.10 for carbon res-

idence time andR25 0.696 0.04 for NPP) andMsTMIP

(R2 5 0.58 6 0.10 for carbon residence time and R2 5
0.66 6 0.07 for NPP). The variations in the carbon res-

idence time and NPP are difficult to capture using the

optimization method for several models in CMIP5, such

as HadGEM2-ES, probably due to low or even opposite

sensitivities of carbon residence time (and NPP) to

temperature and precipitation over different regions. In

addition, other environmental factors, such as atmo-

spheric CO2, land-use change, and nitrogen availability,

also influence the interannual variability of carbon

residence time and NPP, which calls for an expanded

parameterization that incorporates more controlling fac-

tors to improve the traceability analysis.

c. Variance decomposition of the simulated carbon
storage

The variation in the carbon storage is decomposed

into several components for the three MIPs using the

variance decomposition method (Fig. 5). The carbon

storage variation is dominated by the carbon residence

time and NPP, and the absolute contribution of the

carbon storage potential is less than 1%. The baseline

carbon residence time and baseline NPP contribute

more than 90% to the variation in carbon residence time

and NPP, respectively, for each MIP and all three MIPs

combined. Specifically, the contribution of the baseline

carbon residence time to the carbon storage variation is

1 APRIL 2018 ZHOU ET AL . 2841



45% for CMIP5, 46% for TRENDY, 68% for MsTMIP,

and 44% for the three MIPs, and that of the baseline

NPP is 50% for CMIP5, 48% for TRENDY, 34% for

MsTMIP, and 55% for the three MIPs. However, the

temperature and water scalars contribute no more than

5% of variations in the carbon residence time and NPP,

respectively. As a consequence, the variation in carbon

storage is dominated by the baseline carbon residence

time and baseline NPP. These results are consistent with

the large ranges of the baseline carbon residence time

and baseline NPP and the close distributions of the en-

vironmental scalars across different models (Fig. 4).

Although carbon storage variation is mainly attrib-

uted to baseline carbon residence and baseline NPP

among different models, it is determined by the envi-

ronmental conditions for individual models when the

baseline values are constant. Figure 6 shows the distri-

butions of the air temperature contributions to the var-

iations in carbon residence time and NPP for all three

MIPs. Within each model, the total contribution of the

temperature and water scalars to the variations in car-

bon residence time and NPP equals 100%, according to

the transient traceability framework. The contributions

of precipitation are shown in Fig. S3 in the online sup-

plemental material. In CMIP5, air temperature explains

most of the variations in the carbon residence time (746
20%) and NPP (63 6 21%) for the nine ESMs. The

contributions of air temperature in TRENDY (40 6
13% to carbon residence time and 63 6 15% to NPP)

and MsTMIP (59 6 13% to carbon residence time and

49 6 18% to NPP) are smaller than those in CMIP5.

For the 25 models in the three MIPs, the mean contri-

bution of air temperature is more than precipitation,

both for the carbon residence time (58 6 22%) and

NPP (59 6 19%).

4. Discussion

a. Model differences in the baseline carbon residence
time and baseline NPP

All the models in the three MIPs can simulate the

processes of photosynthetic carbon input, carbon allo-

cation and transformation, and carbon loss through

respiration. Most terrestrial carbon cycle models

broadly share a similar structure for carbon cycle sim-

ulation (i.e., a pool-and-flux structure) (Luo et al. 2015).

In these models, the processes of carbon flow through

different pools from its entrance via photosynthesis to its

release via respiration are simulated based on a set of

carbon balance equations. As indicated by Luo et al.

(2015), the internal carbon cycle processes can be

characterized by five fundamental properties for all

terrestrial ecosystems: compartmentalization, photo-

synthesis as the dominant carbon input, partitioning

among pools, donor pool-dominant transfers, and first-

order decay. These five properties have been incorpo-

rated into terrestrial carbon cycle models using the

FIG. 3. Distribution of global mean annual air temperature and precipitation over land

(excluding Antarctica and Greenland) for the nine ESMs in CMIP5 and the models in

TRENDY and MsTMIP. The temperature and precipitation are the same for the models in

TRENDY and MsTMIP.
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FIG. 4. Decomposition of the carbon residence time into the baseline carbon residence time and the environmental scalar and de-

composition of annual NPP into the baselineNPP and the environmental scalar for (a),(d) CMIP5, (b),(e) TRENDY, and (c),(f)MsTMIP.

The environmental scalar is a product of the temperature andwater scalars, which convert the baseline carbon residence time and baseline

NPP into their actual values.
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carbon balance equations, which can be further sum-

marized as a matrix equation. For a given carbon cycle

model, its structure can be represented by the matrix

equation, with a given number of carbon balance

equations (Luo et al. 2017; Huang et al. 2018). Despite

the fact that model structures show a high degree of

underlying similarity, across-model variation in carbon

cycle parameters results in large differences in NPP and

carbon residence time.

Photosynthetic carbon assimilation is the major

pathway of carbon flow in terrestrial ecosystems, and it

is usually simulated based on the Farquhar model. In the

Farquhar model, assimilation rate is jointly controlled

by the rubisco limitation of carboxylation and the elec-

tron transport rate (Farquhar et al. 1980). Leaf photo-

synthetic capacity, as determined by rubisco and

electron transport capacities, plays an important role in

the simulation of ecosystem carbon input. In addition,

ecosystem carbon input (e.g., NPP) is also affected by

leaf area index, and regulated by environmental factors,

such as temperature, radiation, and water availability

(Boisvenue and Running 2006; Nemani et al. 2003;

Schloss et al. 1999). In this study, NPP variation is traced

to the baseline NPP and two environmental scalars.

Baseline NPP is related to the maximum carbon input at

optimal environmental conditions, and the environ-

mental scalars represent the environmental limitations.

Once assimilated, photosynthetic carbon is allocated

into different plant pools (e.g., leaves, stems, and roots)

for plant biomass growth and plant respiration. After

death, plant organs are transferred to litter pools, which

will be decomposed by microorganisms through het-

erotrophic respiration or transferred to the soil pool in

the form of soil organic matter. Soil organic carbon can

be stored for hundreds to thousands of years before it is

released back into the atmosphere through microbial

respiration (Luo and Zhou 2006). The carbon de-

composition rate (i.e., the inverse of carbon residence

time) in terrestrial ecosystems is greatly affected by

environmental conditions, especially temperature and

soil moisture (Davidson and Janssens 2006; Sierra et al.

2015). The maximum rate of carbon decomposition at

optimal temperature and moisture conditions corre-

sponds to the baseline carbon residence time (i.e., the

shortest carbon residence time).

In this study, the processes of carbon input and output

simulated in the terrestrial carbon cycle models are

summarized as ecosystem NPP and carbon residence

time, respectively. The carbon cycle parameters, espe-

cially those that determine carbon uptake and release at

TABLE 2. Calibrated parameters and the performance of the optimization method for the carbon residence time and NPP. The quantities

T0 and W0 are the reference values of temperature and precipitation.

Models T0 (8C)
W0

(mmyr21)

The carbon residence time NPP

t 0
E (yr) Q10 R2 RMSE NPP (PgC yr21) Q10 R2 RMSE

CMIP5 BNU-ESM 14.05 1022.75 32.31 1.64 0.53 1.06 52.69 2.51 0.60 1.76

CanESM2 15.45 769.63 28.34 2.45 0.46 1.21 69.27 1.75 0.31 2.69

CESM1(BGC) 14.34 984.43 21.84 2.41 0.61 0.85 48.77 1.68 0.61 0.95

GFDL-ESM2G 13.78 956.57 23.69 4.81 0.35 1.91 81.24 2.39 0.31 3.97

HadGEM2-ES 13.43 893.66 24.37 0.74 0.34 2.12 64.01 0.67 0.25 5.86

IPSL-CM5B-LR 13.30 761.16 22.63 2.52 0.62 0.92 80.07 3.33 0.64 2.89

MIROC-ESM 14.77 956.47 42.38 2.59 0.45 1.26 65.61 1.51 0.23 1.44

MPI-ESM-LR 13.94 803.91 37.31 2.07 0.62 1.36 91.11 2.22 0.59 3.21

NorESM1-ME 13.41 940.70 20.83 3.42 0.36 1.01 50.63 2.11 0.35 1.22

TRENDY CLM4C 14.31 817.81 28.02 1.36 0.46 0.61 77.66 2.58 0.67 2.05

CLM4CN 14.31 817.81 26.83 1.43 0.41 0.64 72.28 1.93 0.75 1.24

HYLAND 14.31 817.81 26.20 1.97 0.58 0.73 81.93 3.49 0.76 2.01

LPJ_GUESS 14.31 817.81 31.70 1.82 0.69 0.73 66.84 2.32 0.62 1.64

LPJ 14.31 817.81 32.17 2.12 0.63 0.91 64.55 2.82 0.69 1.82

OCN 14.31 817.81 32.25 1.57 0.70 0.60 57.53 2.74 0.71 1.44

ORCHIDEE 14.31 817.81 30.31 1.53 0.69 0.56 82.19 2.76 0.69 2.07

TRIFFID 14.31 817.81 22.99 1.61 0.65 0.47 78.43 3.11 0.73 2.11

VEGAS 14.31 817.81 35.37 1.22 0.69 0.53 60.48 1.29 0.63 0.89

MsTMIP CLM4 14.31 817.81 22.96 2.46 0.50 0.88 54.01 1.49 0.76 0.71

CLM4VIC 14.31 817.81 12.20 3.50 0.49 0.66 42.39 1.54 0.76 0.57

DLEM 14.31 817.81 25.36 1.72 0.68 0.54 57.74 1.79 0.71 1.00

GTEC 14.31 817.81 25.69 2.06 0.47 0.92 84.84 2.34 0.63 2.16

ISAM 14.31 817.81 37.22 1.99 0.61 0.99 45.16 1.91 0.56 1.04

ORCHIDEE-LSCE 14.31 817.81 26.83 2.99 0.54 1.24 61.57 3.95 0.61 2.38

VEGAS2.1 14.31 817.81 34.29 1.47 0.74 0.56 61.92 1.26 0.61 0.92
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optimal environmental conditions, are important for

simulations of NPP and carbon residence time as they

alter their corresponding baseline values. Thus, the dif-

ferences in the carbon cycle parameters can be measured

by the variations of the baseline NPP and baseline carbon

residence time. By comparing the output of the Austra-

lian Community Atmosphere Biosphere Land Exchange

(CABLE) model and Community Land Model, version

FIG. 5. Variance decomposition of the carbon storage based on global annual data frommodels in the threeMIPs. First, the variation of

the carbon storage X is decomposed into that of the carbon residence time tE, NPP, and the carbon storage potential Xp. Second,

variations of the carbon residence time andNPP are decomposed into their baseline values (t0E andNPP0) and the temperature (jT and dT)

and water (jW and dW) scalars. Positive/negative values mean positive/negative contributions of the variables to the variation of carbon

storage.
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3.5 (CLM3.5 or CLM-CASA0), Rafique et al. (2016)

indicated that the parameter setting related to NPP and

the baseline carbon residence time leads to the eventual

model differences. Friend et al. (2014) also identified

variations in the carbon residence time as the key dif-

ference among models to explain their diverging pro-

jections. Our study is consistent in showing that the

baseline NPP and baseline carbon residence time con-

tribute to more than 90% of the carbon storage varia-

tion, much more than the external environmental

scalars or forcing. This result confirms the important

role of model parameters that affect the baseline carbon

residence time and baseline NPP in determining the

output of terrestrial carbon cycle models. For future

model improvement, modelers should pay more atten-

tion to the carbon cycle processes and parameters re-

lated to the baseline carbon residence time and

baseline NPP.

b. Model intercomparison across the three MIPs

Different from previous model intercomparison

studies (Keenan et al. 2012; Schwalm et al. 2010; Sitch

et al. 2008; Zaehle et al. 2014), which aim to compare

and improve model performance through model-data

analysis, this study attributes the large variations in an-

nual carbon storage to the variations in carbon residence

time, NPP, and carbon storage potential to understand

intermodel differences.

The 25models in the threeMIPs are different in terms

of the three decomposed variables, resulting in great

spreads in annual carbon storage. The CMIP5 and

MsTMIP present large variations in the simulated car-

bon storage among different models than TRENDY.

According to the variance decomposition method, the

widespread baseline carbon residence time and baseline

NPP result in large carbon storage variations in CMIP5

and MsTMIP. The large variations in the carbon resi-

dence time and NPP among different models may be

related to land-use change (Erb et al. 2016), since the

simulations in CMIP5 and MsTMIP employed time-

variant historical land-use change with different repre-

sentations of vegetation types, while TRENDY models

utilized a constant land-usemask. This is reflected by the

nine DGVMs in TRENDY, which consistently show an

increasing trend of carbon storage (capacity) over the

period 1901–2010, especially the recent three decades.

On the contrary, there are no obvious trends in CMIP5

and MsTMIP simulations, where the CO2 fertilization

effect on carbon storage (capacity) may be attenuated

by land-use change and the related nitrogen decline in

soils and aboveground biomass (Yang et al. 2010; Zhou

et al. 2017). The increasing trend of carbon storage in

TRENDY is implied by the large and mostly positive

carbon storage potential, which determines the direction

and rate of carbon storage change (see also Fig. 2b).

However, the effects of land-use change on carbon res-

idence time and NPP were not incorporated in the

transient traceability analysis in this study. Nevertheless,

land-use change and other disturbances influence the

carbon cycle by (i) either depleting or adding carbon in

pools, (ii) either decreasing or increasing canopy pho-

tosynthesis, and (iii) altering carbon residence time via

changes in respiration and decomposition (Luo and

Weng 2011). All those influences induced by land-use

change can be represented by the three dynamics

properties (i.e., carbon input, residence time, and the

carbon storage potential) and thus analyzed by those

techniques developed in this study.

The carbon cycle is coupled with the climate dynamics

for the nine ESMs in CMIP5 but not for the models in

TRENDY and MsTMIP. The nine ESMs allow for

feedback between carbon cycling and climate change,

FIG. 6. Distribution of the temperature contributions to the variations in the carbon resi-

dence time (blue box) andNPP (orange box) for (a) CMIP5, (b) TRENDY, (c)MsTMIP, and

(d) the three MIPs combined.
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while the climate forcing is prescribed in TRENDY and

MsTMIP. The traceability analysis shows that the de-

pendence of the carbon residence time and NPP on the

environmental scalars is stronger for the uncoupled

models than that for the coupled models (Fig. 4). The

relationships between the carbon residence time (or

NPP) and the environmental variables are more com-

plex in the ESMs, given the feedbacks of carbon cycle

and climate change (Heimann and Reichstein 2008;

Sokolov et al. 2008). Thus, variations in the carbon

residence time and NPP are not easy to be captured by

the temperature and water scalars.

Although the environmental space varies with the

simulated climate for the models in CMIP5, and is

identical in TRENDY and MsTMIP, the total contri-

bution of the environmental scalars to the carbon stor-

age variation in CMIP5 is no more than that in

TRENDY and MsTMIP. Indeed, both the carbon resi-

dence time and NPP are climate dependent. By com-

paring the ‘‘coupled’’ and ‘‘uncoupled’’ simulations of

11 coupled climate–carbon cycle models, Friedlingstein

et al. (2006) show that the impact of climate change on

land carbon storage is significant in all models. How-

ever, the climate impact on the carbon storage variation

across different models is weak, both for the coupled

and uncoupled models, because they strongly differ in

model parameters of carbon cycle processes. Our results

indicate that the difference in the environmental scalars

is much smaller than that in the baseline carbon resi-

dence time and baseline NPP among the models in all of

the three MIPs.

Compared with precipitation, air temperature con-

tributes more to the variations in carbon residence time

and NPP for the 25 models. Many studies have shown

that carbon cycle processes, including carbon accumu-

lation and decomposition, are sensitive to climate

warming (Lu et al. 2013; Xia et al. 2014). However, the

change in precipitation varies greatly over different re-

gions, resulting in inconsistent effects on the carbon

cycle across the globe, so the precipitation impact on

terrestrial carbon sequestration is rather weak at the

global scale (Sokolov et al. 2008). The models in CMIP5

exhibit larger mean temperature contributions than

those in TRENDY and MsTMIP. The large tempera-

ture contribution for the nine ESMs may be related to

the strong positive feedback between carbon cycle and

climate warming (Luo 2007; Zeng 2004), which further

enhances the role of air temperature in the carbon cycle

processes.

It should be noted that differences in model behaviors

are also related to whether a nitrogen cycle is included in

the model. Since the productivity of many terrestrial

ecosystems is limited by lack of reactive nitrogen (Norby

et al. 2010; Zhang et al. 2014), and the CO2 fertilization

effect is strongly down-regulated by nitrogen limitation

(Rastetter et al. 1992; Hungate et al. 2003; Walker et al.

2015), NPP is generally lower in the models with nitro-

gen limitation, resulting in smaller carbon storage ca-

pacity and carbon storage, than those that do not include

nitrogen limitation. We found the carbon storage po-

tential is mostly negative for the models that include a

nitrogen limitation, which indicates a decreasing trend

of carbon storage over the study period, while the other

models exhibit positive carbon storage potential over

most years. It was reported that nitrogen limitation will

reduce the CO2 fertilization effect, and even cause a

reduced NPP for some ecosystems (McMurtrie et al.

2008; Norby et al. 2010; Thornton et al. 2007). The dif-

fering behavior between models with and without a

nitrogen cycle indicates that the carbon–nitrogen

feedback should be considered when assessing model

differences.

c. Understanding the variation in carbon storage
among different models

In this study, we developed a suite of new techniques

for tracing predominant model parameters that govern

the simulated global carbon budget in a multimodel

setting. We applied these methods to compare the car-

bon storage dynamics simulated by 25 models in three

MIPs. These new techniques include a 3Dmodel output

space, a transient traceability framework, and a variance

decomposition method, which allow us to elucidate the

main source of variability in the historical simulations of

carbon storage across different models. In addition,

these new techniques can be also applied to future

projections to understand large divergence in model

predictions (Friedlingstein et al. 2014).

The 3D model output space can measure the differ-

ence in the projected carbon storage dynamics in terms

of NPP, carbon residence time, and carbon storage po-

tential (Fig. 2; Luo et al. 2017). Despite differences in

model structure and carbon cycle parameters, the dif-

ferences in photosynthetic processes and parameter

values can be summarized by that in NPP. Similarly, the

differences in processes after photosynthesis and rele-

vant parameters are revealed by the variation in

the carbon residence time across different models. The

product of NPP and carbon residence time measures the

difference in carbon storage capacity at steady state, and

the carbon storage potential can capture the transient

dynamics of the terrestrial carbon cycle in response to

changes in environmental conditions. The 3D model

output space can clearly illustrate how and how

much the model output differs. Thus, we can perform

model evaluations by comparing model output with
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observations in terms of the three variables, and improve

model projections by adjusting the parameters related to

NPP and carbon residence time according to their dif-

ferences with observed values.

The transient traceability framework can decompose

a complex carbon cycle model into traceable compo-

nents by simulating biogeochemical processes. It ex-

tended the traceability framework developed by Xia

et al. (2013) in two aspects. First, this new framework

can directly analyze the transient dynamics of terrestrial

carbon storage simulated by the models through in-

volving the third dimension: the carbon storage poten-

tial. Second, the modeled NPP is decomposed into the

baseline NPP and environmental scalars for tempera-

ture and precipitation. Thus, we can attribute the

model differences in NPP and carbon residence time to

the variability in model parameters and environmental

forcing.

The variance decomposition method can separate the

relative contributions of NPP, carbon residence time, and

carbon storage potential to variations in terrestrial car-

bon storage. Thus, the variation in the simulated carbon

storage among different models can be quantitatively

attributed to the three variables and hence the source

factors. In addition, our decomposition method is also

applicable to assess the responses of carbon storage to the

changing environment (e.g., climate warming, rising at-

mosphere CO2, and other disturbances) and quantify the

contributions of the decomposed components to the

projected change in carbon storage. This quantitative

method can help us investigate the response mechanisms

of the terrestrial carbon storage to the environmental

changes and therefore better predict terrestrial carbon

sequestration response under future climate change.

d. Limitations and recommendations

In this study, we compared the simulated global mean

carbon storage dynamics in the three MIPs based on the

3D model output space, identified the sources of carbon

storage variation following the traceability framework,

and quantified the relative contributions of the source

factors. The three MIPs show a large spread in the

simulated carbon storage dynamics, which is effectively

revealed by the 3Dmodel output space. Specifically, our

study shows that the baseline NPP and baseline carbon

residence time are major sources of intermodel varia-

tions. Future modeling research needs to better con-

strain parameters related to these two variables with

observations of almost all carbon-related variables, in-

cluding plant allocation, decomposition, and microbial

carbon use efficiency, especially under favorable envi-

ronmental conditions in order to improve the model

projections.

Our study is the first to perform model intercompari-

son based on the 3D model output space and the tran-

sient traceability framework in amulti-MIP setting. This

is a post-simulation model evaluation. We took the

terrestrial ecosystem as one pool to estimate the carbon

residence time and carbon storage potential while the

original models have complex structures and variable

parameters. Using this simple yet effective method, we

are able to obtain the three variables and environmental

scalars of the models to develop the 3D model output

space, perform traceability analysis, and conduct vari-

ance decomposition for understandingmodel variations.

These post-MIP analyses demonstrate that the three

techniques developed in this study can be used as an

important means to track the origins of model differ-

ences from a completedMIP. Themain limitation of this

study is that the model intercomparison analyses were

performed at the global annual scale. The motivation of

this is to get an overview on intermodel differences in

simulating land carbon storage. More studies should be

done in the future to gain understanding of the sub-

annual and grid-scale variability of the three variables,

and the difference among biomes as well. Another lim-

itation is that the traceability analysis of the carbon

residence time and NPP was done by only considering

the effect of temperature and precipitation. Although

the optimization method explained most of the varia-

tions in carbon residence time and NPP for the majority

of the models, we need more information on regulations

of carbon cycle processes by various factors and pro-

cesses from original models to fully understand varia-

tions in model performance. Should we have all carbon

balance equations, response functions, and their pa-

rameters, the transient traceability analysis can account

for almost all variations amongmodels (Luo et al. 2017).

For future MIPs, we recommend a matrix approach to

reorganize all carbon balance equations in any original

model into one matrix equation as for CLM4.5 (Huang

et al. 2018) and the Terrestrial Ecosystem Model

(TECO) (Jiang et al. 2018). The matrix approach is

applicable to almost all land carbon cycle models. Once

all the models that are involved in one MIP are con-

verted to matrix equations, we can analyze model un-

certainty in a unified diagnostic system. That is, all the

land carbon cycle models are represented with one

unified formula, model outputs are evaluated in the 3D

space, and uncertainty among models can be traced to

various components (e.g., carbon input, plant alloca-

tion, decomposition rates, and environmental scalars)

with the traceability framework (Fig. 1; also see Jiang

et al. 2018). We expect that this diagnostic system can

greatly improve our understanding of uncertainty

sources of land carbon modeling. So, those techniques
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developed in this study, which are parts of the di-

agnostic system, can effectively identify the sources of

model differences and guide directions for future

model improvement.

Future research is needed to perform the analysis at

the grid or regional scale. The global analysis cannot

fully reveal the origins of differences in model output

and may introduce some biases (e.g., due to compensa-

tory effects in time and/or space) in the relation-

ship between the carbon residence time (or NPP) and

the environmental scalars. At the regional scale, the

decomposed traceable components can be compared

with observations to illustrate the deviations of model

output from real-world values. In addition, we can de-

termine the key processes or parameters that explain the

differences among models as well as between models

and observations over different regions. For regional

analysis, more environmental factors should be consid-

ered in the traceability analysis, such as solar radiation,

atmospheric CO2, land-use change, and nitrogen avail-

ability, to capture the temporal and spatial variability of

the carbon residence time and NPP. The carbon storage

potential should also be decomposed into its traceable

components to further enhance our understanding. As

indicated in Eq. (2), the carbon storage potential can be

decomposed into the chasing time and the rate of carbon

storage change. The chasing time is closely related to the

carbon residence time, and they are identical when we

use the one-pool model. The rate of carbon storage

change is affected by various factors, both internal

processes and external forcing. So, it is critical to per-

form decomposition analysis to identify key processes

governing the rate of carbon storage change. Through

analyzing the carbon storage potential, our transient

traceability framework can better evaluate the transient

terrestrial carbon cycle responses to external forcing

and internal processes. Upon careful consideration of

the carbon cycling processes, their responses to envi-

ronmental drivers, and model parameters, the tran-

sient traceability framework can elucidate how various

processes and parameter settings influence ecosystem

carbon storage through the simulated changes in

NPP, carbon residence time, and carbon storage po-

tential. Thus, we can efficiently improve model perfor-

mance towardmore realistic projections by adjusting the

highlighted carbon cycle processes and parameters in

future studies.
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